mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 07:34:06 +00:00
Make some improvements to the GC docs.
Also, drop reference to the half-baked runtime interface. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65802 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
6da385e07f
commit
c9c0b59402
@ -20,19 +20,15 @@
|
||||
<ol>
|
||||
<li><a href="#introduction">Introduction</a>
|
||||
<ul>
|
||||
<li><a href="#feature">GC features provided and algorithms
|
||||
supported</a></li>
|
||||
<li><a href="#feature">Goals and non-goals</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><a href="#usage">Using the collectors</a>
|
||||
<li><a href="#quickstart">Getting started</a>
|
||||
<ul>
|
||||
<li><a href="#shadow-stack">ShadowStack -
|
||||
A highly portable collector</a></li>
|
||||
<li><a href="#semispace">SemiSpace -
|
||||
A simple copying collector runtime</a></li>
|
||||
<li><a href="#ocaml">Ocaml -
|
||||
An Objective Caml-compatible collector</a></li>
|
||||
<li><a href="quickstart-compiler">In your compiler</a></li>
|
||||
<li><a href="quickstart-runtime">In your runtime library</a></li>
|
||||
<li><a href="shadow-stack">About the shadow stack</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
@ -51,20 +47,7 @@
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><a href="#runtime">Recommended runtime interface</a>
|
||||
<ul>
|
||||
<li><a href="#initialize">Garbage collector startup and
|
||||
initialization</a></li>
|
||||
<li><a href="#allocate">Allocating memory from the GC</a></li>
|
||||
<li><a href="#explicit">Explicit invocation of the garbage
|
||||
collector</a></li>
|
||||
<li><a href="#traceroots">Tracing GC pointers from the program
|
||||
stack</a></li>
|
||||
<li><a href="#staticroots">Tracing GC pointers from static roots</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
|
||||
<li><a href="#plugin">Implementing a collector plugin</a>
|
||||
<li><a href="#plugin">Compiler plugin interface</a>
|
||||
<ul>
|
||||
<li><a href="#collector-algos">Overview of available features</a></li>
|
||||
<li><a href="#stack-map">Computing stack maps</a></li>
|
||||
@ -145,7 +128,7 @@ support accurate garbage collection.</p>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="feature">GC features provided and algorithms supported</a>
|
||||
<a name="feature">Goals and non-goals</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
@ -168,174 +151,234 @@ collector models. For instance, the intrinsics permit:</p>
|
||||
support a broad class of garbage collected languages including Scheme, ML, Java,
|
||||
C#, Perl, Python, Lua, Ruby, other scripting languages, and more.</p>
|
||||
|
||||
<p>However, LLVM does not itself implement a garbage collector. This is because
|
||||
collectors are tightly coupled to object models, and LLVM is agnostic to object
|
||||
models. Since LLVM is agnostic to object models, it would be inappropriate for
|
||||
LLVM to dictate any particular collector. Instead, LLVM provides a framework for
|
||||
garbage collector implementations in two manners:</p>
|
||||
<p>However, LLVM does not itself provide a garbage collector—this should
|
||||
be part of your language's runtime library. LLVM provides a framework for
|
||||
compile time <a href="#plugin">code generation plugins</a>. The role of these
|
||||
plugins is to generate code and data structures which conforms to the <em>binary
|
||||
interface</em> specified by the <em>runtime library</em>. This is similar to the
|
||||
relationship between LLVM and DWARF debugging info, for example. The
|
||||
difference primarily lies in the lack of an established standard in the domain
|
||||
of garbage collection—thus the plugins.</p>
|
||||
|
||||
<p>The aspects of the binary interface with which LLVM's GC support is
|
||||
concerned are:</p>
