[SLPVectorizer] Try different vectorization factors for store chains

...and set max vector register size based on target 

This patch is based on discussion on the llvmdev mailing list:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-July/087405.html

and also solves:
https://llvm.org/bugs/show_bug.cgi?id=17170

Several FIXME/TODO items are noted in comments as potential improvements.

Differential Revision: http://reviews.llvm.org/D10950



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241760 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2015-07-08 23:40:55 +00:00
parent 6e999b0a30
commit c1c43c15cc
6 changed files with 76 additions and 31 deletions

View File

@ -69,8 +69,13 @@ static cl::opt<bool> ShouldStartVectorizeHorAtStore(
cl::desc( cl::desc(
"Attempt to vectorize horizontal reductions feeding into a store")); "Attempt to vectorize horizontal reductions feeding into a store"));
static cl::opt<int>
MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
cl::desc("Attempt to vectorize for this register size in bits"));
namespace { namespace {
// FIXME: Set this via cl::opt to allow overriding.
static const unsigned MinVecRegSize = 128; static const unsigned MinVecRegSize = 128;
static const unsigned RecursionMaxDepth = 12; static const unsigned RecursionMaxDepth = 12;
@ -3088,6 +3093,17 @@ struct SLPVectorizer : public FunctionPass {
if (!TTI->getNumberOfRegisters(true)) if (!TTI->getNumberOfRegisters(true))
return false; return false;
// Use the vector register size specified by the target unless overridden
// by a command-line option.
// TODO: It would be better to limit the vectorization factor based on
// data type rather than just register size. For example, x86 AVX has
// 256-bit registers, but it does not support integer operations
// at that width (that requires AVX2).
if (MaxVectorRegSizeOption.getNumOccurrences())
MaxVecRegSize = MaxVectorRegSizeOption;
else
MaxVecRegSize = TTI->getRegisterBitWidth(true);
// Don't vectorize when the attribute NoImplicitFloat is used. // Don't vectorize when the attribute NoImplicitFloat is used.
if (F.hasFnAttribute(Attribute::NoImplicitFloat)) if (F.hasFnAttribute(Attribute::NoImplicitFloat))
return false; return false;
@ -3165,12 +3181,13 @@ private:
bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
BoUpSLP &R); BoUpSLP &R, unsigned VecRegSize);
bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
BoUpSLP &R); BoUpSLP &R);
private: private:
StoreListMap StoreRefs; StoreListMap StoreRefs;
unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
}; };
/// \brief Check that the Values in the slice in VL array are still existent in /// \brief Check that the Values in the slice in VL array are still existent in
@ -3185,14 +3202,15 @@ static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
} }
bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
int CostThreshold, BoUpSLP &R) { int CostThreshold, BoUpSLP &R,
unsigned VecRegSize) {
unsigned ChainLen = Chain.size(); unsigned ChainLen = Chain.size();
DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
<< "\n"); << "\n");
Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout(); auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
unsigned Sz = DL.getTypeSizeInBits(StoreTy); unsigned Sz = DL.getTypeSizeInBits(StoreTy);
unsigned VF = MinVecRegSize / Sz; unsigned VF = VecRegSize / Sz;
if (!isPowerOf2_32(Sz) || VF < 2) if (!isPowerOf2_32(Sz) || VF < 2)
return false; return false;
@ -3276,10 +3294,15 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
I = ConsecutiveChain[I]; I = ConsecutiveChain[I];
} }
if (vectorizeStoreChain(Operands, costThreshold, R)) { // FIXME: Is division-by-2 the correct step? Should we assert that the
// Mark the vectorized stores so that we don't vectorize them again. // register size is a power-of-2?
VectorizedStores.insert(Operands.begin(), Operands.end()); for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
Changed = true; if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
// Mark the vectorized stores so that we don't vectorize them again.
VectorizedStores.insert(Operands.begin(), Operands.end());
Changed = true;
break;
}
} }
} }
@ -3340,6 +3363,8 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
Type *Ty0 = I0->getType(); Type *Ty0 = I0->getType();
unsigned Sz = DL.getTypeSizeInBits(Ty0); unsigned Sz = DL.getTypeSizeInBits(Ty0);
// FIXME: Register size should be a parameter to this function, so we can
// try different vectorization factors.
unsigned VF = MinVecRegSize / Sz; unsigned VF = MinVecRegSize / Sz;
for (Value *V : VL) { for (Value *V : VL) {
@ -3569,6 +3594,8 @@ public:
const DataLayout &DL = B->getModule()->getDataLayout(); const DataLayout &DL = B->getModule()->getDataLayout();
ReductionOpcode = B->getOpcode(); ReductionOpcode = B->getOpcode();
ReducedValueOpcode = 0; ReducedValueOpcode = 0;
// FIXME: Register size should be a parameter to this function, so we can
// try different vectorization factors.
ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
ReductionRoot = B; ReductionRoot = B;
ReductionPHI = Phi; ReductionPHI = Phi;
@ -3995,6 +4022,9 @@ bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
<< it->second.size() << ".\n"); << it->second.size() << ".\n");
// Process the stores in chunks of 16. // Process the stores in chunks of 16.
// TODO: The limit of 16 inhibits greater vectorization factors.
// For example, AVX2 supports v32i8. Increasing this limit, however,
// may cause a significant compile-time increase.
for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
unsigned Len = std::min<unsigned>(CE - CI, 16); unsigned Len = std::min<unsigned>(CE - CI, 16);
Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),

