refactor GetRegistersForValue to take OpInfo as an argument instead of various

pieces of it.  No functionality change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36592 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2007-04-30 17:29:31 +00:00
parent 3ff90dc1c8
commit bf996f1d5e

View File

@ -82,6 +82,8 @@ namespace {
createDefaultScheduler);
} // namespace
namespace { struct AsmOperandInfo; }
namespace {
/// RegsForValue - This struct represents the physical registers that a
/// particular value is assigned and the type information about the value.
@ -516,8 +518,7 @@ public:
N = NewN;
}
RegsForValue GetRegistersForValue(const std::string &ConstrCode,
MVT::ValueType VT,
RegsForValue GetRegistersForValue(AsmOperandInfo &OpInfo,
bool OutReg, bool InReg,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs);
@ -3013,126 +3014,6 @@ isAllocatableRegister(unsigned Reg, MachineFunction &MF,
return FoundRC;
}
RegsForValue SelectionDAGLowering::
GetRegistersForValue(const std::string &ConstrCode,
MVT::ValueType VT, bool isOutReg, bool isInReg,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs) {
std::pair<unsigned, const TargetRegisterClass*> PhysReg =
TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
std::vector<unsigned> Regs;
unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
MVT::ValueType RegVT;
MVT::ValueType ValueVT = VT;
// If this is a constraint for a specific physical register, like {r17},
// assign it now.
if (PhysReg.first) {
if (VT == MVT::Other)
ValueVT = *PhysReg.second->vt_begin();
// Get the actual register value type. This is important, because the user
// may have asked for (e.g.) the AX register in i32 type. We need to
// remember that AX is actually i16 to get the right extension.
RegVT = *PhysReg.second->vt_begin();
// This is a explicit reference to a physical register.
Regs.push_back(PhysReg.first);
// If this is an expanded reference, add the rest of the regs to Regs.
if (NumRegs != 1) {
TargetRegisterClass::iterator I = PhysReg.second->begin();
TargetRegisterClass::iterator E = PhysReg.second->end();
for (; *I != PhysReg.first; ++I)
assert(I != E && "Didn't find reg!");
// Already added the first reg.
--NumRegs; ++I;
for (; NumRegs; --NumRegs, ++I) {
assert(I != E && "Ran out of registers to allocate!");
Regs.push_back(*I);
}
}
return RegsForValue(Regs, RegVT, ValueVT);
}
// Otherwise, if this was a reference to an LLVM register class, create vregs
// for this reference.
std::vector<unsigned> RegClassRegs;
if (PhysReg.second) {
// If this is an early clobber or tied register, our regalloc doesn't know
// how to maintain the constraint. If it isn't, go ahead and create vreg
// and let the regalloc do the right thing.
if (!isOutReg || !isInReg) {
RegVT = *PhysReg.second->vt_begin();
if (VT == MVT::Other)
ValueVT = RegVT;
// Create the appropriate number of virtual registers.
SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
for (; NumRegs; --NumRegs)
Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
return RegsForValue(Regs, RegVT, ValueVT);
}
// Otherwise, we can't allocate it. Let the code below figure out how to
// maintain these constraints.
RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
} else {
// This is a reference to a register class that doesn't directly correspond
// to an LLVM register class. Allocate NumRegs consecutive, available,
// registers from the class.
RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
}
const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
MachineFunction &MF = *CurMBB->getParent();
unsigned NumAllocated = 0;
for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
unsigned Reg = RegClassRegs[i];
// See if this register is available.
if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
(isInReg && InputRegs.count(Reg))) { // Already used.
// Make sure we find consecutive registers.
NumAllocated = 0;
continue;
}
// Check to see if this register is allocatable (i.e. don't give out the
// stack pointer).
const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
if (!RC) {
// Make sure we find consecutive registers.
NumAllocated = 0;
continue;
}
// Okay, this register is good, we can use it.
++NumAllocated;
// If we allocated enough consecutive registers, succeed.
if (NumAllocated == NumRegs) {
unsigned RegStart = (i-NumAllocated)+1;
unsigned RegEnd = i+1;
// Mark all of the allocated registers used.
for (unsigned i = RegStart; i != RegEnd; ++i) {
unsigned Reg = RegClassRegs[i];
Regs.push_back(Reg);
if (isOutReg) OutputRegs.insert(Reg); // Mark reg used.
if (isInReg) InputRegs.insert(Reg); // Mark reg used.
}
return RegsForValue(Regs, *RC->vt_begin(), VT);
}
}
// Otherwise, we couldn't allocate enough registers for this.
return RegsForValue();
}
namespace {
/// AsmOperandInfo - This contains information for each constraint that we are
@ -3212,6 +3093,131 @@ void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
}
RegsForValue SelectionDAGLowering::
GetRegistersForValue(AsmOperandInfo &OpInfo, bool isOutReg, bool isInReg,
std::set<unsigned> &OutputRegs,
std::set<unsigned> &InputRegs) {
std::pair<unsigned, const TargetRegisterClass*> PhysReg =
TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,OpInfo.ConstraintVT);
std::vector<unsigned> Regs;
unsigned NumRegs = 1;
if (OpInfo.ConstraintVT != MVT::Other)
