mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-28 06:32:09 +00:00
InstrSched is SparcV9-specific and so has been moved to lib/Target/SparcV9/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16849 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
855ae5a8f7
commit
c8e049124e
File diff suppressed because it is too large
Load Diff
@ -1,14 +0,0 @@
|
||||
##===- lib/CodeGen/InstrSched/Makefile ---------------------*- Makefile -*-===##
|
||||
#
|
||||
# The LLVM Compiler Infrastructure
|
||||
#
|
||||
# This file was developed by the LLVM research group and is distributed under
|
||||
# the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
#
|
||||
##===----------------------------------------------------------------------===##
|
||||
|
||||
LEVEL = ../../..
|
||||
DIRS =
|
||||
LIBRARYNAME = sched
|
||||
|
||||
include $(LEVEL)/Makefile.common
|
@ -1,737 +0,0 @@
|
||||
//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Scheduling graph based on SSA graph plus extra dependence edges capturing
|
||||
// dependences due to machine resources (machine registers, CC registers, and
|
||||
// any others).
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "SchedGraph.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "../../Target/SparcV9/MachineCodeForInstruction.h"
|
||||
#include "../../Target/SparcV9/SparcV9RegInfo.h"
|
||||
#include "../../Target/SparcV9/SparcV9InstrInfo.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
//*********************** Internal Data Structures *************************/
|
||||
|
||||
// The following two types need to be classes, not typedefs, so we can use
|
||||
// opaque declarations in SchedGraph.h
|
||||
//
|
||||
struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > {
|
||||
typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator;
|
||||
typedef
|
||||
std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator;
|
||||
};
|
||||
|
||||
struct RegToRefVecMap: public hash_map<int, RefVec> {
|
||||
typedef hash_map<int, RefVec>:: iterator iterator;
|
||||
typedef hash_map<int, RefVec>::const_iterator const_iterator;
|
||||
};
|
||||
|
||||
struct ValueToDefVecMap: public hash_map<const Value*, RefVec> {
|
||||
typedef hash_map<const Value*, RefVec>:: iterator iterator;
|
||||
typedef hash_map<const Value*, RefVec>::const_iterator const_iterator;
|
||||
};
|
||||
|
||||
|
||||
//
|
||||
// class SchedGraphNode
|
||||
//
|
||||
|
||||
SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb,
|
||||
int indexInBB, const TargetMachine& Target)
|
||||
: SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(0) {
|
||||
if (mbb) {
|
||||
MachineBasicBlock::iterator I = MBB->begin();
|
||||
std::advance(I, indexInBB);
|
||||
MI = I;
|
||||
|
||||
MachineOpCode mopCode = MI->getOpcode();
|
||||
latency = Target.getInstrInfo()->hasResultInterlock(mopCode)
|
||||
? Target.getInstrInfo()->minLatency(mopCode)
|
||||
: Target.getInstrInfo()->maxLatency(mopCode);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Method: SchedGraphNode Destructor
|
||||
//
|
||||
// Description:
|
||||
// Free memory allocated by the SchedGraphNode object.
|
||||
//
|
||||
// Notes:
|
||||
// Do not delete the edges here. The base class will take care of that.
|
||||
// Only handle subclass specific stuff here (where currently there is
|
||||
// none).
|
||||
//
|
||||
SchedGraphNode::~SchedGraphNode() {
|
||||
}
|
||||
|
||||
//
|
||||
// class SchedGraph
|
||||
//
|
||||
SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
|
||||
: MBB(mbb) {
|
||||
buildGraph(target);
|
||||
}
|
||||
|
||||
//
|
||||
// Method: SchedGraph Destructor
|
||||
//
|
||||
// Description:
|
||||
// This method deletes memory allocated by the SchedGraph object.
|
||||
//
|
||||
// Notes:
|
||||
// Do not delete the graphRoot or graphLeaf here. The base class handles
|
||||
// that bit of work.
|
||||
//
|
||||
SchedGraph::~SchedGraph() {
|
||||
for (const_iterator I = begin(); I != end(); ++I)
|
||||
delete I->second;
|
||||
}
|
||||
|
||||
void SchedGraph::dump() const {
|
||||
std::cerr << " Sched Graph for Basic Block: "
|
||||
<< MBB.getBasicBlock()->getName()
|
||||
<< " (" << *MBB.getBasicBlock() << ")"
|
||||
<< "\n\n Actual Root nodes: ";
|
||||
for (SchedGraphNodeCommon::const_iterator I = graphRoot->beginOutEdges(),
|
||||
E = graphRoot->endOutEdges();
|
||||
I != E; ++I) {
|
||||
std::cerr << (*I)->getSink ()->getNodeId ();
|
||||
if (I + 1 != E) { std::cerr << ", "; }
|
||||
}
|
||||
std::cerr << "\n Graph Nodes:\n";
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I)
|
||||
std::cerr << "\n" << *I->second;
|
||||
std::cerr << "\n";
|
||||
}
|
||||
|
||||
void SchedGraph::addDummyEdges() {
|
||||
assert(graphRoot->getNumOutEdges() == 0);
|
||||
|
||||
for (const_iterator I=begin(); I != end(); ++I) {
|
||||
SchedGraphNode* node = (*I).second;
|
||||
assert(node != graphRoot && node != graphLeaf);
|
||||
if (node->beginInEdges() == node->endInEdges())
|
||||
(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
if (node->beginOutEdges() == node->endOutEdges())
|
||||
(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SchedGraph::addCDEdges(const TerminatorInst* term,
|
||||
const TargetMachine& target) {
|
||||
const TargetInstrInfo& mii = *target.getInstrInfo();
|
||||
MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
|
||||
|
||||
// Find the first branch instr in the sequence of machine instrs for term
|
||||
//
|
||||
unsigned first = 0;
|
||||
while (! mii.isBranch(termMvec[first]->getOpcode()) &&
|
||||
! mii.isReturn(termMvec[first]->getOpcode()))
|
||||
++first;
|
||||
assert(first < termMvec.size() &&
|
||||
"No branch instructions for terminator? Ok, but weird!");
|
||||
if (first == termMvec.size())
|
||||
return;
|
||||
|
||||
SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
|
||||
|
||||
// Add CD edges from each instruction in the sequence to the
|
||||
// *last preceding* branch instr. in the sequence
|
||||
// Use a latency of 0 because we only need to prevent out-of-order issue.
|
||||
//
|
||||
for (unsigned i = termMvec.size(); i > first+1; --i) {
|
||||
SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
|
||||
assert(toNode && "No node for instr generated for branch/ret?");
|
||||
|
||||
for (unsigned j = i-1; j != 0; --j)
|
||||
if (mii.isBranch(termMvec[j-1]->getOpcode()) ||
|
||||
mii.isReturn(termMvec[j-1]->getOpcode())) {
|
||||
SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
|
||||
assert(brNode && "No node for instr generated for branch/ret?");
|
||||
(void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
break; // only one incoming edge is enough
|
||||
}
|
||||
}
|
||||
|
||||
// Add CD edges from each instruction preceding the first branch
|
||||
// to the first branch. Use a latency of 0 as above.
|
||||
//
|
||||
for (unsigned i = first; i != 0; --i) {
|
||||
SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
|
||||
assert(fromNode && "No node for instr generated for branch?");
|
||||
(void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
}
|
||||
|
||||
// Now add CD edges to the first branch instruction in the sequence from
|
||||
// all preceding instructions in the basic block. Use 0 latency again.
|
||||
//
|
||||
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
|
||||
if (&*I == termMvec[first]) // reached the first branch
|
||||
break;
|
||||
|
||||
SchedGraphNode* fromNode = getGraphNodeForInstr(I);
|
||||
if (fromNode == NULL)
|
||||
continue; // dummy instruction, e.g., PHI
|
||||
|
||||
(void) new SchedGraphEdge(fromNode, firstBrNode,
|
||||
SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
|
||||
// If we find any other machine instructions (other than due to
|
||||
// the terminator) that also have delay slots, add an outgoing edge
|
||||
// from the instruction to the instructions in the delay slots.
