Convert backend to use passes, implement X86TargetMachine

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4421 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-10-29 22:37:54 +00:00
parent c66583ef3b
commit b4f68ed32e
7 changed files with 173 additions and 58 deletions

View File

@ -10,28 +10,32 @@
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/InstVisitor.h"
#include <map>
namespace {
struct ISel : public InstVisitor<ISel> { // eventually will be a FunctionPass
struct ISel : public FunctionPass, InstVisitor<ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
unsigned CurReg;
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
ISel(MachineFunction *f)
: F(f), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
ISel(TargetMachine &tm)
: TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &F) {
visit(F);
bool runOnFunction(Function &Fn) {
F = new MachineFunction(&Fn, TM);
visit(Fn);
RegMap.clear();
F = 0;
return false; // We never modify the LLVM itself.
}
@ -161,14 +165,10 @@ void ISel::visitAdd(BinaryOperator &B) {
}
}
/// X86SimpleInstructionSelection - This function converts an LLVM function into
/// a machine code representation is a very simple peep-hole fashion. The
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion. The
/// generated code sucks but the implementation is nice and simple.
///
MachineFunction *X86SimpleInstructionSelection(Function &F, TargetMachine &TM) {
MachineFunction *Result = new MachineFunction(&F, TM);
ISel(Result).runOnFunction(F);
return Result;
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
return new ISel(TM);
}

View File

@ -6,16 +6,37 @@
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include <iostream>
/// X86PrintCode - Print out the specified machine code function to the
/// specified stream. This function should work regardless of whether or not
/// the function is in SSA form or not, although when in SSA form, we obviously
/// don't care about being consumable by an assembler.
///
void X86PrintCode(const MachineFunction *MF, std::ostream &O) {
O << "x86 printing not implemented yet!\n";
namespace {
struct Printer : public FunctionPass {
TargetMachine &TM;
std::ostream &O;
// This should use the X86InstructionInfo::print method to print assembly for
// each instruction
Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}
bool runOnFunction(Function &F);
};
}
bool Printer::runOnFunction(Function &F) {
MachineFunction &MF = MachineFunction::get(&F);
O << "x86 printing not implemented yet!\n";
// This should use the X86InstructionInfo::print method to print assembly
// for each instruction
return false;
}
/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream. This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
return new Printer(TM, O);
}

View File

@ -11,34 +11,32 @@
#define TARGET_X86_H
#include <iosfwd>
class MachineFunction;
class Function;
class TargetMachine;
class Pass;
/// X86PrintCode - Print out the specified machine code function to the
/// specified stream. This function should work regardless of whether or not
/// the function is in SSA form or not.
///
void X86PrintCode(const MachineFunction *MF, std::ostream &O);
/// X86SimpleInstructionSelection - This function converts an LLVM function into
/// a machine code representation is a very simple peep-hole fashion. The
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion. The
/// generated code sucks but the implementation is nice and simple.
///
MachineFunction *X86SimpleInstructionSelection(Function &F, TargetMachine &TM);
Pass *createSimpleX86InstructionSelector(TargetMachine &TM);
/// X86SimpleRegisterAllocation - This function converts the specified machine
/// code function from SSA form to use explicit registers by spilling every
/// register. Wow, great policy huh?
///
inline void X86SimpleRegisterAllocation(MachineFunction *MF) {}
Pass *createSimpleX86RegisterAllocator(TargetMachine &TM);
/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream. This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O);
/// X86EmitCodeToMemory - This function converts a register allocated function
/// into raw machine code in a dynamically allocated chunk of memory. A pointer
/// to the start of the function is returned.
///
inline void *X86EmitCodeToMemory(MachineFunction *MF) { return 0; }
Pass *createEmitX86CodeToMemory(TargetMachine &TM);
// Put symbolic names in a namespace to avoid causing these to clash with all
// kinds of other things...

