diff --git a/lib/Transforms/InstCombine/CMakeLists.txt b/lib/Transforms/InstCombine/CMakeLists.txt index c1f2090785d..190ef86922b 100644 --- a/lib/Transforms/InstCombine/CMakeLists.txt +++ b/lib/Transforms/InstCombine/CMakeLists.txt @@ -4,6 +4,7 @@ add_llvm_library(LLVMInstCombine InstCombineCompares.cpp InstCombineLoadStoreAlloca.cpp InstCombinePHI.cpp + InstCombineSelect.cpp InstCombineSimplifyDemanded.cpp InstCombineVectorOps.cpp ) diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp new file mode 100644 index 00000000000..6c36ebc2790 --- /dev/null +++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp @@ -0,0 +1,708 @@ +//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the visit functions for load, store and alloca. +// +//===----------------------------------------------------------------------===// + +#include "InstCombine.h" +//#include "llvm/IntrinsicInst.h" +//#include "llvm/Target/TargetData.h" +//#include "llvm/Transforms/Utils/BasicBlockUtils.h" +//#include "llvm/Transforms/Utils/Local.h" +//#include "llvm/ADT/Statistic.h" +#include "llvm/Support/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms, +/// returning the kind and providing the out parameter results if we +/// successfully match. +static SelectPatternFlavor +MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) { + SelectInst *SI = dyn_cast(V); + if (SI == 0) return SPF_UNKNOWN; + + ICmpInst *ICI = dyn_cast(SI->getCondition()); + if (ICI == 0) return SPF_UNKNOWN; + + LHS = ICI->getOperand(0); + RHS = ICI->getOperand(1); + + // (icmp X, Y) ? X : Y + if (SI->getTrueValue() == ICI->getOperand(0) && + SI->getFalseValue() == ICI->getOperand(1)) { + switch (ICI->getPredicate()) { + default: return SPF_UNKNOWN; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return SPF_UMAX; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return SPF_SMAX; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return SPF_UMIN; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return SPF_SMIN; + } + } + + // (icmp X, Y) ? Y : X + if (SI->getTrueValue() == ICI->getOperand(1) && + SI->getFalseValue() == ICI->getOperand(0)) { + switch (ICI->getPredicate()) { + default: return SPF_UNKNOWN; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return SPF_UMIN; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return SPF_SMIN; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return SPF_UMAX; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return SPF_SMAX; + } + } + + // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) + + return SPF_UNKNOWN; +} + + +/// GetSelectFoldableOperands - We want to turn code that looks like this: +/// %C = or %A, %B +/// %D = select %cond, %C, %A +/// into: +/// %C = select %cond, %B, 0 +/// %D = or %A, %C +/// +/// Assuming that the specified instruction is an operand to the select, return +/// a bitmask indicating which operands of this instruction are foldable if they +/// equal the other incoming value of the select. +/// +static unsigned GetSelectFoldableOperands(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + return 3; // Can fold through either operand. + case Instruction::Sub: // Can only fold on the amount subtracted. + case Instruction::Shl: // Can only fold on the shift amount. + case Instruction::LShr: + case Instruction::AShr: + return 1; + default: + return 0; // Cannot fold + } +} + +/// GetSelectFoldableConstant - For the same transformation as the previous +/// function, return the identity constant that goes into the select. +static Constant *GetSelectFoldableConstant(Instruction *I) { + switch (I->getOpcode()) { + default: llvm_unreachable("This cannot happen!"); + case Instruction::Add: + case Instruction::Sub: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + return Constant::getNullValue(I->getType()); + case Instruction::And: + return Constant::getAllOnesValue(I->getType()); + case Instruction::Mul: + return ConstantInt::get(I->getType(), 1); + } +} + +/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI +/// have the same opcode and only one use each. Try to simplify this. +Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, + Instruction *FI) { + if (TI->getNumOperands() == 1) { + // If this is a non-volatile load or a cast from the same type, + // merge. + if (TI->isCast()) { + if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) + return 0; + } else { + return 0; // unknown unary op. + } + + // Fold this by inserting a select from the input values. + SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0), + FI->getOperand(0), SI.getName()+".v"); + InsertNewInstBefore(NewSI, SI); + return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, + TI->getType()); + } + + // Only handle binary operators here. + if (!isa(TI)) + return 0; + + // Figure out if the operations have any operands in common. + Value *MatchOp, *OtherOpT, *OtherOpF; + bool MatchIsOpZero; + if (TI->getOperand(0) == FI->getOperand(0)) { + MatchOp = TI->getOperand(0); + OtherOpT = TI->getOperand(1); + OtherOpF = FI->getOperand(1); + MatchIsOpZero = true; + } else if (TI->getOperand(1) == FI->getOperand(1)) { + MatchOp = TI->getOperand(1); + OtherOpT = TI->getOperand(0); + OtherOpF = FI->getOperand(0); + MatchIsOpZero = false; + } else if (!TI->isCommutative()) { + return 0; + } else if (TI->getOperand(0) == FI->getOperand(1)) { + MatchOp = TI->getOperand(0); + OtherOpT = TI->getOperand(1); + OtherOpF = FI->getOperand(0); + MatchIsOpZero = true; + } else if (TI->getOperand(1) == FI->getOperand(0)) { + MatchOp = TI->getOperand(1); + OtherOpT = TI->getOperand(0); + OtherOpF = FI->getOperand(1); + MatchIsOpZero = true; + } else { + return 0; + } + + // If we reach here, they do have operations in common. + SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT, + OtherOpF, SI.getName()+".v"); + InsertNewInstBefore(NewSI, SI); + + if (BinaryOperator *BO = dyn_cast(TI)) { + if (MatchIsOpZero) + return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); + else + return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); + } + llvm_unreachable("Shouldn't get here"); + return 0; +} + +static bool isSelect01(Constant *C1, Constant *C2) { + ConstantInt *C1I = dyn_cast(C1); + if (!C1I) + return false; + ConstantInt *C2I = dyn_cast(C2); + if (!C2I) + return false; + return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne()); +} + +/// FoldSelectIntoOp - Try fold the select into one of the operands to +/// facilitate further optimization. +Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, + Value *FalseVal) { + // See the comment above GetSelectFoldableOperands for a description of the + // transformation we are doing here. + if (Instruction *TVI = dyn_cast(TrueVal)) { + if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && + !isa(FalseVal)) { + if (unsigned SFO = GetSelectFoldableOperands(TVI)) { + unsigned OpToFold = 0; + if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { + OpToFold = 1; + } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { + OpToFold = 2; + } + + if (OpToFold) { + Constant *C = GetSelectFoldableConstant(TVI); + Value *OOp = TVI->getOperand(2-OpToFold); + // Avoid creating select between 2 constants unless it's selecting + // between 0 and 1. + if (!isa(OOp) || isSelect01(C, cast(OOp))) { + Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C); + InsertNewInstBefore(NewSel, SI); + NewSel->takeName(TVI); + if (BinaryOperator *BO = dyn_cast(TVI)) + return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel); + llvm_unreachable("Unknown instruction!!"); + } + } + } + } + } + + if (Instruction *FVI = dyn_cast(FalseVal)) { + if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && + !isa(TrueVal)) { + if (unsigned SFO = GetSelectFoldableOperands(FVI)) { + unsigned OpToFold = 0; + if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { + OpToFold = 1; + } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { + OpToFold = 2; + } + + if (OpToFold) { + Constant *C = GetSelectFoldableConstant(FVI); + Value *OOp = FVI->getOperand(2-OpToFold); + // Avoid creating select between 2 constants unless it's selecting + // between 0 and 1. + if (!isa(OOp) || isSelect01(C, cast(OOp))) { + Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp); + InsertNewInstBefore(NewSel, SI); + NewSel->takeName(FVI); + if (BinaryOperator *BO = dyn_cast(FVI)) + return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel); + llvm_unreachable("Unknown instruction!!"); + } + } + } + } + } + + return 0; +} + +/// visitSelectInstWithICmp - Visit a SelectInst that has an +/// ICmpInst as its first operand. +/// +Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, + ICmpInst *ICI) { + bool Changed = false; + ICmpInst::Predicate Pred = ICI->getPredicate(); + Value *CmpLHS = ICI->getOperand(0); + Value *CmpRHS = ICI->getOperand(1); + Value *TrueVal = SI.getTrueValue(); + Value *FalseVal = SI.getFalseValue(); + + // Check cases where the comparison is with a constant that + // can be adjusted to fit the min/max idiom. We may edit ICI in + // place here, so make sure the select is the only user. + if (ICI->hasOneUse()) + if (ConstantInt *CI = dyn_cast(CmpRHS)) { + switch (Pred) { + default: break; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_SLT: { + // X < MIN ? T : F --> F + if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) + return ReplaceInstUsesWith(SI, FalseVal); + // X < C ? X : C-1 --> X > C-1 ? C-1 : X + Constant *AdjustedRHS = + ConstantInt::get(CI->getContext(), CI->getValue()-1); + if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || + (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { + Pred = ICmpInst::getSwappedPredicate(Pred); + CmpRHS = AdjustedRHS; + std::swap(FalseVal, TrueVal); + ICI->setPredicate(Pred); + ICI->setOperand(1, CmpRHS); + SI.setOperand(1, TrueVal); + SI.setOperand(2, FalseVal); + Changed = true; + } + break; + } + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_SGT: { + // X > MAX ? T : F --> F + if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) + return ReplaceInstUsesWith(SI, FalseVal); + // X > C ? X : C+1 --> X < C+1 ? C+1 : X + Constant *AdjustedRHS = + ConstantInt::get(CI->getContext(), CI->getValue()+1); + if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || + (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { + Pred = ICmpInst::getSwappedPredicate(Pred); + CmpRHS = AdjustedRHS; + std::swap(FalseVal, TrueVal); + ICI->setPredicate(Pred); + ICI->setOperand(1, CmpRHS); + SI.setOperand(1, TrueVal); + SI.setOperand(2, FalseVal); + Changed = true; + } + break; + } + } + + // (x ashr x, 31 -> all ones if signed + // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed + CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; + if (match(TrueVal, m_ConstantInt<-1>()) && + match(FalseVal, m_ConstantInt<0>())) + Pred = ICI->getPredicate(); + else if (match(TrueVal, m_ConstantInt<0>()) && + match(FalseVal, m_ConstantInt<-1>())) + Pred = CmpInst::getInversePredicate(ICI->getPredicate()); + + if (Pred != CmpInst::BAD_ICMP_PREDICATE) { + // If we are just checking for a icmp eq of a single bit and zext'ing it + // to an integer, then shift the bit to the appropriate place and then + // cast to integer to avoid the comparison. + const APInt &Op1CV = CI->getValue(); + + // sext (x x>>s31 true if signbit set. + // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear. + if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) || + (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { + Value *In = ICI->getOperand(0); + Value *Sh = ConstantInt::get(In->getType(), + In->getType()->getScalarSizeInBits()-1); + In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh, + In->getName()+".lobit"), + *ICI); + if (In->getType() != SI.getType()) + In = CastInst::CreateIntegerCast(In, SI.getType(), + true/*SExt*/, "tmp", ICI); + + if (Pred == ICmpInst::ICMP_SGT) + In = InsertNewInstBefore(BinaryOperator::CreateNot(In, + In->getName()+".not"), *ICI); + + return ReplaceInstUsesWith(SI, In); + } + } + } + + if (CmpLHS == TrueVal && CmpRHS == FalseVal) { + // Transform (X == Y) ? X : Y -> Y + if (Pred == ICmpInst::ICMP_EQ) + return ReplaceInstUsesWith(SI, FalseVal); + // Transform (X != Y) ? X : Y -> X + if (Pred == ICmpInst::ICMP_NE) + return ReplaceInstUsesWith(SI, TrueVal); + /// NOTE: if we wanted to, this is where to detect integer MIN/MAX + + } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) { + // Transform (X == Y) ? Y : X -> X + if (Pred == ICmpInst::ICMP_EQ) + return ReplaceInstUsesWith(SI, FalseVal); + // Transform (X != Y) ? Y : X -> Y + if (Pred == ICmpInst::ICMP_NE) + return ReplaceInstUsesWith(SI, TrueVal); + /// NOTE: if we wanted to, this is where to detect integer MIN/MAX + } + return Changed ? &SI : 0; +} + + +/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a +/// PHI node (but the two may be in different blocks). See if the true/false +/// values (V) are live in all of the predecessor blocks of the PHI. For +/// example, cases like this cannot be mapped: +/// +/// X = phi [ C1, BB1], [C2, BB2] +/// Y = add +/// Z = select X, Y, 0 +/// +/// because Y is not live in BB1/BB2. +/// +static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, + const SelectInst &SI) { + // If the value is a non-instruction value like a constant or argument, it + // can always be mapped. + const Instruction *I = dyn_cast(V); + if (I == 0) return true; + + // If V is a PHI node defined in the same block as the condition PHI, we can + // map the arguments. + const PHINode *CondPHI = cast(SI.getCondition()); + + if (const PHINode *VP = dyn_cast(I)) + if (VP->getParent() == CondPHI->getParent()) + return true; + + // Otherwise, if the PHI and select are defined in the same block and if V is + // defined in a different block, then we can transform it. + if (SI.getParent() == CondPHI->getParent() && + I->getParent() != CondPHI->getParent()) + return true; + + // Otherwise we have a 'hard' case and we can't tell without doing more + // detailed dominator based analysis, punt. + return false; +} + +/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form: +/// SPF2(SPF1(A, B), C) +Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, + SelectPatternFlavor SPF1, + Value *A, Value *B, + Instruction &Outer, + SelectPatternFlavor SPF2, Value *C) { + if (C == A || C == B) { + // MAX(MAX(A, B), B) -> MAX(A, B) + // MIN(MIN(a, b), a) -> MIN(a, b) + if (SPF1 == SPF2) + return ReplaceInstUsesWith(Outer, Inner); + + // MAX(MIN(a, b), a) -> a + // MIN(MAX(a, b), a) -> a + if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || + (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || + (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || + (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) + return ReplaceInstUsesWith(Outer, C); + } + + // TODO: MIN(MIN(A, 23), 97) + return 0; +} + + + + +Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { + Value *CondVal = SI.getCondition(); + Value *TrueVal = SI.getTrueValue(); + Value *FalseVal = SI.getFalseValue(); + + // select true, X, Y -> X + // select false, X, Y -> Y + if (ConstantInt *C = dyn_cast(CondVal)) + return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal); + + // select C, X, X -> X + if (TrueVal == FalseVal) + return ReplaceInstUsesWith(SI, TrueVal); + + if (isa(TrueVal)) // select C, undef, X -> X + return ReplaceInstUsesWith(SI, FalseVal); + if (isa(FalseVal)) // select C, X, undef -> X + return ReplaceInstUsesWith(SI, TrueVal); + if (isa(CondVal)) { // select undef, X, Y -> X or Y + if (isa(TrueVal)) + return ReplaceInstUsesWith(SI, TrueVal); + else + return ReplaceInstUsesWith(SI, FalseVal); + } + + if (SI.getType() == Type::getInt1Ty(SI.getContext())) { + if (ConstantInt *C = dyn_cast(TrueVal)) { + if (C->getZExtValue()) { + // Change: A = select B, true, C --> A = or B, C + return BinaryOperator::CreateOr(CondVal, FalseVal); + } else { + // Change: A = select B, false, C --> A = and !B, C + Value *NotCond = + InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, + "not."+CondVal->getName()), SI); + return BinaryOperator::CreateAnd(NotCond, FalseVal); + } + } else if (ConstantInt *C = dyn_cast(FalseVal)) { + if (C->getZExtValue() == false) { + // Change: A = select B, C, false --> A = and B, C + return BinaryOperator::CreateAnd(CondVal, TrueVal); + } else { + // Change: A = select B, C, true --> A = or !B, C + Value *NotCond = + InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, + "not."+CondVal->getName()), SI); + return BinaryOperator::CreateOr(NotCond, TrueVal); + } + } + + // select a, b, a -> a&b + // select a, a, b -> a|b + if (CondVal == TrueVal) + return BinaryOperator::CreateOr(CondVal, FalseVal); + else if (CondVal == FalseVal) + return BinaryOperator::CreateAnd(CondVal, TrueVal); + } + + // Selecting between two integer constants? + if (ConstantInt *TrueValC = dyn_cast(TrueVal)) + if (ConstantInt *FalseValC = dyn_cast(FalseVal)) { + // select C, 1, 0 -> zext C to int + if (FalseValC->isZero() && TrueValC->getValue() == 1) { + return CastInst::Create(Instruction::ZExt, CondVal, SI.getType()); + } else if (TrueValC->isZero() && FalseValC->getValue() == 1) { + // select C, 0, 1 -> zext !C to int + Value *NotCond = + InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, + "not."+CondVal->getName()), SI); + return CastInst::Create(Instruction::ZExt, NotCond, SI.getType()); + } + + if (ICmpInst *IC = dyn_cast(SI.getCondition())) { + // If one of the constants is zero (we know they can't both be) and we + // have an icmp instruction with zero, and we have an 'and' with the + // non-constant value, eliminate this whole mess. This corresponds to + // cases like this: ((X & 27) ? 