|
||||
//
|
||||
unsigned d = mii.getNumDelaySlots(I->getOpcode());
|
||||
|
||||
MachineBasicBlock::iterator J = I; ++J;
|
||||
for (unsigned j=1; j <= d; j++, ++J) {
|
||||
SchedGraphNode* toNode = this->getGraphNodeForInstr(J);
|
||||
assert(toNode && "No node for machine instr in delay slot?");
|
||||
(void) new SchedGraphEdge(fromNode, toNode,
|
||||
SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static const int SG_LOAD_REF = 0;
|
||||
static const int SG_STORE_REF = 1;
|
||||
static const int SG_CALL_REF = 2;
|
||||
|
||||
static const unsigned int SG_DepOrderArray[][3] = {
|
||||
{ SchedGraphEdge::NonDataDep,
|
||||
SchedGraphEdge::AntiDep,
|
||||
SchedGraphEdge::AntiDep },
|
||||
{ SchedGraphEdge::TrueDep,
|
||||
SchedGraphEdge::OutputDep,
|
||||
SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
|
||||
{ SchedGraphEdge::TrueDep,
|
||||
SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
|
||||
SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
|
||||
| SchedGraphEdge::OutputDep }
|
||||
};
|
||||
|
||||
|
||||
// Add a dependence edge between every pair of machine load/store/call
|
||||
// instructions, where at least one is a store or a call.
|
||||
// Use latency 1 just to ensure that memory operations are ordered;
|
||||
// latency does not otherwise matter (true dependences enforce that).
|
||||
//
|
||||
void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec,
|
||||
const TargetMachine& target) {
|
||||
const TargetInstrInfo& mii = *target.getInstrInfo();
|
||||
|
||||
// Instructions in memNodeVec are in execution order within the basic block,
|
||||
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
|
||||
//
|
||||
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) {
|
||||
MachineOpCode fromOpCode = memNodeVec[im]->getOpcode();
|
||||
int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF
|
||||
: (mii.isLoad(fromOpCode)? SG_LOAD_REF
|
||||
: SG_STORE_REF));
|
||||
for (unsigned jm=im+1; jm < NM; jm++) {
|
||||
MachineOpCode toOpCode = memNodeVec[jm]->getOpcode();
|
||||
int toType = (mii.isCall(toOpCode)? SG_CALL_REF
|
||||
: (mii.isLoad(toOpCode)? SG_LOAD_REF
|
||||
: SG_STORE_REF));
|
||||
|
||||
if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
|
||||
(void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
|
||||
SchedGraphEdge::MemoryDep,
|
||||
SG_DepOrderArray[fromType][toType], 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add edges from/to CC reg instrs to/from call instrs.
|
||||
// Essentially this prevents anything that sets or uses a CC reg from being
|
||||
// reordered w.r.t. a call.
|
||||
// Use a latency of 0 because we only need to prevent out-of-order issue,
|
||||
// like with control dependences.
|
||||
//
|
||||
void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec,
|
||||
const TargetMachine& target) {
|
||||
const TargetInstrInfo& mii = *target.getInstrInfo();
|
||||
|
||||
// Instructions in memNodeVec are in execution order within the basic block,
|
||||
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
|
||||
//
|
||||
for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++)
|
||||
if (mii.isCall(callDepNodeVec[ic]->getOpcode())) {
|
||||
// Add SG_CALL_REF edges from all preds to this instruction.
|
||||
for (unsigned jc=0; jc < ic; jc++)
|
||||
(void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic],
|
||||
SchedGraphEdge::MachineRegister,
|
||||
MachineIntRegsRID, 0);
|
||||
|
||||
// And do the same from this instruction to all successors.
|
||||
for (unsigned jc=ic+1; jc < NC; jc++)
|
||||
(void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc],
|
||||
SchedGraphEdge::MachineRegister,
|
||||
MachineIntRegsRID, 0);
|
||||
}
|
||||
|
||||
#ifdef CALL_DEP_NODE_VEC_CANNOT_WORK
|
||||
// Find the call instruction nodes and put them in a vector.
|
||||
std::vector<SchedGraphNode*> callNodeVec;
|
||||
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
|
||||
if (mii.isCall(memNodeVec[im]->getOpcode()))
|
||||
callNodeVec.push_back(memNodeVec[im]);
|
||||
|
||||
// Now walk the entire basic block, looking for CC instructions *and*
|
||||
// call instructions, and keep track of the order of the instructions.
|
||||
// Use the call node vec to quickly find earlier and later call nodes
|
||||
// relative to the current CC instruction.
|
||||
//
|
||||
int lastCallNodeIdx = -1;
|
||||
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
|
||||
if (mii.isCall(bbMvec[i]->getOpcode())) {
|
||||
++lastCallNodeIdx;
|
||||
for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
|
||||
if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
|
||||
break;
|
||||
assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
|
||||
}
|
||||
else if (mii.isCCInstr(bbMvec[i]->getOpcode())) {
|
||||
// Add incoming/outgoing edges from/to preceding/later calls
|
||||
SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
|
||||
int j=0;
|
||||
for ( ; j <= lastCallNodeIdx; j++)
|
||||
(void) new SchedGraphEdge(callNodeVec[j], ccNode,
|
||||
MachineCCRegsRID, 0);
|
||||
for ( ; j < (int) callNodeVec.size(); j++)
|
||||
(void) new SchedGraphEdge(ccNode, callNodeVec[j],
|
||||
MachineCCRegsRID, 0);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
|
||||
const TargetMachine& target) {
|
||||
// This code assumes that two registers with different numbers are
|
||||
// not aliased!
|
||||
//
|
||||
for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
|
||||
I != regToRefVecMap.end(); ++I) {
|
||||
int regNum = (*I).first;
|
||||
RefVec& regRefVec = (*I).second;
|
||||
|
||||
// regRefVec is ordered by control flow order in the basic block
|
||||
for (unsigned i=0; i < regRefVec.size(); ++i) {
|
||||
SchedGraphNode* node = regRefVec[i].first;
|
||||
unsigned int opNum = regRefVec[i].second;
|
||||
const MachineOperand& mop =
|
||||
node->getMachineInstr()->getExplOrImplOperand(opNum);
|
||||
bool isDef = mop.isDef() && !mop.isUse();
|
||||
bool isDefAndUse = mop.isDef() && mop.isUse();
|
||||
|
||||
for (unsigned p=0; p < i; ++p) {
|
||||
SchedGraphNode* prevNode = regRefVec[p].first;
|
||||
if (prevNode != node) {
|
||||
unsigned int prevOpNum = regRefVec[p].second;
|
||||
const MachineOperand& prevMop =
|
||||
prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum);
|
||||
bool prevIsDef = prevMop.isDef() && !prevMop.isUse();
|
||||
bool prevIsDefAndUse = prevMop.isDef() && prevMop.isUse();
|
||||
if (isDef) {
|
||||
if (prevIsDef)
|
||||
new SchedGraphEdge(prevNode, node, regNum,
|
||||
SchedGraphEdge::OutputDep);
|
||||
if (!prevIsDef || prevIsDefAndUse)
|
||||
new SchedGraphEdge(prevNode, node, regNum,
|
||||
SchedGraphEdge::AntiDep);
|
||||
}
|
||||
|
||||
if (prevIsDef)
|
||||
if (!isDef || isDefAndUse)
|
||||
new SchedGraphEdge(prevNode, node, regNum,
|
||||
SchedGraphEdge::TrueDep);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Adds dependences to/from refNode from/to all other defs
|
||||
// in the basic block. refNode may be a use, a def, or both.
|
||||
// We do not consider other uses because we are not building use-use deps.
|
||||
//
|
||||
void SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
|
||||
const RefVec& defVec,
|
||||
const Value* defValue,
|
||||
bool refNodeIsDef,
|
||||
bool refNodeIsUse,
|
||||
const TargetMachine& target) {
|
||||
// Add true or output dep edges from all def nodes before refNode in BB.
|
||||
// Add anti or output dep edges to all def nodes after refNode.
|
||||
for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) {
|
||||
if ((*I).first == refNode)
|
||||
continue; // Dont add any self-loops
|
||||
|
||||
if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) {
|
||||
// (*).first is before refNode
|
||||
if (refNodeIsDef && !refNodeIsUse)
|
||||
(void) new SchedGraphEdge((*I).first, refNode, defValue,
|
||||
SchedGraphEdge::OutputDep);
|
||||
if (refNodeIsUse)
|
||||
(void) new SchedGraphEdge((*I).first, refNode, defValue,
|
||||
SchedGraphEdge::TrueDep);
|
||||
} else {
|
||||
// (*).first is after refNode
|
||||
if (refNodeIsDef && !refNodeIsUse)
|
||||
(void) new SchedGraphEdge(refNode, (*I).first, defValue,
|
||||
SchedGraphEdge::OutputDep);
|
||||
if (refNodeIsUse)
|
||||
(void) new SchedGraphEdge(refNode, (*I).first, defValue,
|
||||
SchedGraphEdge::AntiDep);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
|
||||
const ValueToDefVecMap& valueToDefVecMap,
|
||||
const TargetMachine& target) {
|
||||
SchedGraphNode* node = getGraphNodeForInstr(&MI);
|
||||
if (node == NULL)
|
||||
return;
|
||||
|
||||
// Add edges for all operands of the machine instruction.