|
||||
|
||||
<ul>
|
||||
<li><b>At compile time</b> with <a href="#plugin">collector plugins</a> for
|
||||
the compiler. Collector plugins have ready access to important garbage
|
||||
collector algorithms. Leveraging these tools, it is straightforward to
|
||||
emit type-accurate stack maps for your runtime in as little as ~100 lines of
|
||||
C++ code.</li>
|
||||
|
||||
<li><b>At runtime</b> with <a href="#runtime">suggested runtime
|
||||
interfaces</a>, which allow front-end compilers to support a range of
|
||||
collection runtimes.</li>
|
||||
<li>Creation of GC-safe points within code where collection is allowed to
|
||||
execute safely.</li>
|
||||
<li>Definition of a stack frame descriptor. For each safe point in the code,
|
||||
a frame descriptor maps where object references are located within the
|
||||
frame so that the GC may traverse and perhaps update them.</li>
|
||||
<li>Write barriers when storing object references within the heap. These
|
||||
are commonly used to optimize incremental scans.</li>
|
||||
<li>Emission of read barriers when loading object references. These are
|
||||
useful for interoperating with concurrent collectors.</li>
|
||||
</ul>
|
||||
|
||||
<p>There are additional areas that LLVM does not directly address:</p>
|
||||
|
||||
<ul>
|
||||
<li>Registration of global roots.</li>
|
||||
<li>Discovery or registration of stack frame descriptors.</li>
|
||||
<li>The functions used by the program to allocate memory, trigger a
|
||||
collection, etc.</li>
|
||||
</ul>
|
||||
|
||||
<p>In general, LLVM's support for GC does not include features which can be
|
||||
adequately addressed with other features of the IR and does not specify a
|
||||
particular binary interface. On the plus side, this means that you should be
|
||||
able to integrate LLVM with an existing runtime. On the other hand, it leaves
|
||||
a lot of work for the developer of a novel language. However, it's easy to get
|
||||
started quickly and scale up to a more sophisticated implementation as your
|
||||
compiler matures.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="usage">Using the collectors</a>
|
||||
<a name="quickstart">Getting started</a>
|
||||
</div>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>In general, using a collector implies:</p>
|
||||
<p>Using a GC with LLVM implies many things, for example:</p>
|
||||
|
||||
<ul>
|
||||
<li>Emitting compatible code, including initialization in the main
|
||||
program if necessary.</li>
|
||||
<li>Loading a compiler plugin if the collector is not statically linked with
|
||||
your compiler. For <tt>llc</tt>, use the <tt>-load</tt> option.</li>
|
||||
<li>Selecting the collection algorithm by applying the <tt>gc "..."</tt>
|
||||
attribute to your garbage collected functions, or equivalently with
|
||||
the <tt>setGC</tt> method.</li>
|
||||
<li>Linking your final executable with the garbage collector runtime.</li>
|
||||
<li>Write a runtime library or find an existing one which implements a GC
|
||||
heap.<ol>
|
||||
<li>Implement a memory allocator.</li>
|
||||
<li>Design a binary interface for frame descriptors, used to identify
|
||||
references within a stack frame.*</li>
|
||||
<li>Implement a stack crawler to discover functions on the call stack.*</li>
|
||||
<li>Implement a registry for global roots.</li>
|
||||
<li>Design a binary interface for type descriptors, used to map references
|
||||
within heap objects.</li>
|
||||
<li>Implement a collection routine bringing together all of the above.</li>
|
||||
</ol></li>
|
||||
<li>Emit compatible code from your compiler.<ul>
|
||||
<li>Initialization in the main function.</li>
|
||||
<li>Use the <tt>gc "..."</tt> attribute to enable GC code generation
|
||||
(or <tt>F.setGC("...")</tt>).</li>
|
||||
