mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-27 14:34:58 +00:00
Implement the convertToThreeAddress method, add support for inverting JP/JNP
branches. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19247 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
cc65beeb39
commit
bcea4d6f28
@ -13,6 +13,7 @@
|
||||
|
||||
#include "X86InstrInfo.h"
|
||||
#include "X86.h"
|
||||
#include "X86InstrBuilder.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "X86GenInstrInfo.inc"
|
||||
using namespace llvm;
|
||||
@ -39,6 +40,83 @@ bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
|
||||
return false;
|
||||
}
|
||||
|
||||
/// convertToThreeAddress - This method must be implemented by targets that
|
||||
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
|
||||
/// may be able to convert a two-address instruction into a true
|
||||
/// three-address instruction on demand. This allows the X86 target (for
|
||||
/// example) to convert ADD and SHL instructions into LEA instructions if they
|
||||
/// would require register copies due to two-addressness.
|
||||
///
|
||||
/// This method returns a null pointer if the transformation cannot be
|
||||
/// performed, otherwise it returns the new instruction.
|
||||
///
|
||||
MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr *MI) const {
|
||||
// All instructions input are two-addr instructions. Get the known operands.
|
||||
unsigned Dest = MI->getOperand(0).getReg();
|
||||
unsigned Src = MI->getOperand(1).getReg();
|
||||
|
||||
// FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
|
||||
// we have subtarget support, enable the 16-bit LEA generation here.
|
||||
bool DisableLEA16 = true;
|
||||
|
||||
switch (MI->getOpcode()) {
|
||||
case X86::INC32r:
|
||||
assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
|
||||
return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, 1);
|
||||
case X86::INC16r:
|
||||
if (DisableLEA16) return 0;
|
||||
assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
|
||||
return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, 1);
|
||||
case X86::DEC32r:
|
||||
assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
|
||||
return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, -1);
|
||||
case X86::DEC16r:
|
||||
if (DisableLEA16) return 0;
|
||||
assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
|
||||
return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, -1);
|
||||
case X86::ADD32rr:
|
||||
assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
|
||||
return addRegReg(BuildMI(X86::LEA32r, 5, Dest), Src,
|
||||
MI->getOperand(2).getReg());
|
||||
case X86::ADD16rr:
|
||||
if (DisableLEA16) return 0;
|
||||
assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
|
||||
return addRegReg(BuildMI(X86::LEA16r, 5, Dest), Src,
|
||||
MI->getOperand(2).getReg());
|
||||
case X86::ADD32ri:
|
||||
assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
|
||||
if (MI->getOperand(2).isImmediate())
|
||||
return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src,
|
||||
MI->getOperand(2).getImmedValue());
|
||||
return 0;
|
||||
case X86::ADD16ri:
|
||||
if (DisableLEA16) return 0;
|
||||
assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
|
||||
if (MI->getOperand(2).isImmediate())
|
||||
return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src,
|
||||
MI->getOperand(2).getImmedValue());
|
||||
break;
|
||||
|
||||
case X86::SHL16ri:
|
||||
if (DisableLEA16) return 0;
|
||||
case X86::SHL32ri:
|
||||
assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
|
||||
"Unknown shl instruction!");
|
||||
unsigned ShAmt = MI->getOperand(2).getImmedValue();
|
||||
if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
|
||||
X86AddressMode AM;
|
||||
AM.Scale = 1 << ShAmt;
|
||||
AM.IndexReg = Src;
|
||||
unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
|
||||
return addFullAddress(BuildMI(Opc, 5, Dest), AM);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void X86InstrInfo::insertGoto(MachineBasicBlock& MBB,
|
||||
MachineBasicBlock& TMBB) const {
|
||||
BuildMI(MBB, MBB.end(), X86::JMP, 1).addMBB(&TMBB);
|
||||
@ -59,6 +137,8 @@ X86InstrInfo::reverseBranchCondition(MachineBasicBlock::iterator MI) const {
|
||||
case X86::JA: ROpcode = X86::JBE; break;
|
||||
case X86::JS: ROpcode = X86::JNS; break;
|
||||
case X86::JNS: ROpcode = X86::JS; break;
|
||||
case X86::JP: ROpcode = X86::JNP; break;
|
||||
case X86::JNP: ROpcode = X86::JP; break;
|
||||
case X86::JL: ROpcode = X86::JGE; break;
|
||||
case X86::JGE: ROpcode = X86::JL; break;
|
||||
case X86::JLE: ROpcode = X86::JG; break;
|
||||
@ -68,3 +148,4 @@ X86InstrInfo::reverseBranchCondition(MachineBasicBlock::iterator MI) const {
|
||||
MachineBasicBlock* TMBB = MI->getOperand(0).getMachineBasicBlock();
|
||||
return BuildMI(*MBB, MBB->erase(MI), ROpcode, 1).addMBB(TMBB);
|
||||
}
|
||||
|
||||
|
@ -179,6 +179,18 @@ public:
|
||||
unsigned& sourceReg,
|
||||
unsigned& destReg) const;
|
||||
|
||||
/// convertToThreeAddress - This method must be implemented by targets that
|
||||
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
|
||||
/// may be able to convert a two-address instruction into a true
|
||||
/// three-address instruction on demand. This allows the X86 target (for
|
||||
/// example) to convert ADD and SHL instructions into LEA instructions if they
|
||||
/// would require register copies due to two-addressness.
|
||||
///
|
||||
/// This method returns a null pointer if the transformation cannot be
|
||||
/// performed, otherwise it returns the new instruction.
|
||||
///
|
||||
virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
|
||||
|
||||
/// Insert a goto (unconditional branch) sequence to TMBB, at the
|
||||
/// end of MBB
|
||||
virtual void insertGoto(MachineBasicBlock& MBB,
|
||||
|
Loading…
x
Reference in New Issue
Block a user