|
||||
//
|
||||
for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) {
|
||||
switch (MI.getOperand(i).getType()) {
|
||||
case MachineOperand::MO_VirtualRegister:
|
||||
case MachineOperand::MO_CCRegister:
|
||||
if (const Value* srcI = MI.getOperand(i).getVRegValue()) {
|
||||
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
|
||||
if (I != valueToDefVecMap.end())
|
||||
addEdgesForValue(node, I->second, srcI,
|
||||
MI.getOperand(i).isDef(), MI.getOperand(i).isUse(),
|
||||
target);
|
||||
}
|
||||
break;
|
||||
|
||||
case MachineOperand::MO_MachineRegister:
|
||||
break;
|
||||
|
||||
case MachineOperand::MO_SignExtendedImmed:
|
||||
case MachineOperand::MO_UnextendedImmed:
|
||||
case MachineOperand::MO_PCRelativeDisp:
|
||||
case MachineOperand::MO_ConstantPoolIndex:
|
||||
break; // nothing to do for immediate fields
|
||||
|
||||
default:
|
||||
assert(0 && "Unknown machine operand type in SchedGraph builder");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Add edges for values implicitly used by the machine instruction.
|
||||
// Examples include function arguments to a Call instructions or the return
|
||||
// value of a Ret instruction.
|
||||
//
|
||||
for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
|
||||
if (MI.getImplicitOp(i).isUse())
|
||||
if (const Value* srcI = MI.getImplicitRef(i)) {
|
||||
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
|
||||
if (I != valueToDefVecMap.end())
|
||||
addEdgesForValue(node, I->second, srcI,
|
||||
MI.getImplicitOp(i).isDef(),
|
||||
MI.getImplicitOp(i).isUse(), target);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
|
||||
SchedGraphNode* node,
|
||||
std::vector<SchedGraphNode*>& memNodeVec,
|
||||
std::vector<SchedGraphNode*>& callDepNodeVec,
|
||||
RegToRefVecMap& regToRefVecMap,
|
||||
ValueToDefVecMap& valueToDefVecMap) {
|
||||
const TargetInstrInfo& mii = *target.getInstrInfo();
|
||||
|
||||
MachineOpCode opCode = node->getOpcode();
|
||||
|
||||
if (mii.isCall(opCode) || mii.isCCInstr(opCode))
|
||||
callDepNodeVec.push_back(node);
|
||||
|
||||
if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
|
||||
memNodeVec.push_back(node);
|
||||
|
||||
// Collect the register references and value defs. for explicit operands
|
||||
//
|
||||
const MachineInstr& MI = *node->getMachineInstr();
|
||||
for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) {
|
||||
const MachineOperand& mop = MI.getOperand(i);
|
||||
|
||||
// if this references a register other than the hardwired
|
||||
// "zero" register, record the reference.
|
||||
if (mop.hasAllocatedReg()) {
|
||||
unsigned regNum = mop.getReg();
|
||||
|
||||
// If this is not a dummy zero register, record the reference in order
|
||||
if (regNum != target.getRegInfo()->getZeroRegNum())
|
||||
regToRefVecMap[mop.getReg()]
|
||||
.push_back(std::make_pair(node, i));
|
||||
|
||||
// If this is a volatile register, add the instruction to callDepVec
|
||||
// (only if the node is not already on the callDepVec!)
|
||||
if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node)
|
||||
{
|
||||
unsigned rcid;
|
||||
int regInClass = target.getRegInfo()->getClassRegNum(regNum, rcid);
|
||||
if (target.getRegInfo()->getMachineRegClass(rcid)
|
||||
->isRegVolatile(regInClass))
|
||||
callDepNodeVec.push_back(node);
|
||||
}
|
||||
|
||||
continue; // nothing more to do
|
||||
}
|
||||
|
||||
// ignore all other non-def operands
|
||||
if (!MI.getOperand(i).isDef())
|
||||
continue;
|
||||
|
||||
// We must be defining a value.
|
||||
assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
|
||||
mop.getType() == MachineOperand::MO_CCRegister)
|
||||
&& "Do not expect any other kind of operand to be defined!");
|
||||
assert(mop.getVRegValue() != NULL && "Null value being defined?");
|
||||
|
||||
valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i));
|
||||
}
|
||||
|
||||
//
|
||||
// Collect value defs. for implicit operands. They may have allocated
|
||||
// physical registers also.
|
||||
//
|
||||
for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) {
|
||||
const MachineOperand& mop = MI.getImplicitOp(i);
|
||||
if (mop.hasAllocatedReg()) {
|
||||
unsigned regNum = mop.getReg();
|
||||
if (regNum != target.getRegInfo()->getZeroRegNum())
|
||||
regToRefVecMap[mop.getReg()]
|
||||
.push_back(std::make_pair(node, i + MI.getNumOperands()));
|
||||
continue; // nothing more to do
|
||||
}
|
||||
|
||||
if (mop.isDef()) {
|
||||
assert(MI.getImplicitRef(i) != NULL && "Null value being defined?");
|
||||
valueToDefVecMap[MI.getImplicitRef(i)].push_back(
|
||||
std::make_pair(node, -i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SchedGraph::buildNodesForBB(const TargetMachine& target,
|
||||
MachineBasicBlock& MBB,
|
||||
std::vector<SchedGraphNode*>& memNodeVec,
|
||||
std::vector<SchedGraphNode*>& callDepNodeVec,
|
||||
RegToRefVecMap& regToRefVecMap,
|
||||
ValueToDefVecMap& valueToDefVecMap) {
|
||||
const TargetInstrInfo& mii = *target.getInstrInfo();
|
||||
|
||||
// Build graph nodes for each VM instruction and gather def/use info.
|
||||
// Do both those together in a single pass over all machine instructions.
|
||||
unsigned i = 0;
|
||||
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
|
||||
++I, ++i)
|
||||
if (I->getOpcode() != V9::PHI) {
|
||||
SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
|
||||
noteGraphNodeForInstr(I, node);
|
||||
|
||||
// Remember all register references and value defs
|
||||
findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec,
|
||||
regToRefVecMap, valueToDefVecMap);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SchedGraph::buildGraph(const TargetMachine& target) {
|
||||
// Use this data structure to note all machine operands that compute
|
||||
// ordinary LLVM values. These must be computed defs (i.e., instructions).
|
||||
// Note that there may be multiple machine instructions that define
|
||||
// each Value.
|
||||
ValueToDefVecMap valueToDefVecMap;
|
||||
|
||||
// Use this data structure to note all memory instructions.
|
||||
// We use this to add memory dependence edges without a second full walk.
|
||||
std::vector<SchedGraphNode*> memNodeVec;
|
||||
|
||||
// Use this data structure to note all instructions that access physical
|
||||
// registers that can be modified by a call (including call instructions)
|
||||
std::vector<SchedGraphNode*> callDepNodeVec;
|
||||
|
||||
// Use this data structure to note any uses or definitions of
|
||||
// machine registers so we can add edges for those later without
|
||||
// extra passes over the nodes.
|
||||
// The vector holds an ordered list of references to the machine reg,
|
||||
// ordered according to control-flow order. This only works for a
|
||||
// single basic block, hence the assertion. Each reference is identified
|
||||
// by the pair: <node, operand-number>.
|
||||
//
|
||||
RegToRefVecMap regToRefVecMap;
|
||||
|
||||
// Make a dummy root node. We'll add edges to the real roots later.
|
||||
graphRoot = new SchedGraphNode(0, NULL, -1, target);
|
||||
graphLeaf = new SchedGraphNode(1, NULL, -1, target);
|
||||
|
||||
//----------------------------------------------------------------
|
||||
// First add nodes for all the machine instructions in the basic block
|
||||
// because this greatly simplifies identifying which edges to add.
|
||||
// Do this one VM instruction at a time since the SchedGraphNode needs that.
|
||||
// Also, remember the load/store instructions to add memory deps later.