View File

@ -1,4 +1,9 @@
; RUN: opt -S -march=r600 -mcpu=cayman -basicaa -slp-vectorizer -dce < %s | FileCheck %s ; RUN: opt -S -march=r600 -mcpu=cayman -basicaa -slp-vectorizer -dce < %s | FileCheck %s
; XFAIL: *
;
; FIXME: If this test expects to be vectorized, the TTI must indicate that the target
; has vector registers of the expected width.
; Currently, it says there are 8 vector registers that are 32-bits wide.
target datalayout = "e-p:32:32:32-p3:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-v16:16:16-v24:32:32-v32:32:32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:256:256-v256:256:256-v512:512:512-v1024:1024:1024-v2048:2048:2048-n32:64" target datalayout = "e-p:32:32:32-p3:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-v16:16:16-v24:32:32-v32:32:32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:256:256-v256:256:256-v512:512:512-v1024:1024:1024-v2048:2048:2048-n32:64"

View File

@ -12,11 +12,8 @@ target triple = "i386-apple-macosx10.8.0"
;CHECK-LABEL: @test( ;CHECK-LABEL: @test(
;CHECK: load <2 x double> ;CHECK: load <2 x double>
;CHECK: fadd <2 x double> ;CHECK: fadd <4 x double>
;CHECK: store <2 x double> ;CHECK: store <4 x double>
;CHECK: insertelement <2 x double>
;CHECK: fadd <2 x double>
;CHECK: store <2 x double>
;CHECK: ret i32 ;CHECK: ret i32
define i32 @test(double* nocapture %G) { define i32 @test(double* nocapture %G) {
@ -48,11 +45,12 @@ entry:
; A[2] = A[2] * 7.6 * n + 3.0; ; A[2] = A[2] * 7.6 * n + 3.0;
; A[3] = A[3] * 7.4 * n + 4.0; ; A[3] = A[3] * 7.4 * n + 4.0;
;} ;}
;CHECK-LABEL: @foo( ; CHECK-LABEL: @foo(
;CHECK: insertelement <2 x double> ; CHECK: load <4 x double>
;CHECK: insertelement <2 x double> ; CHECK: fmul <4 x double>
;CHECK-NOT: insertelement <2 x double> ; CHECK: fmul <4 x double>
;CHECK: ret ; CHECK: fadd <4 x double>
; CHECK: store <4 x double>
define i32 @foo(double* nocapture %A, i32 %n) { define i32 @foo(double* nocapture %A, i32 %n) {
entry: entry:
%0 = load double, double* %A, align 8 %0 = load double, double* %A, align 8
@ -140,11 +138,12 @@ define i32 @test2(double* nocapture %G, i32 %k) {
; A[2] = A[2] * 7.9 * n + 6.0; ; A[2] = A[2] * 7.9 * n + 6.0;
; A[3] = A[3] * 7.9 * n + 6.0; ; A[3] = A[3] * 7.9 * n + 6.0;
;} ;}
;CHECK-LABEL: @foo4( ; CHECK-LABEL: @foo4(
;CHECK: insertelement <2 x double> ; CHECK: load <4 x double>
;CHECK: insertelement <2 x double> ; CHECK: fmul <4 x double>
;CHECK-NOT: insertelement <2 x double> ; CHECK: fmul <4 x double>
;CHECK: ret ; CHECK: fadd <4 x double>
; CHECK: store <4 x double>
define i32 @foo4(double* nocapture %A, i32 %n) { define i32 @foo4(double* nocapture %A, i32 %n) {
entry: entry:
%0 = load double, double* %A, align 8 %0 = load double, double* %A, align 8

View File

@ -1,5 +1,6 @@
; RUN: opt < %s -basicaa -slp-vectorizer -S |FileCheck %s ; RUN: opt < %s -basicaa -slp-vectorizer -S |FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-unknown"
; Test if SLP can handle GEP expressions. ; Test if SLP can handle GEP expressions.
; The test perform the following action: ; The test perform the following action:

View File

@ -4,12 +4,9 @@ target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3
target triple = "x86_64-apple-macosx10.8.0" target triple = "x86_64-apple-macosx10.8.0"
;CHECK-LABEL: @foo( ;CHECK-LABEL: @foo(
;CHECK: load <4 x i32> ;CHECK: load <8 x i32>
;CHECK: add nsw <4 x i32> ;CHECK: add nsw <8 x i32>
;CHECK: store <4 x i32> ;CHECK: store <8 x i32>
;CHECK: load <4 x i32>
;CHECK: add nsw <4 x i32>
;CHECK: store <4 x i32>
;CHECK: ret ;CHECK: ret
define i32 @foo(i32* nocapture %A, i32 %n) { define i32 @foo(i32* nocapture %A, i32 %n) {
entry: entry:

View File

@ -1,11 +1,24 @@
; RUN: opt < %s -basicaa -slp-vectorizer -S -mcpu=corei7-avx | FileCheck %s ; RUN: opt < %s -basicaa -slp-vectorizer -S -mcpu=corei7-avx | FileCheck %s
; RUN: opt < %s -basicaa -slp-vectorizer -slp-max-reg-size=128 -S -mcpu=corei7-avx | FileCheck %s --check-prefix=V128
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu" target triple = "x86_64-unknown-linux-gnu"
; CHECK: load <2 x double>, <2 x double>* ; CHECK-LABEL: @foo(
; CHECK: fadd <2 x double> ; CHECK: load <4 x double>
; CHECK: store <2 x double> ; CHECK: fadd <4 x double>
; CHECK: fadd <4 x double>
; CHECK: store <4 x double>
; V128-LABEL: @foo(
; V128: load <2 x double>
; V128: fadd <2 x double>
; V128: fadd <2 x double>
; V128: store <2 x double>
; V128: load <2 x double>
; V128: fadd <2 x double>
; V128: fadd <2 x double>
; V128: store <2 x double>
define void @foo(double* %x) { define void @foo(double* %x) {
%1 = load double, double* %x, align 8 %1 = load double, double* %x, align 8