Cache dependence computation using FoldingSet.

This introduces an LDA-internal DependencePair class. The intention is,
that this is a place where dependence testers can store various results
such as SCEVs describing conflicting iterations, breaking conditions,
distance/direction vectors, etc.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76877 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andreas Bolka
2009-07-23 14:32:46 +00:00
parent 697712c7d4
commit b4c28e97f4
2 changed files with 103 additions and 25 deletions

View File

@@ -81,36 +81,73 @@ bool LoopDependenceAnalysis::isDependencePair(const Value *A,
cast<const Instruction>(B)->mayWriteToMemory());
}
bool LoopDependenceAnalysis::depends(Value *Src, Value *Dst) {
assert(isDependencePair(Src, Dst) && "Values form no dependence pair!");
DOUT << "== LDA test ==\n" << *Src << *Dst;
bool LoopDependenceAnalysis::findOrInsertDependencePair(Value *X,
Value *Y,
DependencePair *&P) {
void *insertPos = 0;
FoldingSetNodeID id;
id.AddPointer(X);
id.AddPointer(Y);
// We only analyse loads and stores; for possible memory accesses by e.g.
// free, call, or invoke instructions we conservatively assume dependence.
if (!IsLoadOrStoreInst(Src) || !IsLoadOrStoreInst(Dst))
return true;
P = Pairs.FindNodeOrInsertPos(id, insertPos);
if (P) return true;
Value *srcPtr = GetPointerOperand(Src);
Value *dstPtr = GetPointerOperand(Dst);
const Value *srcObj = srcPtr->getUnderlyingObject();
const Value *dstObj = dstPtr->getUnderlyingObject();
P = PairAllocator.Allocate<DependencePair>();
new (P) DependencePair(id, X, Y);
Pairs.InsertNode(P, insertPos);
return false;
}
void LoopDependenceAnalysis::analysePair(DependencePair *P) const {
DOUT << "Analysing:\n" << *P->A << "\n" << *P->B << "\n";
// Our default answer: we don't know anything, i.e. we failed to analyse this
// pair to get a more specific answer (dependent, independent).
P->Result = Unknown;
// We only analyse loads and stores but no possible memory accesses by e.g.
// free, call, or invoke instructions.
if (!IsLoadOrStoreInst(P->A) || !IsLoadOrStoreInst(P->B)) {
DOUT << "--> [?] no load/store\n";
return;
}
Value *aptr = GetPointerOperand(P->A);
Value *bptr = GetPointerOperand(P->B);
const Value *aobj = aptr->getUnderlyingObject();
const Value *bobj = bptr->getUnderlyingObject();
AliasAnalysis::AliasResult alias = AA->alias(
srcObj, AA->getTargetData().getTypeStoreSize(srcObj->getType()),
dstObj, AA->getTargetData().getTypeStoreSize(dstObj->getType()));
aobj, AA->getTargetData().getTypeStoreSize(aobj->getType()),
bobj, AA->getTargetData().getTypeStoreSize(bobj->getType()));
// If we don't know whether or not the two objects alias, assume dependence.
if (alias == AliasAnalysis::MayAlias)
return true;
// We can not analyse objects if we do not know about their aliasing.
if (alias == AliasAnalysis::MayAlias) {
DOUT << "---> [?] may alias\n";
return;
}
// If the objects noalias, they are distinct, accesses are independent.
if (alias == AliasAnalysis::NoAlias)
return false;
if (alias == AliasAnalysis::NoAlias) {
DOUT << "---> [I] no alias\n";
P->Result = Independent;
return;
}
// TODO: the underlying objects MustAlias, test for dependence
// We couldn't establish a more precise result, so we have to conservatively
// assume full dependence.
return true;
DOUT << "---> [?] cannot analyse\n";
return;
}
bool LoopDependenceAnalysis::depends(Value *A, Value *B) {
assert(isDependencePair(A, B) && "Values form no dependence pair!");
DependencePair *p;
if (!findOrInsertDependencePair(A, B, p)) {
// The pair is not cached, so analyse it.
analysePair(p);
}
return p->Result != Independent;
}
//===----------------------------------------------------------------------===//
@@ -124,6 +161,11 @@ bool LoopDependenceAnalysis::runOnLoop(Loop *L, LPPassManager &) {
return false;
}
void LoopDependenceAnalysis::releaseMemory() {
Pairs.clear();
PairAllocator.Reset();
}
void LoopDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();