|
||||
//----------------------------------------------------------------
|
||||
|
||||
buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec,
|
||||
regToRefVecMap, valueToDefVecMap);
|
||||
|
||||
//----------------------------------------------------------------
|
||||
// Now add edges for the following (all are incoming edges except (4)):
|
||||
// (1) operands of the machine instruction, including hidden operands
|
||||
// (2) machine register dependences
|
||||
// (3) memory load/store dependences
|
||||
// (3) other resource dependences for the machine instruction, if any
|
||||
// (4) output dependences when multiple machine instructions define the
|
||||
// same value; all must have been generated from a single VM instrn
|
||||
// (5) control dependences to branch instructions generated for the
|
||||
// terminator instruction of the BB. Because of delay slots and
|
||||
// 2-way conditional branches, multiple CD edges are needed
|
||||
// (see addCDEdges for details).
|
||||
// Also, note any uses or defs of machine registers.
|
||||
//
|
||||
//----------------------------------------------------------------
|
||||
|
||||
// First, add edges to the terminator instruction of the basic block.
|
||||
this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
|
||||
|
||||
// Then add memory dep edges: store->load, load->store, and store->store.
|
||||
// Call instructions are treated as both load and store.
|
||||
this->addMemEdges(memNodeVec, target);
|
||||
|
||||
// Then add edges between call instructions and CC set/use instructions
|
||||
this->addCallDepEdges(callDepNodeVec, target);
|
||||
|
||||
// Then add incoming def-use (SSA) edges for each machine instruction.
|
||||
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
|
||||
addEdgesForInstruction(*I, valueToDefVecMap, target);
|
||||
|
||||
// Then add edges for dependences on machine registers
|
||||
this->addMachineRegEdges(regToRefVecMap, target);
|
||||
|
||||
// Finally, add edges from the dummy root and to dummy leaf
|
||||
this->addDummyEdges();
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// class SchedGraphSet
|
||||
//
|
||||
SchedGraphSet::SchedGraphSet(const Function* _function,
|
||||
const TargetMachine& target) :
|
||||
function(_function) {
|
||||
buildGraphsForMethod(function, target);
|
||||
}
|
||||
|
||||
SchedGraphSet::~SchedGraphSet() {
|
||||
// delete all the graphs
|
||||
for(iterator I = begin(), E = end(); I != E; ++I)
|
||||
delete *I; // destructor is a friend
|
||||
}
|
||||
|
||||
|
||||
void SchedGraphSet::dump() const {
|
||||
std::cerr << "======== Sched graphs for function `" << function->getName()
|
||||
<< "' ========\n\n";
|
||||
|
||||
for (const_iterator I=begin(); I != end(); ++I)
|
||||
(*I)->dump();
|
||||
|
||||
std::cerr << "\n====== End graphs for function `" << function->getName()
|
||||
<< "' ========\n\n";
|
||||
}
|
||||
|
||||
|
||||
void SchedGraphSet::buildGraphsForMethod(const Function *F,
|
||||
const TargetMachine& target) {
|
||||
MachineFunction &MF = MachineFunction::get(F);
|
||||
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
||||
addGraph(new SchedGraph(*I, target));
|
||||
}
|
||||
|
||||
|
||||
void SchedGraphEdge::print(std::ostream &os) const {
|
||||
os << "edge [" << src->getNodeId() << "] -> ["
|
||||
<< sink->getNodeId() << "] : ";
|
||||
|
||||
switch(depType) {
|
||||
case SchedGraphEdge::CtrlDep:
|
||||
os<< "Control Dep";
|
||||
break;
|
||||
case SchedGraphEdge::ValueDep:
|
||||
os<< "Reg Value " << *val;
|
||||
break;
|
||||
case SchedGraphEdge::MemoryDep:
|
||||
os<< "Memory Dep";
|
||||
break;
|
||||
case SchedGraphEdge::MachineRegister:
|
||||
os<< "Reg " << machineRegNum;
|
||||
break;
|
||||
case SchedGraphEdge::MachineResource:
|
||||
os<<"Resource "<< resourceId;
|
||||
break;
|
||||
default:
|
||||
assert(0);
|
||||
break;
|
||||
}
|
||||
|
||||
os << " : delay = " << minDelay << "\n";
|
||||
}
|
||||
|
||||
void SchedGraphNode::print(std::ostream &os) const {
|
||||
os << std::string(8, ' ')
|
||||
<< "Node " << ID << " : "
|
||||
<< "latency = " << latency << "\n" << std::string(12, ' ');
|
||||
|
||||
if (getMachineInstr() == NULL)
|
||||
os << "(Dummy node)\n";
|
||||
else {
|
||||
os << *getMachineInstr() << "\n" << std::string(12, ' ');
|
||||
os << inEdges.size() << " Incoming Edges:\n";
|
||||
for (unsigned i=0, N = inEdges.size(); i < N; i++)
|
||||
os << std::string(16, ' ') << *inEdges[i];
|
||||
|
||||
os << std::string(12, ' ') << outEdges.size()
|
||||
<< " Outgoing Edges:\n";
|
||||
for (unsigned i=0, N= outEdges.size(); i < N; i++)
|
||||
os << std::string(16, ' ') << *outEdges[i];
|
||||
}
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,262 +0,0 @@
|
||||
//===-- SchedGraph.h - Scheduling Graph -------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This is a scheduling graph based on SSA graph plus extra dependence edges
|
||||
// capturing dependences due to machine resources (machine registers, CC
|
||||
// registers, and any others).
|
||||
//
|
||||
// This graph tries to leverage the SSA graph as much as possible, but captures
|
||||
// the extra dependences through a common interface.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_SCHEDGRAPH_H
|
||||
#define LLVM_CODEGEN_SCHEDGRAPH_H
|
||||
|
||||
#include "llvm/CodeGen/SchedGraphCommon.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/ADT/hash_map"
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class RegToRefVecMap;
|
||||
class ValueToDefVecMap;
|
||||
class RefVec;
|
||||
|
||||
class SchedGraphNode : public SchedGraphNodeCommon {
|
||||
|
||||
MachineBasicBlock *MBB;
|
||||
const MachineInstr *MI;
|
||||
|
||||
|
||||
SchedGraphNode(unsigned nodeId, MachineBasicBlock *mbb, int indexInBB,
|
||||
const TargetMachine& Target);
|
||||
~SchedGraphNode();
|
||||
|
||||
friend class SchedGraph; // give access for ctor and dtor
|
||||
friend class SchedGraphEdge; // give access for adding edges
|
||||
|
||||
public:
|
||||
|
||||
// Accessor methods
|
||||
const MachineInstr* getMachineInstr() const { return MI; }
|
||||
const MachineOpCode getOpcode() const { return MI->getOpcode(); }
|
||||
bool isDummyNode() const { return (MI == NULL); }
|
||||
MachineBasicBlock &getMachineBasicBlock() const { return *MBB; }
|
||||
|
||||
void print(std::ostream &os) const;
|
||||
};
|
||||
|
||||
class SchedGraph : public SchedGraphCommon {
|
||||
MachineBasicBlock &MBB;
|
||||
hash_map<const MachineInstr*, SchedGraphNode*> GraphMap;
|
||||
|
||||
public:
|
||||
typedef hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator iterator;
|
||||
typedef hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator const_iterator;
|
||||
|
||||
MachineBasicBlock& getBasicBlock() const{return MBB;}
|
||||
const unsigned int getNumNodes() const { return GraphMap.size()+2; }
|
||||
SchedGraphNode* getGraphNodeForInstr(const MachineInstr* MI) const {
|
||||
const_iterator onePair = find(MI);
|
||||
return (onePair != end())? onePair->second : NULL;
|
||||
}
|
||||
|
||||
// Debugging support
|
||||
void dump() const;
|
||||
|
||||
protected:
|
||||
SchedGraph(MachineBasicBlock& mbb, const TargetMachine& TM);
|
||||
~SchedGraph();
|
||||
|
||||
// Unordered iterators.
|
||||
// Return values is pair<const MachineIntr*,SchedGraphNode*>.