<li>Use <tt>@llvm.gcroot</tt> to mark stack roots.</li>
|
||||
<li>Use <tt>@llvm.gcread</tt> and/or <tt>@llvm.gcwrite</tt> to
|
||||
manipulate GC references, if necessary.</li>
|
||||
<li>Allocate memory using the GC allocation routine provided by the
|
||||
runtime library.</li>
|
||||
<li>Generate type descriptors according to your runtime's binary interface.</li>
|
||||
</ul></li>
|
||||
<li>Write a compiler plugin to interface LLVM with the runtime library.*<ul>
|
||||
<li>Lower <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> to appropriate
|
||||
code sequences.*</li>
|
||||
<li>Generate stack maps according to the runtime's binary interface.*</li>
|
||||
</ul></li>
|
||||
<li>Load the plugin into the compiler. Use <tt>llc -load</tt> or link the
|
||||
plugin statically with your language's compiler.*</li>
|
||||
<li>Link program executables with the runtime.</li>
|
||||
</ul>
|
||||
|
||||
<p>This table summarizes the available runtimes.</p>
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<th>Collector</th>
|
||||
<th><tt>gc</tt> attribute</th>
|
||||
<th>Linkage</th>
|
||||
<th><tt>gcroot</tt></th>
|
||||
<th><tt>gcread</tt></th>
|
||||
<th><tt>gcwrite</tt></th>
|
||||
</tr>
|
||||
<tr valign="baseline">
|
||||
<td><a href="#semispace">SemiSpace</a></td>
|
||||
<td><tt>gc "shadow-stack"</tt></td>
|
||||
<td>TODO FIXME</td>
|
||||
<td>required</td>
|
||||
<td>optional</td>
|
||||
<td>optional</td>
|
||||
</tr>
|
||||
<tr valign="baseline">
|
||||
<td><a href="#ocaml">Ocaml</a></td>
|
||||
<td><tt>gc "ocaml"</tt></td>
|
||||
<td><i>provided by ocamlopt</i></td>
|
||||
<td>required</td>
|
||||
<td>optional</td>
|
||||
<td>optional</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<p>The sections for <a href="#intrinsics">Collection intrinsics</a> and
|
||||
<a href="#runtime">Recommended runtime interface</a> detail the interfaces that
|
||||
collectors may require user programs to utilize.</p>
|
||||
<p>To help with several of these tasks (those indicated with a *), LLVM
|
||||
includes a highly portable, built-in ShadowStack code generator. It is compiled
|
||||
into <tt>llc</tt> and works even with the interpreter and C backends.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="shadow-stack">ShadowStack - A highly portable collector</a>
|
||||
<a name="quickstart-compiler">In your compiler</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
Collector *llvm::createShadowStackCollector();
|
||||
</tt></div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>The ShadowStack backend is invoked with the <tt>gc "shadow-stack"</tt>
|
||||
function attribute.
|
||||
Unlike many collectors which rely on a cooperative code generator to generate
|
||||
stack maps, this algorithm carefully maintains a linked list of stack root
|
||||
descriptors [<a href="#henderson02">Henderson2002</a>]. This so-called "shadow
|
||||
stack" mirrors the machine stack. Maintaining this data structure is slower
|
||||
than using stack maps, but has a significant portability advantage because it
|
||||
requires no special support from the target code generator.</p>
|
||||
<p>To turn the shadow stack on for your functions, first call:</p>
|
||||
|
||||
<p>The ShadowStack collector does not use read or write barriers, so the user
|
||||
program may use <tt>load</tt> and <tt>store</tt> instead of <tt>llvm.gcread</tt>
|
||||
and <tt>llvm.gcwrite</tt>.</p>
|
||||
<div class="doc_code"><pre
|
||||
>F.setGC("shadow-stack");</pre></div>
|
||||
|
||||
<p>ShadowStack is a code generator plugin only. It must be paired with a
|
||||
compatible runtime.</p>
|
||||
<p>for each function your compiler emits. Since the shadow stack is built into
|
||||
LLVM, you do not need to load a plugin.</p>
|
||||
|
||||
<p>Your compiler must also use <tt>@llvm.gcroot</tt> as documented.