View File

@ -6,16 +6,37 @@
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include <iostream>
/// X86PrintCode - Print out the specified machine code function to the
/// specified stream. This function should work regardless of whether or not
/// the function is in SSA form or not, although when in SSA form, we obviously
/// don't care about being consumable by an assembler.
///
void X86PrintCode(const MachineFunction *MF, std::ostream &O) {
O << "x86 printing not implemented yet!\n";
namespace {
struct Printer : public FunctionPass {
TargetMachine &TM;
std::ostream &O;
// This should use the X86InstructionInfo::print method to print assembly for
// each instruction
Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}
bool runOnFunction(Function &F);
};
}
bool Printer::runOnFunction(Function &F) {
MachineFunction &MF = MachineFunction::get(&F);
O << "x86 printing not implemented yet!\n";
// This should use the X86InstructionInfo::print method to print assembly
// for each instruction
return false;
}
/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream. This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
return new Printer(TM, O);
}

View File

@ -10,28 +10,32 @@
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/InstVisitor.h"
#include <map>
namespace {
struct ISel : public InstVisitor<ISel> { // eventually will be a FunctionPass
struct ISel : public FunctionPass, InstVisitor<ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
unsigned CurReg;
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
ISel(MachineFunction *f)
: F(f), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
ISel(TargetMachine &tm)
: TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &F) {
visit(F);
bool runOnFunction(Function &Fn) {
F = new MachineFunction(&Fn, TM);
visit(Fn);
RegMap.clear();
F = 0;
return false; // We never modify the LLVM itself.
}
@ -161,14 +165,10 @@ void ISel::visitAdd(BinaryOperator &B) {
}
}
/// X86SimpleInstructionSelection - This function converts an LLVM function into
/// a machine code representation is a very simple peep-hole fashion. The
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion. The
/// generated code sucks but the implementation is nice and simple.
///
MachineFunction *X86SimpleInstructionSelection(Function &F, TargetMachine &TM) {
MachineFunction *Result = new MachineFunction(&F, TM);
ISel(Result).runOnFunction(F);
return Result;
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
return new ISel(TM);
}

View File

@ -0,0 +1,43 @@
//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "llvm/PassManager.h"
#include "X86.h"
#include <iostream>
// allocateX86TargetMachine - Allocate and return a subclass of TargetMachine
// that implements the X86 backend.
//
TargetMachine *allocateX86TargetMachine() { return new X86TargetMachine(); }
/// X86TargetMachine ctor - Create an ILP32 architecture model
///
X86TargetMachine::X86TargetMachine() : TargetMachine("X86", 1, 4, 4, 4) {
}
/// addPassesToJITCompile - Add passes to the specified pass manager to
/// implement a fast dynamic compiler for this target. Return true if this is
/// not supported for this target.
///
bool X86TargetMachine::addPassesToJITCompile(PassManager &PM) {
PM.add(createSimpleX86InstructionSelector(*this));
// TODO: optional optimizations go here
// Perform register allocation to convert to a concrete x86 representation
//PM.add(createSimpleX86RegisterAllocator(*this));
PM.add(createX86CodePrinterPass(*this, std::cerr));
//PM.add(createEmitX86CodeToMemory(*this));
return false; // success!
}

View File

@ -0,0 +1,32 @@
//===-- X86TargetMachine.h - Define TargetMachine for the X86 ---*- C++ -*-===//
//
// This file declares the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#ifndef X86TARGETMACHINE_H
#define X86TARGETMACHINE_H
#include "llvm/Target/TargetMachine.h"
#include "X86InstrInfo.h"
class X86TargetMachine : public TargetMachine {
X86InstrInfo instrInfo;
public:
X86TargetMachine();
virtual const MachineInstrInfo &getInstrInfo() const { return instrInfo; }
virtual const MachineSchedInfo &getSchedInfo() const { abort(); }
virtual const MachineRegInfo &getRegInfo() const { abort(); }
virtual const MachineFrameInfo &getFrameInfo() const { abort(); }
virtual const MachineCacheInfo &getCacheInfo() const { abort(); }
virtual const MachineOptInfo &getOptInfo() const { abort(); }
/// addPassesToJITCompile - Add passes to the specified pass manager to
/// implement a fast dynamic compiler for this target. Return true if this is
/// not supported for this target.
///
virtual bool addPassesToJITCompile(PassManager &PM);
};
#endif