|
||||
//
|
||||
hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator begin() const {
|
||||
return GraphMap.begin();
|
||||
}
|
||||
hash_map<const MachineInstr*, SchedGraphNode*>::const_iterator end() const {
|
||||
return GraphMap.end();
|
||||
}
|
||||
|
||||
unsigned size() { return GraphMap.size(); }
|
||||
iterator find(const MachineInstr *MI) const { return GraphMap.find(MI); }
|
||||
|
||||
SchedGraphNode *&operator[](const MachineInstr *MI) {
|
||||
return GraphMap[MI];
|
||||
}
|
||||
|
||||
private:
|
||||
friend class SchedGraphSet; // give access to ctor
|
||||
|
||||
inline void noteGraphNodeForInstr (const MachineInstr* minstr,
|
||||
SchedGraphNode* node) {
|
||||
assert((*this)[minstr] == NULL);
|
||||
(*this)[minstr] = node;
|
||||
}
|
||||
|
||||
//
|
||||
// Graph builder
|
||||
//
|
||||
void buildGraph(const TargetMachine& target);
|
||||
|
||||
void buildNodesForBB(const TargetMachine& target,MachineBasicBlock &MBB,
|
||||
std::vector<SchedGraphNode*>& memNV,
|
||||
std::vector<SchedGraphNode*>& callNV,
|
||||
RegToRefVecMap& regToRefVecMap,
|
||||
ValueToDefVecMap& valueToDefVecMap);
|
||||
|
||||
|
||||
void findDefUseInfoAtInstr(const TargetMachine& target, SchedGraphNode* node,
|
||||
std::vector<SchedGraphNode*>& memNV,
|
||||
std::vector<SchedGraphNode*>& callNV,
|
||||
RegToRefVecMap& regToRefVecMap,
|
||||
ValueToDefVecMap& valueToDefVecMap);
|
||||
|
||||
void addEdgesForInstruction(const MachineInstr& minstr,
|
||||
const ValueToDefVecMap& valueToDefVecMap,
|
||||
const TargetMachine& target);
|
||||
|
||||
void addCDEdges(const TerminatorInst* term, const TargetMachine& target);
|
||||
|
||||
void addMemEdges(const std::vector<SchedGraphNode*>& memNod,
|
||||
const TargetMachine& target);
|
||||
|
||||
void addCallCCEdges(const std::vector<SchedGraphNode*>& memNod,
|
||||
MachineBasicBlock& bbMvec,
|
||||
const TargetMachine& target);
|
||||
|
||||
void addCallDepEdges(const std::vector<SchedGraphNode*>& callNV,
|
||||
const TargetMachine& target);
|
||||
|
||||
void addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
|
||||
const TargetMachine& target);
|
||||
|
||||
void addEdgesForValue(SchedGraphNode* refNode, const RefVec& defVec,
|
||||
const Value* defValue, bool refNodeIsDef,
|
||||
bool refNodeIsDefAndUse,
|
||||
const TargetMachine& target);
|
||||
|
||||
void addDummyEdges();
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
class SchedGraphSet {
|
||||
const Function* function;
|
||||
std::vector<SchedGraph*> Graphs;
|
||||
|
||||
// Graph builder
|
||||
void buildGraphsForMethod(const Function *F, const TargetMachine& target);
|
||||
|
||||
inline void addGraph(SchedGraph* graph) {
|
||||
assert(graph != NULL);
|
||||
Graphs.push_back(graph);
|
||||
}
|
||||
|
||||
public:
|
||||
SchedGraphSet(const Function *function, const TargetMachine& target);
|
||||
~SchedGraphSet();
|
||||
|
||||
//iterators
|
||||
typedef std::vector<SchedGraph*>::const_iterator iterator;
|
||||
typedef std::vector<SchedGraph*>::const_iterator const_iterator;
|
||||
|
||||
std::vector<SchedGraph*>::const_iterator begin() const { return Graphs.begin(); }
|
||||
std::vector<SchedGraph*>::const_iterator end() const { return Graphs.end(); }
|
||||
|
||||
// Debugging support
|
||||
void dump() const;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
//
|
||||
// sg_pred_iterator
|
||||
// sg_pred_const_iterator
|
||||
//
|
||||
typedef SGPredIterator<SchedGraphNode, SchedGraphEdge, SchedGraphNode::iterator>
|
||||
sg_pred_iterator;
|
||||
typedef SGPredIterator<const SchedGraphNode, const SchedGraphEdge,SchedGraphNode::const_iterator>
|
||||
sg_pred_const_iterator;
|
||||
|
||||
inline sg_pred_iterator pred_begin(SchedGraphNode *N) {
|
||||
return sg_pred_iterator(N->beginInEdges());
|
||||
}
|
||||
inline sg_pred_iterator pred_end(SchedGraphNode *N) {
|
||||
return sg_pred_iterator(N->endInEdges());
|
||||
}
|
||||
inline sg_pred_const_iterator pred_begin(const SchedGraphNode *N) {
|
||||
return sg_pred_const_iterator(N->beginInEdges());
|
||||
}
|
||||
inline sg_pred_const_iterator pred_end(const SchedGraphNode *N) {
|
||||
return sg_pred_const_iterator(N->endInEdges());
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// sg_succ_iterator
|
||||
// sg_succ_const_iterator
|
||||
//
|
||||
typedef SGSuccIterator<SchedGraphNode, SchedGraphEdge, SchedGraphNode::iterator>
|
||||
sg_succ_iterator;
|
||||
typedef SGSuccIterator<const SchedGraphNode, const SchedGraphEdge,SchedGraphNode::const_iterator>
|
||||
sg_succ_const_iterator;
|
||||
|
||||
inline sg_succ_iterator succ_begin(SchedGraphNode *N) {
|
||||
return sg_succ_iterator(N->beginOutEdges());
|
||||
}
|
||||
inline sg_succ_iterator succ_end(SchedGraphNode *N) {
|
||||
return sg_succ_iterator(N->endOutEdges());
|
||||
}
|
||||
inline sg_succ_const_iterator succ_begin(const SchedGraphNode *N) {
|
||||
return sg_succ_const_iterator(N->beginOutEdges());
|
||||
}
|
||||
inline sg_succ_const_iterator succ_end(const SchedGraphNode *N) {
|
||||
return sg_succ_const_iterator(N->endOutEdges());
|
||||
}
|
||||
|
||||
// Provide specializations of GraphTraits to be able to use graph iterators on
|
||||
// the scheduling graph!
|
||||
//
|
||||
template <> struct GraphTraits<SchedGraph*> {
|
||||
typedef SchedGraphNode NodeType;
|
||||
typedef sg_succ_iterator ChildIteratorType;
|
||||
|
||||
static inline NodeType *getEntryNode(SchedGraph *SG) { return (NodeType*)SG->getRoot(); }
|
||||
static inline ChildIteratorType child_begin(NodeType *N) {
|
||||
return succ_begin(N);
|
||||
}
|
||||
static inline ChildIteratorType child_end(NodeType *N) {
|
||||
return succ_end(N);
|
||||
}
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<const SchedGraph*> {
|
||||
typedef const SchedGraphNode NodeType;
|
||||
typedef sg_succ_const_iterator ChildIteratorType;
|
||||
|
||||
static inline NodeType *getEntryNode(const SchedGraph *SG) {
|
||||
return (NodeType*)SG->getRoot();
|
||||
}
|
||||
static inline ChildIteratorType child_begin(NodeType *N) {
|
||||
return succ_begin(N);
|
||||
}
|
||||
static inline ChildIteratorType child_end(NodeType *N) {
|
||||
return succ_end(N);
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -1,180 +0,0 @@
|
||||
//===- SchedGraphCommon.cpp - Scheduling Graphs Base Class- ---------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Scheduling graph base class that contains common information for SchedGraph
|
||||
// and ModuloSchedGraph scheduling graphs.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/SchedGraphCommon.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class SchedGraphCommon;
|
||||
|
||||
//
|
||||
// class SchedGraphEdge
|
||||
//
|
||||
SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
|
||||
SchedGraphNodeCommon* _sink,
|
||||
SchedGraphEdgeDepType _depType,
|
||||
unsigned int _depOrderType,
|
||||
int _minDelay)
|
||||
: src(_src), sink(_sink), depType(_depType), depOrderType(_depOrderType),
|
||||
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), val(NULL) {
|
||||
|
||||
iteDiff=0;
|
||||
assert(src != sink && "Self-loop in scheduling graph!");
|
||||
src->addOutEdge(this);
|
||||
sink->addInEdge(this);
|
||||
}
|
||||
|
||||
SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
|
||||
SchedGraphNodeCommon* _sink,
|
||||
const Value* _val,
|
||||
unsigned int _depOrderType,
|
||||
int _minDelay)
|
||||
: src(_src), sink(_sink), depType(ValueDep), depOrderType(_depOrderType),
|
||||
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), val(_val) {
|
||||
iteDiff=0;
|
||||
assert(src != sink && "Self-loop in scheduling graph!");
|
||||
src->addOutEdge(this);
|
||||
sink->addInEdge(this);
|
||||
}
|
||||
|
||||
SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
|
||||
SchedGraphNodeCommon* _sink,
|
||||
unsigned int _regNum,
|
||||
unsigned int _depOrderType,
|
||||
int _minDelay)
|
||||
: src(_src), sink(_sink), depType(MachineRegister),
|
||||
depOrderType(_depOrderType),
|
||||
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
|
||||
machineRegNum(_regNum) {
|
||||
iteDiff=0;
|
||||
assert(src != sink && "Self-loop in scheduling graph!");
|
||||
src->addOutEdge(this);
|
||||
sink->addInEdge(this);
|
||||
}
|
||||
|
||||
SchedGraphEdge::SchedGraphEdge(SchedGraphNodeCommon* _src,
|
||||
SchedGraphNodeCommon* _sink,
|
||||
ResourceId _resourceId,
|
||||
int _minDelay)
|
||||
: src(_src), sink(_sink), depType(MachineResource), depOrderType(NonDataDep),
|
||||
minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
|
||||
resourceId(_resourceId) {
|
||||