|
||||
Don't forget to create a root for each intermediate value that is generated
|
||||
when evaluating an expression. In <tt>h(f(), g())</tt>, the result of
|
||||
<tt>f()</tt> could easily be collected if evaluating <tt>g()</tt> triggers a
|
||||
collection.</p>
|
||||
|
||||
<p>There's no need to use <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> over
|
||||
plain <tt>load</tt> and <tt>store</tt> for now. You will need them when
|
||||
switching to a more advanced GC.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="semispace">SemiSpace - A simple copying collector runtime</a>
|
||||
<a name="quickstart-runtime">In your runtime</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>The SemiSpace runtime implements the <a href="runtime">suggested
|
||||
runtime interface</a> and is compatible with the ShadowStack backend.</p>
|
||||
<p>The shadow stack doesn't imply a memory allocation algorithm. A semispace
|
||||
collector or building atop <tt>malloc</tt> are great places to start, and can
|
||||
be implemented with very little code.</p>
|
||||
|
||||
<p>SemiSpace is a very simple copying collector. When it starts up, it
|
||||
allocates two blocks of memory for the heap. It uses a simple bump-pointer
|
||||
allocator to allocate memory from the first block until it runs out of space.
|
||||
When it runs out of space, it traces through all of the roots of the program,
|
||||
copying blocks to the other half of the memory space.</p>
|
||||
|
||||
<p>This runtime is highly experimental and has not been used in a real project.
|
||||
Enhancements would be welcomed.</p>
|
||||
<p>When it comes time to collect, however, your runtime needs to traverse the
|
||||
stack roots, and for this it needs to integrate with the shadow stack. Luckily,
|
||||
doing so is very simple. (This code is heavily commented to help you
|
||||
understand the data structure, but there are only 20 lines of meaningful
|
||||
code.)</p>
|
||||
|
||||
</div>
|
||||
|
||||
<div class="doc_code"><pre
|
||||
>/// @brief A constant shadow stack frame descriptor. The compiler emits one of
|
||||
/// these for each function.
|
||||
///
|
||||
/// Storage of metadata values is elided if the %meta parameter to @llvm.gcroot
|
||||
/// is null.
|
||||
struct FrameMap {
|
||||
int32_t NumRoots; //< Number of roots in stack frame.
|
||||
int32_t NumMeta; //< Number of metadata descriptors. May be < NumRoots.
|
||||
const void *Meta[0]; //< Metadata for each root.
|
||||
};
|
||||
|
||||
/// @brief A link in the dynamic shadow stack. One of these is embedded in the
|
||||
/// stack frame of each function on the call stack.
|
||||
struct StackEntry {
|
||||
StackEntry *Next; //< Link to next stack entry (the caller's).
|
||||
const FrameMap *Map; //< Pointer to constant FrameMap.
|
||||
void *Roots[0]; //< Stack roots (in-place array).
|
||||
};
|
||||
|
||||
/// @brief The head of the singly-linked list of StackEntries. Functions push
|
||||
/// and pop onto this in their prologue and epilogue.
|
||||
///
|
||||
/// Since there is only a global list, this technique is not threadsafe.
|
||||
StackEntry *llvm_gc_root_chain;
|
||||
|
||||
/// @brief Calls Visitor(root, meta) for each GC root on the stack.
|
||||
/// root and meta are exactly the values passed to
|
||||
/// <tt>@llvm.gcroot</tt>.
|
||||
///
|
||||
/// Visitor could be a function to recursively mark live objects. Or it
|
||||
/// might copy them to another heap or generation.
|
||||
///
|
||||
/// @param Visitor A function to invoke for every GC root on the stack.
|
||||
void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
|
||||
for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
|
||||
unsigned i = 0;
|
||||
|
||||
// For roots [0, NumMeta), the metadata pointer is in the FrameMap.
|
||||
for (unsigned e = R->Map->NumMeta; i != e; ++i)
|
||||
Visitor(&R->Roots[i], R->Map->Meta[i]);
|
||||
|
||||
// For roots [NumMeta, NumRoots), the metadata pointer is null.