27 : 0) + if (TrueValC->isZero() || FalseValC->isZero()) + if (IC->isEquality() && isa(IC->getOperand(1)) && + cast(IC->getOperand(1))->isNullValue()) + if (Instruction *ICA = dyn_cast(IC->getOperand(0))) + if (ICA->getOpcode() == Instruction::And && + isa(ICA->getOperand(1)) && + (ICA->getOperand(1) == TrueValC || + ICA->getOperand(1) == FalseValC) && + cast(ICA->getOperand(1))->getValue().isPowerOf2()) { + // Okay, now we know that everything is set up, we just don't + // know whether we have a icmp_ne or icmp_eq and whether the + // true or false val is the zero. + bool ShouldNotVal = !TrueValC->isZero(); + ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; + Value *V = ICA; + if (ShouldNotVal) + V = InsertNewInstBefore(BinaryOperator::Create( + Instruction::Xor, V, ICA->getOperand(1)), SI); + return ReplaceInstUsesWith(SI, V); + } + } + } + + // See if we are selecting two values based on a comparison of the two values. + if (FCmpInst *FCI = dyn_cast(CondVal)) { + if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { + // Transform (X == Y) ? X : Y -> Y + if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, FalseVal); + } + // Transform (X != Y) ? X : Y -> X + if (FCI->getPredicate() == FCmpInst::FCMP_ONE) + return ReplaceInstUsesWith(SI, TrueVal); + // NOTE: if we wanted to, this is where to detect MIN/MAX + + } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ + // Transform (X == Y) ? Y : X -> X + if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, FalseVal); + } + // Transform (X != Y) ? Y : X -> Y + if (FCI->getPredicate() == FCmpInst::FCMP_ONE) + return ReplaceInstUsesWith(SI, TrueVal); + // NOTE: if we wanted to, this is where to detect MIN/MAX + } + // NOTE: if we wanted to, this is where to detect ABS + } + + // See if we are selecting two values based on a comparison of the two values. + if (ICmpInst *ICI = dyn_cast(CondVal)) + if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) + return Result; + + if (Instruction *TI = dyn_cast(TrueVal)) + if (Instruction *FI = dyn_cast(FalseVal)) + if (TI->hasOneUse() && FI->hasOneUse()) { + Instruction *AddOp = 0, *SubOp = 0; + + // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) + if (TI->getOpcode() == FI->getOpcode()) + if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) + return IV; + + // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is + // even legal for FP. + if ((TI->getOpcode() == Instruction::Sub && + FI->getOpcode() == Instruction::Add) || + (TI->getOpcode() == Instruction::FSub && + FI->getOpcode() == Instruction::FAdd)) { + AddOp = FI; SubOp = TI; + } else if ((FI->getOpcode() == Instruction::Sub && + TI->getOpcode() == Instruction::Add) || + (FI->getOpcode() == Instruction::FSub && + TI->getOpcode() == Instruction::FAdd)) { + AddOp = TI; SubOp = FI; + } + + if (AddOp) { + Value *OtherAddOp = 0; + if (SubOp->getOperand(0) == AddOp->getOperand(0)) { + OtherAddOp = AddOp->getOperand(1); + } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { + OtherAddOp = AddOp->getOperand(0); + } + + if (OtherAddOp) { + // So at this point we know we have (Y -> OtherAddOp): + // select C, (add X, Y), (sub X, Z) + Value *NegVal; // Compute -Z + if (Constant *C = dyn_cast(SubOp->getOperand(1))) { + NegVal = ConstantExpr::getNeg(C); + } else { + NegVal = InsertNewInstBefore( + BinaryOperator::CreateNeg(SubOp->getOperand(1), + "tmp"), SI); + } + + Value *NewTrueOp = OtherAddOp; + Value *NewFalseOp = NegVal; + if (AddOp != TI) + std::swap(NewTrueOp, NewFalseOp); + Instruction *NewSel = + SelectInst::Create(CondVal, NewTrueOp, + NewFalseOp, SI.getName() + ".p"); + + NewSel = InsertNewInstBefore(NewSel, SI); + return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); + } + } + } + + // See if we can fold the select into one of our operands. + if (SI.getType()->isInteger()) { + if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) + return FoldI; + + // MAX(MAX(a, b), a) -> MAX(a, b) + // MIN(MIN(a, b), a) -> MIN(a, b) + // MAX(MIN(a, b), a) -> a + // MIN(MAX(a, b), a) -> a + Value *LHS, *RHS, *LHS2, *RHS2; + if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) { + if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2)) + if (Instruction *R = FoldSPFofSPF(cast(LHS),SPF2,LHS2,RHS2, + SI, SPF, RHS)) + return R; + if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2)) + if (Instruction *R = FoldSPFofSPF(cast(RHS),SPF2,LHS2,RHS2, + SI, SPF, LHS)) + return R; + } + + // TODO. + // ABS(-X) -> ABS(X) + // ABS(ABS(X)) -> ABS(X) + } + + // See if we can fold the select into a phi node if the condition is a select. + if (isa(SI.getCondition())) + // The true/false values have to be live in the PHI predecessor's blocks. + if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && + CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) + if (Instruction *NV = FoldOpIntoPhi(SI)) + return NV; + + if (BinaryOperator::isNot(CondVal)) { + SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); + SI.setOperand(1, FalseVal); + SI.setOperand(2, TrueVal); + return &SI; + } + + return 0; +} diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp index 852d442ace0..e99000125cc 100644 --- a/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -219,57 +219,6 @@ static inline Value *dyn_castFNegVal(Value *V) { return 0; } -/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms, -/// returning the kind and providing the out parameter results if we -/// successfully match. -static SelectPatternFlavor -MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) { - SelectInst *SI = dyn_cast(V); - if (SI == 0) return SPF_UNKNOWN; - - ICmpInst *ICI = dyn_cast(SI->getCondition()); - if (ICI == 0) return SPF_UNKNOWN; - - LHS = ICI->getOperand(0); - RHS = ICI->getOperand(1); - - // (icmp X, Y) ? X : Y - if (SI->getTrueValue() == ICI->getOperand(0) && - SI->getFalseValue() == ICI->getOperand(1)) { - switch (ICI->getPredicate()) { - default: return SPF_UNKNOWN; // Equality. - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: return SPF_UMAX; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: return SPF_SMAX; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: return SPF_UMIN; - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: return SPF_SMIN; - } - } - - // (icmp X, Y) ? Y : X - if (SI->getTrueValue() == ICI->getOperand(1) && - SI->getFalseValue() == ICI->getOperand(0)) { - switch (ICI->getPredicate()) { - default: return SPF_UNKNOWN; // Equality. - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: return SPF_UMIN; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: return SPF_SMIN; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: return SPF_UMAX; - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: return SPF_SMAX; - } - } - - // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) - - return SPF_UNKNOWN; -} - /// isFreeToInvert - Return true if the specified value is free to invert (apply /// ~ to). This happens in cases where the ~ can be eliminated. static inline bool isFreeToInvert(Value *V) { @@ -1994,12 +1943,6 @@ Instruction *InstCombiner::visitFRem(BinaryOperator &I) { return commonRemTransforms(I); } -// isOneBitSet - Return true if there is exactly one bit set in the specified -// constant. -static bool isOneBitSet(const ConstantInt *CI) { - return CI->getValue().isPowerOf2(); -} - /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits /// are carefully arranged to allow folding of expressions such as: /// @@ -2240,10 +2183,10 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op, // Adding a one to a single bit bit-field should be turned into an XOR // of the bit. First thing to check is to see if this AND is with a // single bit constant. - const APInt& AndRHSV = cast(AndRHS)->getValue(); + const APInt &AndRHSV = cast(AndRHS)->getValue(); - // If there is only one bit set... - if (isOneBitSet(cast(AndRHS))) { + // If there is only one bit set. + if (AndRHSV.isPowerOf2()) { // Ok, at this point, we know that we are masking the result of the // ADD down to exactly one bit. If the constant we are adding has // no bits set below this bit, then we can eliminate the ADD. @@ -4421,638 +4364,6 @@ const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, } -/// GetSelectFoldableOperands - We want to turn code that looks like this: -/// %C = or %A, %B -/// %D = select %cond, %C, %A -/// into: -/// %C = select %cond, %B, 0 -/// %D = or %A, %C -/// -/// Assuming that the specified instruction is an operand to the select, return -/// a bitmask indicating which operands of this instruction are foldable if they -/// equal the other incoming value of the select. -/// -static unsigned GetSelectFoldableOperands(Instruction *I) { - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::Mul: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - return 3; // Can fold through either operand. - case Instruction::Sub: // Can only fold on the amount subtracted. - case Instruction::Shl: // Can only fold on the shift amount. - case Instruction::LShr: - case Instruction::AShr: - return 1; - default: - return 0; // Cannot fold - } -} - -/// GetSelectFoldableConstant - For the same transformation as the previous -/// function, return the identity constant that goes into the select. -static Constant *GetSelectFoldableConstant(Instruction *I) { - switch (I->getOpcode()) { - default: llvm_unreachable("This cannot happen!"); - case Instruction::Add: - case Instruction::Sub: - case Instruction::Or: - case Instruction::Xor: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - return Constant::getNullValue(I->getType()); - case Instruction::And: - return Constant::getAllOnesValue(I->getType()); - case Instruction::Mul: - return ConstantInt::get(I->getType(), 1); - } -} - -/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI -/// have the same opcode and only one use each. Try to simplify this. -Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, - Instruction *FI) { - if (TI->getNumOperands() == 1) { - // If this is a non-volatile load or a cast from the same type, - // merge. - if (TI->isCast()) { - if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) - return 0; - } else { - return 0; // unknown unary op. - } - - // Fold this by inserting a select from the input values. - SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0), - FI->getOperand(0), SI.getName()+".v"); - InsertNewInstBefore(NewSI, SI); - return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, - TI->getType()); - } - - // Only handle binary operators here. - if (!isa(TI)) - return 0; - - // Figure out if the operations have any operands in common. - Value *MatchOp, *OtherOpT, *OtherOpF; - bool MatchIsOpZero; - if (TI->getOperand(0) == FI->getOperand(0)) { - MatchOp = TI->getOperand(0); - OtherOpT = TI->getOperand(1); - OtherOpF = FI->getOperand(1); - MatchIsOpZero = true; - } else if (TI->getOperand(1) == FI->getOperand(1)) { - MatchOp = TI->getOperand(1); - OtherOpT = TI->getOperand(0); - OtherOpF = FI->getOperand(0); - MatchIsOpZero = false; - } else if (!TI->isCommutative()) { - return 0; - } else if (TI->getOperand(0) == FI->getOperand(1)) { - MatchOp = TI->getOperand(0); - OtherOpT = TI->getOperand(1); - OtherOpF = FI->getOperand(0); - MatchIsOpZero = true; - } else if (TI->getOperand(1) == FI->getOperand(0)) { - MatchOp = TI->getOperand(1); - OtherOpT = TI->getOperand(0); - OtherOpF = FI->getOperand(1); - MatchIsOpZero = true; - } else { - return 0; - } - - // If we reach here, they do have operations in common. - SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT, - OtherOpF, SI.getName()+".v"); - InsertNewInstBefore(NewSI, SI); - - if (BinaryOperator *BO = dyn_cast(TI)) { - if (MatchIsOpZero) - return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); - else - return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); - } - llvm_unreachable("Shouldn't get here"); - return 0; -} - -static bool isSelect01(Constant *C1, Constant *C2) { - ConstantInt *C1I = dyn_cast(C1); - if (!C1I) - return false; - ConstantInt *C2I = dyn_cast(C2); - if (!C2I) - return false; - return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne()); -} - -/// FoldSelectIntoOp - Try fold the select into one of the operands to -/// facilitate further optimization. -Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, - Value *FalseVal) { - // See the comment above GetSelectFoldableOperands for a description of the - // transformation we are doing here. - if (Instruction *TVI = dyn_cast(TrueVal)) { - if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && - !isa(FalseVal)) { - if (unsigned SFO = GetSelectFoldableOperands(TVI)) { - unsigned OpToFold = 0; - if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { - OpToFold = 1; - } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { - OpToFold = 2; - } - - if (OpToFold) { - Constant *C = GetSelectFoldableConstant(TVI); - Value *OOp = TVI->getOperand(2-OpToFold); - // Avoid creating select between 2 constants unless it's selecting - // between 0 and 1. - if (!isa(OOp) || isSelect01(C, cast(OOp))) { - Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C); - InsertNewInstBefore(NewSel, SI); - NewSel->takeName(TVI); - if (BinaryOperator *BO = dyn_cast(TVI)) - return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel); - llvm_unreachable("Unknown instruction!!"); - } - } - } - } - } - - if (Instruction *FVI = dyn_cast(FalseVal)) { - if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && - !isa(TrueVal)) { - if (unsigned SFO = GetSelectFoldableOperands(FVI)) { - unsigned OpToFold = 0; - if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { - OpToFold = 1; - } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { - OpToFold = 2; - } - - if (OpToFold) { - Constant *C = GetSelectFoldableConstant(FVI); - Value *OOp = FVI->getOperand(2-OpToFold); - // Avoid creating select between 2 constants unless it's selecting - // between 0 and 1. - if (!isa(OOp) || isSelect01(C, cast(OOp))) { - Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp); - InsertNewInstBefore(NewSel, SI); - NewSel->takeName(FVI); - if (BinaryOperator *BO = dyn_cast(FVI)) - return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel); - llvm_unreachable("Unknown instruction!!"); - } - } - } - } - } - - return 0; -} - -/// visitSelectInstWithICmp - Visit a SelectInst that has an -/// ICmpInst as its first operand. -/// -Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, - ICmpInst *ICI) { - bool Changed = false; - ICmpInst::Predicate Pred = ICI->getPredicate(); - Value *CmpLHS = ICI->getOperand(0); - Value *CmpRHS = ICI->getOperand(1); - Value *TrueVal = SI.getTrueValue(); - Value *FalseVal = SI.getFalseValue(); - - // Check cases where the comparison is with a constant that - // can be adjusted to fit the min/max idiom. We may edit ICI in - // place here, so make sure the select is the only user. - if (ICI->hasOneUse()) - if (ConstantInt *CI = dyn_cast(CmpRHS)) { - switch (Pred) { - default: break; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_SLT: { - // X < MIN ? T : F --> F - if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) - return ReplaceInstUsesWith(SI, FalseVal); - // X < C ? X : C-1 --> X > C-1 ? C-1 : X - Constant *AdjustedRHS = SubOne(CI); - if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || - (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { - Pred = ICmpInst::getSwappedPredicate(Pred); - CmpRHS = AdjustedRHS; - std::swap(FalseVal, TrueVal); - ICI->setPredicate(Pred); - ICI->setOperand(1, CmpRHS); - SI.setOperand(1, TrueVal); - SI.setOperand(2, FalseVal); - Changed = true; - } - break; - } - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_SGT: { - // X > MAX ? T : F --> F - if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) - return ReplaceInstUsesWith(SI, FalseVal); - // X > C ? X : C+1 --> X < C+1 ? C+1 : X - Constant *AdjustedRHS = AddOne(CI); - if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || - (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { - Pred = ICmpInst::getSwappedPredicate(Pred); - CmpRHS = AdjustedRHS; - std::swap(FalseVal, TrueVal); - ICI->setPredicate(Pred); - ICI->setOperand(1, CmpRHS); - SI.setOperand(1, TrueVal); - SI.setOperand(2, FalseVal); - Changed = true; - } - break; - } - } - - // (x ashr x, 31 -> all ones if signed - // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed - CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; - if (match(TrueVal, m_ConstantInt<-1>()) && - match(FalseVal, m_ConstantInt<0>())) - Pred = ICI->getPredicate(); - else if (match(TrueVal, m_ConstantInt<0>()) && - match(FalseVal, m_ConstantInt<-1>())) - Pred = CmpInst::getInversePredicate(ICI->getPredicate()); - - if (Pred != CmpInst::BAD_ICMP_PREDICATE) { - // If we are just checking for a icmp eq of a single bit and zext'ing it - // to an integer, then shift the bit to the appropriate place and then - // cast to integer to avoid the comparison. - const APInt &Op1CV = CI->getValue(); - - // sext (x x>>s31 true if signbit set. - // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear. - if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) || - (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) { - Value *In = ICI->getOperand(0); - Value *Sh = ConstantInt::get(In->getType(), - In->getType()->getScalarSizeInBits()-1); - In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh, - In->getName()+".lobit"), - *ICI); - if (In->getType() != SI.getType()) - In = CastInst::CreateIntegerCast(In, SI.getType(), - true/*SExt*/, "tmp", ICI); - - if (Pred == ICmpInst::ICMP_SGT) - In = InsertNewInstBefore(BinaryOperator::CreateNot(In, - In->getName()+".not"), *ICI); - - return ReplaceInstUsesWith(SI, In); - } - } - } - - if (CmpLHS == TrueVal && CmpRHS == FalseVal) { - // Transform (X == Y) ? X : Y -> Y - if (Pred == ICmpInst::ICMP_EQ) - return ReplaceInstUsesWith(SI, FalseVal); - // Transform (X != Y) ? X : Y -> X - if (Pred == ICmpInst::ICMP_NE) - return ReplaceInstUsesWith(SI, TrueVal); - /// NOTE: if we wanted to, this is where to detect integer MIN/MAX - - } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) { - // Transform (X == Y) ? Y : X -> X - if (Pred == ICmpInst::ICMP_EQ) - return ReplaceInstUsesWith(SI, FalseVal); - // Transform (X != Y) ? Y : X -> Y - if (Pred == ICmpInst::ICMP_NE) - return ReplaceInstUsesWith(SI, TrueVal); - /// NOTE: if we wanted to, this is where to detect integer MIN/MAX - } - return Changed ? &SI : 0; -} - - -/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a -/// PHI node (but the two may be in different blocks). See if the true/false -/// values (V) are live in all of the predecessor blocks of the PHI. For -/// example, cases like this cannot be mapped: -/// -/// X = phi [ C1, BB1], [C2, BB2] -/// Y = add -/// Z = select X, Y, 0 -/// -/// because Y is not live in BB1/BB2. -/// -static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, - const SelectInst &SI) { - // If the value is a non-instruction value like a constant or argument, it - // can always be mapped. - const Instruction *I = dyn_cast(V); - if (I == 0) return true; - - // If V is a PHI node defined in the same block as the condition PHI, we can - // map the arguments. - const PHINode *CondPHI = cast(SI.getCondition()); - - if (const PHINode *VP = dyn_cast(I)) - if (VP->getParent() == CondPHI->getParent()) - return true; - - // Otherwise, if the PHI and select are defined in the same block and if V is - // defined in a different block, then we can transform it. - if (SI.getParent() == CondPHI->getParent() && - I->getParent() != CondPHI->getParent()) - return true; - - // Otherwise we have a 'hard' case and we can't tell without doing more - // detailed dominator based analysis, punt. - return false; -} - -/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form: -/// SPF2(SPF1(A, B), C) -Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, - SelectPatternFlavor SPF1, - Value *A, Value *B, - Instruction &Outer, - SelectPatternFlavor SPF2, Value *C) { - if (C == A || C == B) { - // MAX(MAX(A, B), B) -> MAX(A, B) - // MIN(MIN(a, b), a) -> MIN(a, b) - if (SPF1 == SPF2) - return ReplaceInstUsesWith(Outer, Inner); - - // MAX(MIN(a, b), a) -> a - // MIN(MAX(a, b), a) -> a - if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || - (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || - (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || - (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) - return ReplaceInstUsesWith(Outer, C); - } - - // TODO: MIN(MIN(A, 23), 97) - return 0; -} - - - - -Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { - Value *CondVal = SI.getCondition(); - Value *TrueVal = SI.getTrueValue(); - Value *FalseVal = SI.getFalseValue(); - - // select true, X, Y -> X - // select false, X, Y -> Y - if (ConstantInt *C = dyn_cast(CondVal)) - return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal); - - // select C, X, X -> X - if (TrueVal == FalseVal) - return ReplaceInstUsesWith(SI, TrueVal); - - if (isa(TrueVal)) // select C, undef, X -> X - return ReplaceInstUsesWith(SI, FalseVal); - if (isa(FalseVal)) // select C, X, undef -> X - return ReplaceInstUsesWith(SI, TrueVal); - if (isa(CondVal)) { // select undef, X, Y -> X or Y - if (isa(TrueVal)) - return ReplaceInstUsesWith(SI, TrueVal); - else - return ReplaceInstUsesWith(SI, FalseVal); - } - - if (SI.getType() == Type::getInt1Ty(SI.getContext())) { - if (ConstantInt *C = dyn_cast(TrueVal)) { - if (C->getZExtValue()) { - // Change: A = select B, true, C --> A = or B, C - return BinaryOperator::CreateOr(CondVal, FalseVal); - } else { - // Change: A = select B, false, C --> A = and !B, C - Value *NotCond = - InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, - "not."+CondVal->getName()), SI); - return BinaryOperator::CreateAnd(NotCond, FalseVal); - } - } else if (ConstantInt *C = dyn_cast(FalseVal)) { - if (C->getZExtValue() == false) { - // Change: A = select B, C, false --> A = and B, C - return BinaryOperator::CreateAnd(CondVal, TrueVal); - } else { - // Change: A = select B, C, true --> A = or !B, C - Value *NotCond = - InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, - "not."+CondVal->getName()), SI); - return BinaryOperator::CreateOr(NotCond, TrueVal); - } - } - - // select a, b, a -> a&b - // select a, a, b -> a|b - if (CondVal == TrueVal) - return BinaryOperator::CreateOr(CondVal, FalseVal); - else if (CondVal == FalseVal) - return BinaryOperator::CreateAnd(CondVal, TrueVal); - } - - // Selecting between two integer constants? - if (ConstantInt *TrueValC = dyn_cast(TrueVal)) - if (ConstantInt *FalseValC = dyn_cast(FalseVal)) { - // select C, 1, 0 -> zext C to int - if (FalseValC->isZero() && TrueValC->getValue() == 1) { - return CastInst::Create(Instruction::ZExt, CondVal, SI.getType()); - } else if (TrueValC->isZero() && FalseValC->getValue() == 1) { - // select C, 0, 1 -> zext !C to int - Value *NotCond = - InsertNewInstBefore(BinaryOperator::CreateNot(CondVal, - "not."+CondVal->getName()), SI); - return CastInst::Create(Instruction::ZExt, NotCond, SI.getType()); - } - - if (ICmpInst *IC = dyn_cast(SI.getCondition())) { - // If one of the constants is zero (we know they can't both be) and we - // have an icmp instruction with zero, and we have an 'and' with the - // non-constant value, eliminate this whole mess. This corresponds to - // cases like this: ((X & 27) ? 