iteDiff=0;
|
||||
assert(src != sink && "Self-loop in scheduling graph!");
|
||||
src->addOutEdge(this);
|
||||
sink->addInEdge(this);
|
||||
}
|
||||
|
||||
|
||||
void SchedGraphEdge::dump(int indent) const {
|
||||
std::cerr << std::string(indent*2, ' ') << *this;
|
||||
}
|
||||
|
||||
/*dtor*/
|
||||
SchedGraphNodeCommon::~SchedGraphNodeCommon()
|
||||
{
|
||||
// for each node, delete its out-edges
|
||||
std::for_each(beginOutEdges(), endOutEdges(),
|
||||
deleter<SchedGraphEdge>);
|
||||
}
|
||||
|
||||
void SchedGraphNodeCommon::removeInEdge(const SchedGraphEdge* edge) {
|
||||
assert(edge->getSink() == this);
|
||||
|
||||
for (iterator I = beginInEdges(); I != endInEdges(); ++I)
|
||||
if ((*I) == edge) {
|
||||
inEdges.erase(I);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void SchedGraphNodeCommon::removeOutEdge(const SchedGraphEdge* edge) {
|
||||
assert(edge->getSrc() == this);
|
||||
|
||||
for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
|
||||
if ((*I) == edge) {
|
||||
outEdges.erase(I);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void SchedGraphNodeCommon::dump(int indent) const {
|
||||
std::cerr << std::string(indent*2, ' ') << *this;
|
||||
}
|
||||
|
||||
//class SchedGraphCommon
|
||||
|
||||
SchedGraphCommon::~SchedGraphCommon() {
|
||||
delete graphRoot;
|
||||
delete graphLeaf;
|
||||
}
|
||||
|
||||
|
||||
void SchedGraphCommon::eraseIncomingEdges(SchedGraphNodeCommon* node,
|
||||
bool addDummyEdges) {
|
||||
// Delete and disconnect all in-edges for the node
|
||||
for (SchedGraphNodeCommon::iterator I = node->beginInEdges();
|
||||
I != node->endInEdges(); ++I) {
|
||||
SchedGraphNodeCommon* srcNode = (*I)->getSrc();
|
||||
srcNode->removeOutEdge(*I);
|
||||
delete *I;
|
||||
|
||||
if (addDummyEdges && srcNode != getRoot() &&
|
||||
srcNode->beginOutEdges() == srcNode->endOutEdges()) {
|
||||
|
||||
// srcNode has no more out edges, so add an edge to dummy EXIT node
|
||||
assert(node != getLeaf() && "Adding edge that was just removed?");
|
||||
(void) new SchedGraphEdge(srcNode, getLeaf(),
|
||||
SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
}
|
||||
}
|
||||
|
||||
node->inEdges.clear();
|
||||
}
|
||||
|
||||
void SchedGraphCommon::eraseOutgoingEdges(SchedGraphNodeCommon* node,
|
||||
bool addDummyEdges) {
|
||||
// Delete and disconnect all out-edges for the node
|
||||
for (SchedGraphNodeCommon::iterator I = node->beginOutEdges();
|
||||
I != node->endOutEdges(); ++I) {
|
||||
SchedGraphNodeCommon* sinkNode = (*I)->getSink();
|
||||
sinkNode->removeInEdge(*I);
|
||||
delete *I;
|
||||
|
||||
if (addDummyEdges &&
|
||||
sinkNode != getLeaf() &&
|
||||
sinkNode->beginInEdges() == sinkNode->endInEdges()) {
|
||||
|
||||
//sinkNode has no more in edges, so add an edge from dummy ENTRY node
|
||||
assert(node != getRoot() && "Adding edge that was just removed?");
|
||||
(void) new SchedGraphEdge(getRoot(), sinkNode,
|
||||
SchedGraphEdge::CtrlDep,
|
||||
SchedGraphEdge::NonDataDep, 0);
|
||||
}
|
||||
}
|
||||
|
||||
node->outEdges.clear();
|
||||
}
|
||||
|
||||
void SchedGraphCommon::eraseIncidentEdges(SchedGraphNodeCommon* node,
|
||||
bool addDummyEdges) {
|
||||
this->eraseIncomingEdges(node, addDummyEdges);
|
||||
this->eraseOutgoingEdges(node, addDummyEdges);
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,284 +0,0 @@
|
||||
//===-- SchedPriorities.h - Encapsulate scheduling heuristics -------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Strategy:
|
||||
// Priority ordering rules:
|
||||
// (1) Max delay, which is the order of the heap S.candsAsHeap.
|
||||
// (2) Instruction that frees up a register.
|
||||
// (3) Instruction that has the maximum number of dependent instructions.
|
||||
// Note that rules 2 and 3 are only used if issue conflicts prevent
|
||||
// choosing a higher priority instruction by rule 1.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "SchedPriorities.h"
|
||||
#include "../../Target/SparcV9/LiveVar/FunctionLiveVarInfo.h"
|
||||
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/ADT/PostOrderIterator.h"
|
||||
#include <iostream>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd) {
|
||||
return os << "Delay for node " << nd->node->getNodeId()
|
||||
<< " = " << (long)nd->delay << "\n";
|
||||
}
|
||||
|
||||
|
||||
SchedPriorities::SchedPriorities(const Function *, const SchedGraph *G,
|
||||
FunctionLiveVarInfo &LVI)
|
||||
: curTime(0), graph(G), methodLiveVarInfo(LVI),
|
||||
nodeDelayVec(G->getNumNodes(), INVALID_LATENCY), // make errors obvious
|
||||
earliestReadyTimeForNode(G->getNumNodes(), 0),
|
||||
earliestReadyTime(0),
|
||||
nextToTry(candsAsHeap.begin())
|
||||
{
|
||||
computeDelays(graph);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::initialize() {
|
||||
initializeReadyHeap(graph);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::computeDelays(const SchedGraph* graph) {
|
||||
po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph);
|
||||
for ( ; poIter != poEnd; ++poIter) {
|
||||
const SchedGraphNode* node = *poIter;
|
||||
cycles_t nodeDelay;
|
||||
if (node->beginOutEdges() == node->endOutEdges())
|
||||
nodeDelay = node->getLatency();
|
||||
else {
|
||||
// Iterate over the out-edges of the node to compute delay
|
||||
nodeDelay = 0;
|
||||
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
|
||||
E != node->endOutEdges(); ++E) {
|
||||
cycles_t sinkDelay = getNodeDelay((SchedGraphNode*)(*E)->getSink());
|
||||
nodeDelay = std::max(nodeDelay, sinkDelay + (*E)->getMinDelay());
|
||||
}
|
||||
}
|
||||
getNodeDelayRef(node) = nodeDelay;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::initializeReadyHeap(const SchedGraph* graph) {
|
||||
const SchedGraphNode* graphRoot = (const SchedGraphNode*)graph->getRoot();
|
||||
assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root");
|
||||
|
||||
// Insert immediate successors of dummy root, which are the actual roots
|
||||
sg_succ_const_iterator SEnd = succ_end(graphRoot);
|
||||
for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S)
|
||||
this->insertReady(*S);
|
||||
|
||||
#undef TEST_HEAP_CONVERSION
|
||||
#ifdef TEST_HEAP_CONVERSION
|
||||
std::cerr << "Before heap conversion:\n";
|
||||
copy(candsAsHeap.begin(), candsAsHeap.end(),
|
||||
ostream_iterator<NodeDelayPair*>(std::cerr,"\n"));
|
||||
#endif
|
||||
|
||||
candsAsHeap.makeHeap();
|
||||
|
||||
nextToTry = candsAsHeap.begin();
|
||||
|
||||
#ifdef TEST_HEAP_CONVERSION
|
||||
std::cerr << "After heap conversion:\n";
|
||||
copy(candsAsHeap.begin(), candsAsHeap.end(),
|
||||
ostream_iterator<NodeDelayPair*>(std::cerr,"\n"));
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
SchedPriorities::insertReady(const SchedGraphNode* node) {
|
||||
candsAsHeap.insert(node, nodeDelayVec[node->getNodeId()]);
|
||||
candsAsSet.insert(node);
|
||||
mcands.clear(); // ensure reset choices is called before any more choices
|
||||
earliestReadyTime = std::min(earliestReadyTime,
|
||||
getEarliestReadyTimeForNode(node));
|
||||
|
||||
if (SchedDebugLevel >= Sched_PrintSchedTrace) {
|
||||
std::cerr << " Node " << node->getNodeId() << " will be ready in Cycle "
|
||||
<< getEarliestReadyTimeForNode(node) << "; "
|
||||
<< " Delay = " <<(long)getNodeDelay(node) << "; Instruction: \n"
|
||||
<< " " << *node->getMachineInstr() << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
SchedPriorities::issuedReadyNodeAt(cycles_t curTime,
|
||||
const SchedGraphNode* node) {
|
||||
candsAsHeap.removeNode(node);
|
||||
candsAsSet.erase(node);
|
||||
mcands.clear(); // ensure reset choices is called before any more choices
|
||||
|
||||
if (earliestReadyTime == getEarliestReadyTimeForNode(node)) {
|
||||
// earliestReadyTime may have been due to this node, so recompute it
|
||||
earliestReadyTime = HUGE_LATENCY;
|
||||
for (NodeHeap::const_iterator I=candsAsHeap.begin();
|
||||
I != candsAsHeap.end(); ++I)
|
||||
if (candsAsHeap.getNode(I)) {
|
||||
earliestReadyTime =
|
||||
std::min(earliestReadyTime,
|
||||
getEarliestReadyTimeForNode(candsAsHeap.getNode(I)));
|
||||
}
|
||||
}
|
||||
|
||||
// Now update ready times for successors
|
||||
for (SchedGraphNode::const_iterator E=node->beginOutEdges();
|
||||
E != node->endOutEdges(); ++E) {
|
||||
cycles_t& etime =
|
||||
getEarliestReadyTimeForNodeRef((SchedGraphNode*)(*E)->getSink());
|
||||
etime = std::max(etime, curTime + (*E)->getMinDelay());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------
|
||||
// Priority ordering rules:
|
||||
// (1) Max delay, which is the order of the heap S.candsAsHeap.
|
||||
// (2) Instruction that frees up a register.
|
||||
// (3) Instruction that has the maximum number of dependent instructions.
|
||||
// Note that rules 2 and 3 are only used if issue conflicts prevent
|
||||
// choosing a higher priority instruction by rule 1.
|
||||
//----------------------------------------------------------------------
|
||||
|
||||
inline int
|
||||
SchedPriorities::chooseByRule1(std::vector<candIndex>& mcands) {
|
||||
return (mcands.size() == 1)? 0 // only one choice exists so take it
|
||||
: -1; // -1 indicates multiple choices
|
||||
}
|
||||
|
||||
inline int
|
||||
SchedPriorities::chooseByRule2(std::vector<candIndex>& mcands) {
|
||||
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
|
||||
for (unsigned i=0, N = mcands.size(); i < N; i++)
|
||||
if (instructionHasLastUse(methodLiveVarInfo,
|
||||
candsAsHeap.getNode(mcands[i])))
|
||||
return i;
|
||||
return -1;
|
||||
}
|
||||
|
||||
inline int
|
||||
SchedPriorities::chooseByRule3(std::vector<candIndex>& mcands) {
|
||||
assert(mcands.size() >= 1 && "Should have at least one candidate here.");
|
||||
int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges();
|
||||
int indexWithMaxUses = 0;
|
||||
for (unsigned i=1, N = mcands.size(); i < N; i++) {
|
||||
int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges();
|
||||
if (numUses > maxUses) {
|
||||
maxUses = numUses;
|
||||
indexWithMaxUses = i;
|
||||
}
|
||||
}
|
||||
return indexWithMaxUses;
|
||||
}
|
||||
|
||||
const SchedGraphNode*
|
||||
SchedPriorities::getNextHighest(const SchedulingManager& S,
|
||||
cycles_t curTime) {
|
||||
int nextIdx = -1;
|
||||
const SchedGraphNode* nextChoice = NULL;
|
||||
|
||||
if (mcands.size() == 0)
|
||||
findSetWithMaxDelay(mcands, S);
|
||||
|
||||
while (nextIdx < 0 && mcands.size() > 0) {
|
||||
nextIdx = chooseByRule1(mcands); // rule 1
|
||||
|
||||
if (nextIdx == -1)
|
||||
nextIdx = chooseByRule2(mcands); // rule 2
|
||||
|
||||
if (nextIdx == -1)
|
||||
nextIdx = chooseByRule3(mcands); // rule 3
|
||||
|
||||
if (nextIdx == -1)
|
||||
nextIdx = 0; // default to first choice by delays
|
||||
|
||||
// We have found the next best candidate. Check if it ready in
|
||||
// the current cycle, and if it is feasible.
|
||||
// If not, remove it from mcands and continue. Refill mcands if
|
||||
// it becomes empty.
|
||||
nextChoice = candsAsHeap.getNode(mcands[nextIdx]);
|
||||
if (getEarliestReadyTimeForNode(nextChoice) > curTime
|
||||
|| ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpcode()))
|
||||
{
|
||||
mcands.erase(mcands.begin() + nextIdx);
|
||||
nextIdx = -1;
|
||||
if (mcands.size() == 0)
|
||||
findSetWithMaxDelay(mcands, S);
|
||||
}
|
||||
}
|
||||
|
||||
if (nextIdx >= 0) {
|
||||
mcands.erase(mcands.begin() + nextIdx);
|
||||
return nextChoice;
|
||||
} else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
SchedPriorities::findSetWithMaxDelay(std::vector<candIndex>& mcands,
|
||||
const SchedulingManager& S)
|
||||
{
|
||||
if (mcands.size() == 0 && nextToTry != candsAsHeap.end())
|
||||
{ // out of choices at current maximum delay;
|
||||
// put nodes with next highest delay in mcands
|
||||
candIndex next = nextToTry;
|
||||
cycles_t maxDelay = candsAsHeap.getDelay(next);
|
||||
for (; next != candsAsHeap.end()
|
||||
&& candsAsHeap.getDelay(next) == maxDelay; ++next)
|
||||
mcands.push_back(next);
|
||||
|
||||
nextToTry = next;
|
||||
|
||||
if (SchedDebugLevel >= Sched_PrintSchedTrace) {
|
||||
std::cerr << " Cycle " << (long)getTime() << ": "
|
||||
<< "Next highest delay = " << (long)maxDelay << " : "
|
||||
<< mcands.size() << " Nodes with this delay: ";
|
||||
for (unsigned i=0; i < mcands.size(); i++)
|
||||
std::cerr << candsAsHeap.getNode(mcands[i])->getNodeId() << ", ";
|
||||
std::cerr << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool
|
||||
SchedPriorities::instructionHasLastUse(FunctionLiveVarInfo &LVI,
|
||||
const SchedGraphNode* graphNode) {
|
||||
const MachineInstr *MI = graphNode->getMachineInstr();
|
||||
|
||||
hash_map<const MachineInstr*, bool>::const_iterator
|
||||
ui = lastUseMap.find(MI);
|
||||
if (ui != lastUseMap.end())
|
||||
return ui->second;
|
||||
|
||||
// else check if instruction is a last use and save it in the hash_map
|
||||
bool hasLastUse = false;
|
||||
const BasicBlock* bb = graphNode->getMachineBasicBlock().getBasicBlock();
|
||||
const ValueSet &LVs = LVI.getLiveVarSetBeforeMInst(MI, bb);
|
||||
|
||||
for (MachineInstr::const_val_op_iterator OI = MI->begin(), OE = MI->end();
|
||||
OI != OE; ++OI)
|
||||
if (!LVs.count(*OI)) {
|
||||
hasLastUse = true;
|
||||
break;
|
||||
}
|
||||
|
||||
return lastUseMap[MI] = hasLastUse;
|
||||
}
|
||||
|
||||
} // End llvm namespace
|
@ -1,221 +0,0 @@
|
||||
//===-- SchedPriorities.h - Encapsulate scheduling heuristics --*- C++ -*--===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Strategy:
|
||||
// Priority ordering rules:
|
||||
// (1) Max delay, which is the order of the heap S.candsAsHeap.
|
||||
// (2) Instruction that frees up a register.
|
||||
// (3) Instruction that has the maximum number of dependent instructions.