|
||||
for (unsigned e = R->Map->NumRoots; i != e; ++i)
|
||||
Visitor(&R->Roots[i], NULL);
|
||||
}
|
||||
}</pre></div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="ocaml">Ocaml - An Objective Caml-compatible collector</a>
|
||||
<a name="shadow-stack">About the shadow stack</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
Collector *llvm::createOcamlCollector();
|
||||
</tt></div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>The ocaml backend is invoked with the <tt>gc "ocaml"</tt> function attribute.
|
||||
It supports the
|
||||
<a href="http://caml.inria.fr/">Objective Caml</a> language runtime by emitting
|
||||
a type-accurate stack map in the form of an ocaml 3.10.0-compatible frametable.
|
||||
The linkage requirements are satisfied automatically by the <tt>ocamlopt</tt>
|
||||
compiler when linking an executable.</p>
|
||||
<p>Unlike many GC algorithms which rely on a cooperative code generator to
|
||||
generate stack maps, this algorithm carefully maintains a linked list of stack
|
||||
root descriptors [<a href="#henderson02">Henderson2002</a>]. This so-called
|
||||
"shadow stack" mirrors the machine stack. Maintaining this data structure is
|
||||
slower than using stack maps, but has a significant portability advantage
|
||||
because it requires no special support from the target code generator.</p>
|
||||
|
||||
<p>The ocaml collector does not use read or write barriers, so the user program
|
||||
may use <tt>load</tt> and <tt>store</tt> instead of <tt>llvm.gcread</tt> and
|
||||
<tt>llvm.gcwrite</tt>.</p>
|
||||
<p>The tradeoff for this simplicity and portability is:</p>
|
||||
|
||||
<ul>
|
||||
<li>High overhead per function call.</li>
|
||||
<li>Not thread-safe.</li>
|
||||
</ul>
|
||||
|
||||
<p>Still, it's an easy way to get started.</p>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="core">Core support</a><a name="intrinsics"></a>
|
||||
<a name="core">IR features</a><a name="intrinsics"></a>
|
||||
</div>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>This section describes the garbage collection facilities provided by the
|
||||
<a href="LangRef.html">LLVM intermediate representation</a>.</p>
|
||||
<a href="LangRef.html">LLVM intermediate representation</a>. The exact behavior
|
||||
of these IR features is specified by the binary interface implemented by a
|
||||
<a href="#plugin">code generation plugin</a>, not by this document.</p>
|
||||
|
||||
<p>These facilities are limited to those strictly necessary for compilation.
|
||||
They are not intended to be a complete interface to any garbage collector.
|
||||
Notably, heap allocation is not among the supplied primitives. A user program
|
||||
will also need to interface with the runtime, using either the
|
||||
<a href="#runtime">suggested runtime interface</a> or another interface
|
||||
specified by the runtime.</p>
|
||||
<p>These facilities are limited to those strictly necessary; they are not
|
||||
intended to be a complete interface to any garbage collector. A program will
|
||||
need to interface with the GC library using the facilities provided by that
|
||||
program.</p>
|
||||
|
||||
</div>
|
||||
|
||||
@ -345,17 +388,22 @@ specified by the runtime.</p>
|
||||
</div>
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
define <i>ty</i> @<i>name</i>(...) <u>gc "<i>collector</i>"</u> { ...
|
||||
define <i>ty</i> @<i>name</i>(...) <u>gc "<i>name</i>"</u> { ...
