[NFC] Introduce a 'struct Range' for IRCE

Use the struct instead of a std::pair<Value *, Value *>.  This makes a
Range an obviously immutable object, and we can now assert that a
range is well-typed (Begin->getType() == End->getType()) on its
construction.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226804 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjoy Das
2015-01-22 09:32:02 +00:00
parent deb2e51099
commit b51b170ce4

View File

@@ -138,9 +138,23 @@ public:
BranchInst *getBranch() const { return Branch; } BranchInst *getBranch() const { return Branch; }
/// Represents an integer range [Range.first, Range.second). If Range.second /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
/// < Range.first, then the value denotes the empty range. /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
typedef std::pair<Value *, Value *> Range;
class Range {
Value *Begin;
Value *End;
public:
Range(Value *Begin, Value *End) : Begin(Begin), End(End) {
assert(Begin->getType() == End->getType() && "ill-typed range!");
}
Type *getType() const { return Begin->getType(); }
Value *getBegin() const { return Begin; }
Value *getEnd() const { return End; }
};
typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy; typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
/// This is the value the condition of the branch needs to evaluate to for the /// This is the value the condition of the branch needs to evaluate to for the
@@ -710,9 +724,7 @@ Optional<LoopConstrainer::SubRanges>
LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const { LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const {
IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType()); IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
assert(Range.first->getType() == Range.second->getType() && if (Range.getType() != Ty)
"ill-typed range!");
if (Range.first->getType() != Ty)
return None; return None;
SCEVExpander Expander(SE, "irce"); SCEVExpander Expander(SE, "irce");
@@ -731,8 +743,8 @@ LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const {
ConstantInt *One = ConstantInt::get(Ty, 1); ConstantInt *One = ConstantInt::get(Ty, 1);
HeaderCountOut = MaybeSimplify(B.CreateAdd(LatchCountV, One, "header.count")); HeaderCountOut = MaybeSimplify(B.CreateAdd(LatchCountV, One, "header.count"));
const SCEV *RangeBegin = SE.getSCEV(Range.first); const SCEV *RangeBegin = SE.getSCEV(Range.getBegin());
const SCEV *RangeEnd = SE.getSCEV(Range.second); const SCEV *RangeEnd = SE.getSCEV(Range.getEnd());
const SCEV *HeaderCountSCEV = SE.getSCEV(HeaderCountOut); const SCEV *HeaderCountSCEV = SE.getSCEV(HeaderCountOut);
const SCEV *Zero = SE.getConstant(Ty, 0); const SCEV *Zero = SE.getConstant(Ty, 0);
@@ -741,12 +753,12 @@ LoopConstrainer::calculateSubRanges(Value *&HeaderCountOut) const {
bool ProvablyNoPreloop = bool ProvablyNoPreloop =
SE.isKnownPredicate(ICmpInst::ICMP_SLE, RangeBegin, Zero); SE.isKnownPredicate(ICmpInst::ICMP_SLE, RangeBegin, Zero);
if (!ProvablyNoPreloop) if (!ProvablyNoPreloop)
Result.ExitPreLoopAt = ConstructSMinOf(HeaderCountOut, Range.first, B); Result.ExitPreLoopAt = ConstructSMinOf(HeaderCountOut, Range.getBegin(), B);
bool ProvablyNoPostLoop = bool ProvablyNoPostLoop =
SE.isKnownPredicate(ICmpInst::ICMP_SLE, HeaderCountSCEV, RangeEnd); SE.isKnownPredicate(ICmpInst::ICMP_SLE, HeaderCountSCEV, RangeEnd);
if (!ProvablyNoPostLoop) if (!ProvablyNoPostLoop)
Result.ExitMainLoopAt = ConstructSMinOf(HeaderCountOut, Range.second, B); Result.ExitMainLoopAt = ConstructSMinOf(HeaderCountOut, Range.getEnd(), B);
return Result; return Result;
} }
@@ -1127,26 +1139,24 @@ InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
Value *Begin = MaybeSimplify(B.CreateNeg(OffsetV)); Value *Begin = MaybeSimplify(B.CreateNeg(OffsetV));
Value *End = MaybeSimplify(B.CreateSub(getLength(), OffsetV)); Value *End = MaybeSimplify(B.CreateSub(getLength(), OffsetV));
return std::make_pair(Begin, End); return InductiveRangeCheck::Range(Begin, End);
} }
static Optional<InductiveRangeCheck::Range> static Optional<InductiveRangeCheck::Range>
IntersectRange(const Optional<InductiveRangeCheck::Range> &R1, IntersectRange(const Optional<InductiveRangeCheck::Range> &R1,
const InductiveRangeCheck::Range &R2, IRBuilder<> &B) { const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
assert(R2.first->getType() == R2.second->getType() && "ill-typed range!");
if (!R1.hasValue()) if (!R1.hasValue())
return R2; return R2;
auto &R1Value = R1.getValue(); auto &R1Value = R1.getValue();
// TODO: we could widen the smaller range and have this work; but for now we // TODO: we could widen the smaller range and have this work; but for now we
// bail out to keep things simple. // bail out to keep things simple.
if (R1Value.first->getType() != R2.first->getType()) if (R1Value.getType() != R2.getType())
return None; return None;
Value *NewMin = ConstructSMaxOf(R1Value.first, R2.first, B); Value *NewMin = ConstructSMaxOf(R1Value.getBegin(), R2.getBegin(), B);
Value *NewMax = ConstructSMinOf(R1Value.second, R2.second, B); Value *NewMax = ConstructSMinOf(R1Value.getEnd(), R2.getEnd(), B);
return std::make_pair(NewMin, NewMax); return InductiveRangeCheck::Range(NewMin, NewMax);
} }
bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {