Initial checkin of new LLI with JIT compiler

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5126 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2002-12-24 00:01:05 +00:00
parent fe11a97fcd
commit bd199fb114
11 changed files with 722 additions and 0 deletions

View File

@@ -0,0 +1,62 @@
//===-- Callback.cpp - Trap handler for function resolution ---------------===//
//
// This file defines the SIGSEGV handler which is invoked when a reference to a
// non-codegen'd function is found.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "Support/Statistic.h"
#include <signal.h>
#include <ucontext.h>
#include <iostream>
static VM *TheVM = 0;
static void TrapHandler(int TN, siginfo_t *SI, ucontext_t *ucp) {
assert(TN == SIGSEGV && "Should be SIGSEGV!");
#ifdef REG_EIP /* this code does not compile on Sparc! */
if (SI->si_code != SEGV_MAPERR || SI->si_addr != 0 ||
ucp->uc_mcontext.gregs[REG_EIP] != 0) {
std::cerr << "Bad SEGV encountered!\n";
abort();
}
// The call instruction should have pushed the return value onto the stack...
unsigned RefAddr = *(unsigned*)ucp->uc_mcontext.gregs[REG_ESP];
RefAddr -= 4; // Backtrack to the reference itself...
DEBUG(std::cerr << "In SEGV handler! Addr=0x" << std::hex << RefAddr
<< " ESP=0x" << ucp->uc_mcontext.gregs[REG_ESP] << std::dec
<< ": Resolving call to function: "
<< TheVM->getFunctionReferencedName((void*)RefAddr) << "\n");
// Sanity check to make sure this really is a call instruction...
assert(((unsigned char*)RefAddr)[-1] == 0xE8 && "Not a call instr!");
unsigned NewVal = (unsigned)TheVM->resolveFunctionReference((void*)RefAddr);
// Rewrite the call target... so that we don't fault every time we execute
// the call.
*(unsigned*)RefAddr = NewVal-RefAddr-4;
// Change the instruction pointer to be the real target of the call...
ucp->uc_mcontext.gregs[REG_EIP] = NewVal;
#endif
}
void VM::registerCallback() {
TheVM = this;
// Register the signal handler...
struct sigaction SA;
SA.sa_sigaction = (void (*)(int, siginfo_t*, void*))TrapHandler;
sigfillset(&SA.sa_mask); // Block all signals while codegen'ing
SA.sa_flags = SA_NOCLDSTOP|SA_SIGINFO; // Get siginfo
sigaction(SIGSEGV, &SA, 0); // Install the handler
}

View File

View File

@@ -0,0 +1,53 @@
//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
//
// This file implements the top-level support for creating a Just-In-Time
// compiler for the current architecture.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "llvm/Module.h"
/// createJIT - Create an return a new JIT compiler if there is one available
/// for the current target. Otherwise it returns null.
///
ExecutionEngine *ExecutionEngine::createJIT(Module *M, unsigned Config) {
// FIXME: This should be controlled by which subdirectory gets linked in!
#if !defined(i386) && !defined(__i386__) && !defined(__x86__)
return 0;
#endif
// Allocate a target... in the future this will be controllable on the
// command line.
TargetMachine *Target = allocateX86TargetMachine(Config);
assert(Target && "Could not allocate X86 target machine!");
// Create the virtual machine object...
return new VM(M, Target);
}
VM::VM(Module *M, TargetMachine *tm) : ExecutionEngine(M), TM(*tm) {
setTargetData(TM.getTargetData());
MCE = createEmitter(*this); // Initialize MCE
setupPassManager();
registerCallback();
}
int VM::run(const std::string &FnName, const std::vector<std::string> &Args) {
Function *F = getModule().getNamedFunction(FnName);
if (F == 0) {
std::cerr << "Could not find function '" << FnName <<"' in module!\n";
return 1;
}
int(*PF)(int, char**) = (int(*)(int, char**))getPointerToFunction(F);
assert(PF != 0 && "Null pointer to function?");
// Build an argv vector...
char **Argv = (char**)CreateArgv(Args);
// Call the main function...
return PF(Args.size(), Argv);
}