27 : 0) - if (TrueValC->isZero() || FalseValC->isZero()) - if (IC->isEquality() && isa(IC->getOperand(1)) && - cast(IC->getOperand(1))->isNullValue()) - if (Instruction *ICA = dyn_cast(IC->getOperand(0))) - if (ICA->getOpcode() == Instruction::And && - isa(ICA->getOperand(1)) && - (ICA->getOperand(1) == TrueValC || - ICA->getOperand(1) == FalseValC) && - isOneBitSet(cast(ICA->getOperand(1)))) { - // Okay, now we know that everything is set up, we just don't - // know whether we have a icmp_ne or icmp_eq and whether the - // true or false val is the zero. - bool ShouldNotVal = !TrueValC->isZero(); - ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; - Value *V = ICA; - if (ShouldNotVal) - V = InsertNewInstBefore(BinaryOperator::Create( - Instruction::Xor, V, ICA->getOperand(1)), SI); - return ReplaceInstUsesWith(SI, V); - } - } - } - - // See if we are selecting two values based on a comparison of the two values. - if (FCmpInst *FCI = dyn_cast(CondVal)) { - if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { - // Transform (X == Y) ? X : Y -> Y - if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { - // This is not safe in general for floating point: - // consider X== -0, Y== +0. - // It becomes safe if either operand is a nonzero constant. - ConstantFP *CFPt, *CFPf; - if (((CFPt = dyn_cast(TrueVal)) && - !CFPt->getValueAPF().isZero()) || - ((CFPf = dyn_cast(FalseVal)) && - !CFPf->getValueAPF().isZero())) - return ReplaceInstUsesWith(SI, FalseVal); - } - // Transform (X != Y) ? X : Y -> X - if (FCI->getPredicate() == FCmpInst::FCMP_ONE) - return ReplaceInstUsesWith(SI, TrueVal); - // NOTE: if we wanted to, this is where to detect MIN/MAX - - } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ - // Transform (X == Y) ? Y : X -> X - if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { - // This is not safe in general for floating point: - // consider X== -0, Y== +0. - // It becomes safe if either operand is a nonzero constant. - ConstantFP *CFPt, *CFPf; - if (((CFPt = dyn_cast(TrueVal)) && - !CFPt->getValueAPF().isZero()) || - ((CFPf = dyn_cast(FalseVal)) && - !CFPf->getValueAPF().isZero())) - return ReplaceInstUsesWith(SI, FalseVal); - } - // Transform (X != Y) ? Y : X -> Y - if (FCI->getPredicate() == FCmpInst::FCMP_ONE) - return ReplaceInstUsesWith(SI, TrueVal); - // NOTE: if we wanted to, this is where to detect MIN/MAX - } - // NOTE: if we wanted to, this is where to detect ABS - } - - // See if we are selecting two values based on a comparison of the two values. - if (ICmpInst *ICI = dyn_cast(CondVal)) - if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) - return Result; - - if (Instruction *TI = dyn_cast(TrueVal)) - if (Instruction *FI = dyn_cast(FalseVal)) - if (TI->hasOneUse() && FI->hasOneUse()) { - Instruction *AddOp = 0, *SubOp = 0; - - // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) - if (TI->getOpcode() == FI->getOpcode()) - if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) - return IV; - - // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is - // even legal for FP. - if ((TI->getOpcode() == Instruction::Sub && - FI->getOpcode() == Instruction::Add) || - (TI->getOpcode() == Instruction::FSub && - FI->getOpcode() == Instruction::FAdd)) { - AddOp = FI; SubOp = TI; - } else if ((FI->getOpcode() == Instruction::Sub && - TI->getOpcode() == Instruction::Add) || - (FI->getOpcode() == Instruction::FSub && - TI->getOpcode() == Instruction::FAdd)) { - AddOp = TI; SubOp = FI; - } - - if (AddOp) { - Value *OtherAddOp = 0; - if (SubOp->getOperand(0) == AddOp->getOperand(0)) { - OtherAddOp = AddOp->getOperand(1); - } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { - OtherAddOp = AddOp->getOperand(0); - } - - if (OtherAddOp) { - // So at this point we know we have (Y -> OtherAddOp): - // select C, (add X, Y), (sub X, Z) - Value *NegVal; // Compute -Z - if (Constant *C = dyn_cast(SubOp->getOperand(1))) { - NegVal = ConstantExpr::getNeg(C); - } else { - NegVal = InsertNewInstBefore( - BinaryOperator::CreateNeg(SubOp->getOperand(1), - "tmp"), SI); - } - - Value *NewTrueOp = OtherAddOp; - Value *NewFalseOp = NegVal; - if (AddOp != TI) - std::swap(NewTrueOp, NewFalseOp); - Instruction *NewSel = - SelectInst::Create(CondVal, NewTrueOp, - NewFalseOp, SI.getName() + ".p"); - - NewSel = InsertNewInstBefore(NewSel, SI); - return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); - } - } - } - - // See if we can fold the select into one of our operands. - if (SI.getType()->isInteger()) { - if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) - return FoldI; - - // MAX(MAX(a, b), a) -> MAX(a, b) - // MIN(MIN(a, b), a) -> MIN(a, b) - // MAX(MIN(a, b), a) -> a - // MIN(MAX(a, b), a) -> a - Value *LHS, *RHS, *LHS2, *RHS2; - if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) { - if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2)) - if (Instruction *R = FoldSPFofSPF(cast(LHS),SPF2,LHS2,RHS2, - SI, SPF, RHS)) - return R; - if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2)) - if (Instruction *R = FoldSPFofSPF(cast(RHS),SPF2,LHS2,RHS2, - SI, SPF, LHS)) - return R; - } - - // TODO. - // ABS(-X) -> ABS(X) - // ABS(ABS(X)) -> ABS(X) - } - - // See if we can fold the select into a phi node if the condition is a select. - if (isa(SI.getCondition())) - // The true/false values have to be live in the PHI predecessor's blocks. - if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && - CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) - if (Instruction *NV = FoldOpIntoPhi(SI)) - return NV; - - if (BinaryOperator::isNot(CondVal)) { - SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); - SI.setOperand(1, FalseVal); - SI.setOperand(2, TrueVal); - return &SI; - } - - return 0; -} - /// EnforceKnownAlignment - If the specified pointer points to an object that /// we control, modify the object's alignment to PrefAlign. This isn't /// often possible though. If alignment is important, a more reliable approach