|
||||
</tt></div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>The <tt>gc</tt> function attribute is used to specify the desired collector
|
||||
algorithm to the compiler. It is equivalent to specifying the collector name
|
||||
programmatically using the <tt>setGC</tt> method of <tt>Function</tt>.</p>
|
||||
<p>The <tt>gc</tt> function attribute is used to specify the desired GC style
|
||||
to the compiler. Its programmatic equivalent is the <tt>setGC</tt> method of
|
||||
<tt>Function</tt>.</p>
|
||||
|
||||
<p>Specifying the collector on a per-function basis allows LLVM to link together
|
||||
programs that use different garbage collection algorithms.</p>
|
||||
<p>Setting <tt>gc "<i>name</i>"</tt> on a function triggers a search for a
|
||||
matching code generation plugin "<i>name</i>"; it is that plugin which defines
|
||||
the exact nature of the code generated to support GC. If none is found, the
|
||||
compiler will raise an error.</p>
|
||||
|
||||
<p>Specifying the GC style on a per-function basis allows LLVM to link together
|
||||
programs that use different garbage collection algorithms (or none at all).</p>
|
||||
|
||||
</div>
|
||||
|
||||
@ -370,13 +418,31 @@ programs that use different garbage collection algorithms.</p>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM of a pointer
|
||||
variable on the stack. The first argument <b>must</b> be a value referring to an alloca instruction
|
||||
<p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM that a stack
|
||||
variable references an object on the heap and is to be tracked for garbage
|
||||
collection. The exact impact on generated code is specified by a <a
|
||||
href="#plugin">compiler plugin</a>.</p>
|
||||
|
||||
<p>A compiler which uses mem2reg to raise imperative code using <tt>alloca</tt>
|
||||
into SSA form need only add a call to <tt>@llvm.gcroot</tt> for those variables
|
||||
which a pointers into the GC heap.</p>
|
||||
|
||||
<p>It is also important to mark intermediate values with <tt>llvm.gcroot</tt>.
|
||||
For example, consider <tt>h(f(), g())</tt>. Beware leaking the result of
|
||||
<tt>f()</tt> in the case that <tt>g()</tt> triggers a collection.</p>
|
||||
|
||||
<p>The first argument <b>must</b> be a value referring to an alloca instruction
|
||||
or a bitcast of an alloca. The second contains a pointer to metadata that
|
||||
should be associated with the pointer, and <b>must</b> be a constant or global
|
||||
value address. If your target collector uses tags, use a null pointer for
|
||||
metadata.</p>
|
||||
|
||||
<p>The <tt>%metadata</tt> argument can be used to avoid requiring heap objects
|
||||
to have 'isa' pointers or tag bits. [<a href="#appel89">Appel89</a>, <a
|
||||
href="#goldberg91">Goldberg91</a>, <a href="#tolmach94">Tolmach94</a>] If
|
||||
specified, its value will be tracked along with the location of the pointer in
|
||||
the stack frame.</p>
|
||||
|
||||
<p>Consider the following fragment of Java code:</p>
|
||||
|
||||
<pre>
|
||||
@ -449,6 +515,11 @@ for completeness. In this snippet, <tt>%object</tt> is the object pointer, and
|
||||
;; Compute the derived pointer.
|
||||
%derived = getelementptr %object, i32 0, i32 2, i32 %n</pre></blockquote>
|
||||
|
||||
<p>The use of these intrinsics is naturally optional if the target GC does
|
||||
require the corresponding barrier. If so, the GC plugin will replace the
|
||||
intrinsic calls with the corresponding <tt>load</tt> or <tt>store</tt>
|
||||
instruction if they are used.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
@ -464,16 +535,13 @@ void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
|
||||
|
||||
<p>For write barriers, LLVM provides the <tt>llvm.gcwrite</tt> intrinsic
|
||||
function. It has exactly the same semantics as a non-volatile <tt>store</tt> to
|
||||
the derived pointer (the third argument).</p>
|
||||
the derived pointer (the third argument). The exact code generated is specified
|
||||
by a <a href="#plugin">compiler plugin</a>.</p>
|
||||
|
||||
<p>Many important algorithms require write barriers, including generational
|
||||
and concurrent collectors. Additionally, write barriers could be used to
|
||||
implement reference counting.</p>
|
||||
|
||||
<p>The use of this intrinsic is optional if the target collector does use
|
||||
write barriers. If so, the collector will replace it with the corresponding
|
||||
<tt>store</tt>.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
@ -489,124 +557,15 @@ i8* @llvm.gcread(i8* %object, i8** %derived)<br>
|
||||
|
||||
<p>For read barriers, LLVM provides the <tt>llvm.gcread</tt> intrinsic function.