View File

@@ -0,0 +1,107 @@
//===-- Emitter.cpp - Write machine code to executable memory -------------===//
//
// This file defines a MachineCodeEmitter object that is used by Jello to write
// machine code to memory and remember where relocatable values lie.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Function.h"
#include "Support/Statistic.h"
namespace {
Statistic<> NumBytes("jello", "Number of bytes of machine code compiled");
class Emitter : public MachineCodeEmitter {
VM &TheVM;
unsigned char *CurBlock;
unsigned char *CurByte;
std::vector<std::pair<BasicBlock*, unsigned *> > BBRefs;
std::map<BasicBlock*, unsigned> BBLocations;
public:
Emitter(VM &vm) : TheVM(vm) {}
virtual void startFunction(MachineFunction &F);
virtual void finishFunction(MachineFunction &F);
virtual void startBasicBlock(MachineBasicBlock &BB);
virtual void emitByte(unsigned char B);
virtual void emitPCRelativeDisp(Value *V);
virtual void emitGlobalAddress(GlobalValue *V);
};
}
MachineCodeEmitter *VM::createEmitter(VM &V) {
return new Emitter(V);
}
#define _POSIX_MAPPED_FILES
#include <unistd.h>
#include <sys/mman.h>
static void *getMemory() {
return mmap(0, 4096*2, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
}
void Emitter::startFunction(MachineFunction &F) {
CurBlock = (unsigned char *)getMemory();
CurByte = CurBlock; // Start writing at the beginning of the fn.
TheVM.addGlobalMapping(F.getFunction(), CurBlock);
}
void Emitter::finishFunction(MachineFunction &F) {
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
unsigned Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second;
*Ref = Location-(unsigned)Ref-4;
}
BBRefs.clear();
BBLocations.clear();
NumBytes += CurByte-CurBlock;
DEBUG(std::cerr << "Finished CodeGen of [" << std::hex << (unsigned)CurBlock
<< std::dec << "] Function: " << F.getFunction()->getName()
<< ": " << CurByte-CurBlock << " bytes of text\n");
}
void Emitter::startBasicBlock(MachineBasicBlock &BB) {
BBLocations[BB.getBasicBlock()] = (unsigned)CurByte;
}
void Emitter::emitByte(unsigned char B) {
*CurByte++ = B; // Write the byte to memory
}
// emitPCRelativeDisp - For functions, just output a displacement that will
// cause a reference to the zero page, which will cause a seg-fault, causing
// things to get resolved on demand. Keep track of these markers.
//
// For basic block references, keep track of where the references are so they
// may be patched up when the basic block is defined.
//
void Emitter::emitPCRelativeDisp(Value *V) {
if (Function *F = dyn_cast<Function>(V)) {
TheVM.addFunctionRef(CurByte, F);
unsigned ZeroAddr = -(unsigned)CurByte-4; // Calculate displacement to null
*(unsigned*)CurByte = ZeroAddr; // 4 byte offset
CurByte += 4;
} else {
BasicBlock *BB = cast<BasicBlock>(V); // Keep track of reference...
BBRefs.push_back(std::make_pair(BB, (unsigned*)CurByte));
CurByte += 4;
}
}
void Emitter::emitGlobalAddress(GlobalValue *V) {
*(void**)CurByte = TheVM.getPointerToGlobal(V);
CurByte += 4;
}

View File

@@ -0,0 +1,4 @@
LEVEL = ../../..
LIBRARYNAME = lli-jit
include $(LEVEL)/Makefile.common

View File

@@ -0,0 +1,84 @@
//===-- jello.cpp - LLVM Just in Time Compiler ----------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bytecode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/Function.h"
#include <dlfcn.h> // dlsym access
VM::~VM() {
delete MCE;
delete &TM;
}
/// setupPassManager - Initialize the VM PassManager object with all of the
/// passes needed for the target to generate code.
///
void VM::setupPassManager() {
// Compile LLVM Code down to machine code in the intermediate representation
if (TM.addPassesToJITCompile(PM)) {
std::cerr << "lli: target '" << TM.getName()
<< "' doesn't support JIT compilation!\n";
abort();
}
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
//
if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
std::cerr << "lli: target '" << TM.getName()
<< "' doesn't support machine code emission!\n";
abort();
}
}
void *VM::resolveFunctionReference(void *RefAddr) {
Function *F = FunctionRefs[RefAddr];
assert(F && "Reference address not known!");
void *Addr = getPointerToFunction(F);
assert(Addr && "Pointer to function unknown!");
FunctionRefs.erase(RefAddr);
return Addr;
}
const std::string &VM::getFunctionReferencedName(void *RefAddr) {
return FunctionRefs[RefAddr]->getName();
}
static void NoopFn() {}
/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *VM::getPointerToFunction(const Function *F) {
void *&Addr = GlobalAddress[F]; // Function already code gen'd
if (Addr) return Addr;
if (F->isExternal()) {
// If it's an external function, look it up in the process image...
void *Ptr = dlsym(0, F->getName().c_str());
if (Ptr == 0) {
std::cerr << "WARNING: Cannot resolve fn '" << F->getName()
<< "' using a dummy noop function instead!\n";
Ptr = (void*)NoopFn;
}
return Addr = Ptr;
}
// JIT all of the functions in the module. Eventually this will JIT functions
// on demand. This has the effect of populating all of the non-external
// functions into the GlobalAddress table.
PM.run(getModule());
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
return Addr;
}