NumRegs = TLI.getNumElements(OpInfo.ConstraintVT);
MVT::ValueType RegVT;
MVT::ValueType ValueVT = OpInfo.ConstraintVT;
MachineFunction &MF = DAG.getMachineFunction();
// If this is a constraint for a specific physical register, like {r17},
// assign it now.
if (PhysReg.first) {
if (OpInfo.ConstraintVT == MVT::Other)
ValueVT = *PhysReg.second->vt_begin();
// Get the actual register value type. This is important, because the user
// may have asked for (e.g.) the AX register in i32 type. We need to
// remember that AX is actually i16 to get the right extension.
RegVT = *PhysReg.second->vt_begin();
// This is a explicit reference to a physical register.
Regs.push_back(PhysReg.first);
// If this is an expanded reference, add the rest of the regs to Regs.
if (NumRegs != 1) {
TargetRegisterClass::iterator I = PhysReg.second->begin();
TargetRegisterClass::iterator E = PhysReg.second->end();
for (; *I != PhysReg.first; ++I)
assert(I != E && "Didn't find reg!");
// Already added the first reg.
--NumRegs; ++I;
for (; NumRegs; --NumRegs, ++I) {
assert(I != E && "Ran out of registers to allocate!");
Regs.push_back(*I);
}
}
return RegsForValue(Regs, RegVT, ValueVT);
}
// Otherwise, if this was a reference to an LLVM register class, create vregs
// for this reference.
std::vector<unsigned> RegClassRegs;
if (PhysReg.second) {
// If this is an early clobber or tied register, our regalloc doesn't know
// how to maintain the constraint. If it isn't, go ahead and create vreg
// and let the regalloc do the right thing.
if (!isOutReg || !isInReg) {
RegVT = *PhysReg.second->vt_begin();
if (OpInfo.ConstraintVT == MVT::Other)
ValueVT = RegVT;
// Create the appropriate number of virtual registers.
SSARegMap *RegMap = MF.getSSARegMap();
for (; NumRegs; --NumRegs)
Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
return RegsForValue(Regs, RegVT, ValueVT);
}
// Otherwise, we can't allocate it. Let the code below figure out how to
// maintain these constraints.
RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
} else {
// This is a reference to a register class that doesn't directly correspond
// to an LLVM register class. Allocate NumRegs consecutive, available,
// registers from the class.
RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
OpInfo.ConstraintVT);
}
const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
unsigned NumAllocated = 0;
for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
unsigned Reg = RegClassRegs[i];
// See if this register is available.
if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
(isInReg && InputRegs.count(Reg))) { // Already used.
// Make sure we find consecutive registers.
NumAllocated = 0;
continue;
}
// Check to see if this register is allocatable (i.e. don't give out the
// stack pointer).
const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
if (!RC) {
// Make sure we find consecutive registers.
NumAllocated = 0;
continue;
}
// Okay, this register is good, we can use it.
++NumAllocated;
// If we allocated enough consecutive registers, succeed.
if (NumAllocated == NumRegs) {
unsigned RegStart = (i-NumAllocated)+1;
unsigned RegEnd = i+1;
// Mark all of the allocated registers used.
for (unsigned i = RegStart; i != RegEnd; ++i) {
unsigned Reg = RegClassRegs[i];
Regs.push_back(Reg);
if (isOutReg) OutputRegs.insert(Reg); // Mark reg used.
if (isInReg) InputRegs.insert(Reg); // Mark reg used.
}
return RegsForValue(Regs, *RC->vt_begin(), OpInfo.ConstraintVT);
}
}
// Otherwise, we couldn't allocate enough registers for this.
return RegsForValue();
}
/// visitInlineAsm - Handle a call to an InlineAsm object.
///
void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
@ -3336,8 +3342,7 @@ void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
// Build a list of regs that this operand uses. This always has a single
// element for promoted/expanded operands.
RegsForValue Regs = GetRegistersForValue(OpInfo.ConstraintCode, OpVT,
false, false,
RegsForValue Regs = GetRegistersForValue(OpInfo, false, false,
OutputRegs, InputRegs);
switch (OpInfo.Type) {
@ -3407,8 +3412,7 @@ void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
// Copy the output from the appropriate register. Find a register that
// we can use.
RegsForValue Regs =
GetRegistersForValue(OpInfo.ConstraintCode, OpInfo.ConstraintVT,
true, UsesInputRegister,
GetRegistersForValue(OpInfo, true, UsesInputRegister,
OutputRegs, InputRegs);
if (Regs.Regs.empty()) {
cerr << "Couldn't allocate output reg for contraint '"
@ -3515,8 +3519,7 @@ void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
// Copy the input into the appropriate registers.
RegsForValue InRegs =
GetRegistersForValue(OpInfo.ConstraintCode, OpInfo.ConstraintVT,
false, true, OutputRegs, InputRegs);
GetRegistersForValue(OpInfo, false, true, OutputRegs, InputRegs);
// FIXME: should be match fail.
assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
@ -3527,8 +3530,8 @@ void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
}
case InlineAsm::isClobber: {
RegsForValue ClobberedRegs =
GetRegistersForValue(OpInfo.ConstraintCode, MVT::Other, false, false,
OutputRegs, InputRegs);
GetRegistersForValue(OpInfo, false,
false, OutputRegs, InputRegs);
// Add the clobbered value to the operand list, so that the register
// allocator is aware that the physreg got clobbered.
if (!ClobberedRegs.Regs.empty())