|
||||
// Note that rules 2 and 3 are only used if issue conflicts prevent
|
||||
// choosing a higher priority instruction by rule 1.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_SCHEDPRIORITIES_H
|
||||
#define LLVM_CODEGEN_SCHEDPRIORITIES_H
|
||||
|
||||
#include "SchedGraph.h"
|
||||
#include "llvm/CodeGen/InstrScheduling.h"
|
||||
#include "llvm/Target/TargetSchedInfo.h"
|
||||
#include "llvm/ADT/hash_set"
|
||||
#include <list>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Function;
|
||||
class MachineInstr;
|
||||
class SchedulingManager;
|
||||
class FunctionLiveVarInfo;
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Debug option levels for instruction scheduling
|
||||
|
||||
enum SchedDebugLevel_t {
|
||||
Sched_NoDebugInfo,
|
||||
Sched_Disable,
|
||||
Sched_PrintMachineCode,
|
||||
Sched_PrintSchedTrace,
|
||||
Sched_PrintSchedGraphs,
|
||||
};
|
||||
|
||||
extern SchedDebugLevel_t SchedDebugLevel;
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
// Function: instrIsFeasible
|
||||
//
|
||||
// Purpose:
|
||||
// Used by the priority analysis to filter out instructions
|
||||
// that are not feasible to issue in the current cycle.
|
||||
// Should only be used during schedule construction..
|
||||
//---------------------------------------------------------------------------
|
||||
|
||||
bool instrIsFeasible(const SchedulingManager &S, MachineOpCode opCode);
|
||||
|
||||
|
||||
|
||||
struct NodeDelayPair {
|
||||
const SchedGraphNode* node;
|
||||
cycles_t delay;
|
||||
NodeDelayPair(const SchedGraphNode* n, cycles_t d) : node(n), delay(d) {}
|
||||
inline bool operator<(const NodeDelayPair& np) { return delay < np.delay; }
|
||||
};
|
||||
|
||||
inline bool
|
||||
NDPLessThan(const NodeDelayPair* np1, const NodeDelayPair* np2)
|
||||
{
|
||||
return np1->delay < np2->delay;
|
||||
}
|
||||
|
||||
class NodeHeap : public std::list<NodeDelayPair*> {
|
||||
NodeHeap(const NodeHeap&); // DO NOT IMPLEMENT
|
||||
void operator=(const NodeHeap&); // DO NOT IMPLEMENT
|
||||
public:
|
||||
typedef std::list<NodeDelayPair*>::iterator iterator;
|
||||
typedef std::list<NodeDelayPair*>::const_iterator const_iterator;
|
||||
|
||||
public:
|
||||
NodeHeap() : _size(0) {}
|
||||
|
||||
inline unsigned size() const { return _size; }
|
||||
|
||||
const SchedGraphNode* getNode (const_iterator i) const { return (*i)->node; }
|
||||
cycles_t getDelay(const_iterator i) const { return (*i)->delay;}
|
||||
|
||||
inline void makeHeap() {
|
||||
// make_heap(begin(), end(), NDPLessThan);
|
||||
}
|
||||
|
||||
inline iterator findNode(const SchedGraphNode* node) {
|
||||
for (iterator I=begin(); I != end(); ++I)
|
||||
if (getNode(I) == node)
|
||||
return I;
|
||||
return end();
|
||||
}
|
||||
|
||||
inline void removeNode (const SchedGraphNode* node) {
|
||||
iterator ndpPtr = findNode(node);
|
||||
if (ndpPtr != end())
|
||||
{
|
||||
delete *ndpPtr;
|
||||
erase(ndpPtr);
|
||||
--_size;
|
||||
}
|
||||
};
|
||||
|
||||
void insert(const SchedGraphNode* node, cycles_t delay) {
|
||||
NodeDelayPair* ndp = new NodeDelayPair(node, delay);
|
||||
if (_size == 0 || front()->delay < delay)
|
||||
push_front(ndp);
|
||||
else
|
||||
{
|
||||
iterator I=begin();
|
||||
for ( ; I != end() && getDelay(I) >= delay; ++I)
|
||||
;
|
||||
std::list<NodeDelayPair*>::insert(I, ndp);
|
||||
}
|
||||
_size++;
|
||||
}
|
||||
private:
|
||||
unsigned int _size;
|
||||
};
|
||||
|
||||
|
||||
class SchedPriorities {
|
||||
SchedPriorities(const SchedPriorities&); // DO NOT IMPLEMENT
|
||||
void operator=(const SchedPriorities &); // DO NOT IMPLEMENT
|
||||
public:
|
||||
SchedPriorities(const Function *F, const SchedGraph *G,
|
||||
FunctionLiveVarInfo &LVI);
|
||||
|
||||
|
||||
// This must be called before scheduling begins.
|
||||
void initialize ();
|
||||
|
||||
cycles_t getTime () const { return curTime; }
|
||||
cycles_t getEarliestReadyTime () const { return earliestReadyTime; }
|
||||
unsigned getNumReady () const { return candsAsHeap.size(); }
|
||||
bool nodeIsReady (const SchedGraphNode* node) const {
|
||||
return (candsAsSet.find(node) != candsAsSet.end());
|
||||
}
|
||||
|
||||
void issuedReadyNodeAt (cycles_t curTime,
|
||||
const SchedGraphNode* node);
|
||||
|
||||
void insertReady (const SchedGraphNode* node);
|
||||
|
||||
void updateTime (cycles_t /*unused*/);
|
||||
|
||||
const SchedGraphNode* getNextHighest (const SchedulingManager& S,
|
||||
cycles_t curTime);
|
||||
// choose next highest priority instr
|
||||
|
||||
private:
|
||||
typedef NodeHeap::iterator candIndex;
|
||||
|
||||
private:
|
||||
cycles_t curTime;
|
||||
const SchedGraph* graph;
|
||||
FunctionLiveVarInfo &methodLiveVarInfo;
|
||||
hash_map<const MachineInstr*, bool> lastUseMap;
|
||||
std::vector<cycles_t> nodeDelayVec;
|
||||
std::vector<cycles_t> nodeEarliestUseVec;
|
||||
std::vector<cycles_t> earliestReadyTimeForNode;
|
||||
cycles_t earliestReadyTime;
|
||||
NodeHeap candsAsHeap; // candidate nodes, ready to go
|
||||
hash_set<const SchedGraphNode*> candsAsSet; //same entries as candsAsHeap,
|
||||
// but as set for fast lookup
|
||||
std::vector<candIndex> mcands; // holds pointers into cands
|
||||
candIndex nextToTry; // next cand after the last
|
||||
// one tried in this cycle
|
||||
|
||||
int chooseByRule1 (std::vector<candIndex>& mcands);
|
||||
int chooseByRule2 (std::vector<candIndex>& mcands);
|
||||
int chooseByRule3 (std::vector<candIndex>& mcands);
|
||||
|
||||
void findSetWithMaxDelay (std::vector<candIndex>& mcands,
|
||||
const SchedulingManager& S);
|
||||
|
||||
void computeDelays (const SchedGraph* graph);
|
||||
|
||||
void initializeReadyHeap (const SchedGraph* graph);
|
||||
|
||||
bool instructionHasLastUse (FunctionLiveVarInfo& LVI,
|
||||
const SchedGraphNode* graphNode);
|
||||
|
||||
// NOTE: The next two return references to the actual vector entries.
|
||||
// Use the following two if you don't need to modify the value.
|
||||
cycles_t& getNodeDelayRef (const SchedGraphNode* node) {
|
||||
assert(node->getNodeId() < nodeDelayVec.size());
|
||||
return nodeDelayVec[node->getNodeId()];
|
||||
}
|
||||
cycles_t& getEarliestReadyTimeForNodeRef (const SchedGraphNode* node) {
|
||||
assert(node->getNodeId() < earliestReadyTimeForNode.size());
|
||||
return earliestReadyTimeForNode[node->getNodeId()];
|
||||
}
|
||||
|
||||
cycles_t getNodeDelay (const SchedGraphNode* node) const {
|
||||
return ((SchedPriorities*) this)->getNodeDelayRef(node);
|
||||
}
|
||||
cycles_t getEarliestReadyTimeForNode(const SchedGraphNode* node) const {
|
||||
return ((SchedPriorities*) this)->getEarliestReadyTimeForNodeRef(node);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
inline void SchedPriorities::updateTime(cycles_t c) {
|
||||
curTime = c;
|
||||
nextToTry = candsAsHeap.begin();
|
||||
mcands.clear();
|
||||
}
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd);
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user