|
||||
It has exactly the same semantics as a non-volatile <tt>load</tt> from the
|
||||
derived pointer (the second argument).</p>
|
||||
derived pointer (the second argument). The exact code generated is specified by
|
||||
a <a href="#plugin">compiler plugin</a>.</p>
|
||||
|
||||
<p>Read barriers are needed by fewer algorithms than write barriers, and may
|
||||
have a greater performance impact since pointer reads are more frequent than
|
||||
writes.</p>
|
||||
|
||||
<p>As with <tt>llvm.gcwrite</tt>, a target collector might not require the use
|
||||
of this intrinsic.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="runtime">Recommended runtime interface</a>
|
||||
</div>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>LLVM specifies the following recommended runtime interface to the garbage
|
||||
collection at runtime. A program should use these interfaces to accomplish the
|
||||
tasks not supported by the intrinsics.</p>
|
||||
|
||||
<p>Unlike the intrinsics, which are integral to LLVM's code generator, there is
|
||||
nothing unique about these interfaces; a front-end compiler and runtime are free
|
||||
to agree to a different specification.</p>
|
||||
|
||||
<p class="doc_warning">Note: This interface is a work in progress.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="initialize">Garbage collector startup and initialization</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
void llvm_gc_initialize(unsigned InitialHeapSize);
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
The <tt>llvm_gc_initialize</tt> function should be called once before any other
|
||||
garbage collection functions are called. This gives the garbage collector the
|
||||
chance to initialize itself and allocate the heap. The initial heap size to
|
||||
allocate should be specified as an argument.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="allocate">Allocating memory from the GC</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
void *llvm_gc_allocate(unsigned Size);
|
||||
</tt></div>
|
||||
|
||||
<p>The <tt>llvm_gc_allocate</tt> function is a global function defined by the
|
||||
garbage collector implementation to allocate memory. It returns a
|
||||
zeroed-out block of memory of the specified size, sufficiently aligned to store
|
||||
any object.</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="explicit">Explicit invocation of the garbage collector</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<div class="doc_code"><tt>
|
||||
void llvm_gc_collect();
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
The <tt>llvm_gc_collect</tt> function is exported by the garbage collector
|
||||
implementations to provide a full collection, even when the heap is not
|
||||
exhausted. This can be used by end-user code as a hint, and may be ignored by
|
||||
the garbage collector.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="traceroots">Tracing GC pointers from the program stack</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
<div class="doc_code"><tt>
|
||||
void llvm_cg_walk_gcroots(void (*FP)(void **Root, void *Meta));
|
||||
</tt></div>
|
||||
|
||||
<p>
|
||||
The <tt>llvm_cg_walk_gcroots</tt> function is a function provided by the code
|
||||
generator that iterates through all of the GC roots on the stack, calling the
|
||||
specified function pointer with each record. For each GC root, the address of
|
||||
the pointer and the meta-data (from the <a
|
||||
href="#gcroot"><tt>llvm.gcroot</tt></a> intrinsic) are provided.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="staticroots">Tracing GC pointers from static roots</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
TODO
|
||||
</div>
|
||||
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="plugin">Implementing a collector plugin</a>
|
||||
@ -628,8 +587,9 @@ might be accomplished in as few as 100 LOC.</p>
|
||||
|
||||
<p>This is not the appropriate place to implement a garbage collected heap or a
|
||||
garbage collector itself. That code should exist in the language's runtime
|
||||
library. The compiler plugin is responsible for generating code which is
|
||||
compatible with that runtime library.</p>
|
||||
library. The compiler plugin is responsible for generating code which
|
||||
conforms to the binary interface defined by library, most essentially the
|
||||
<a href="stack-map">stack map</a>.</p>
|
||||
|
||||
<p>To subclass <tt>llvm::GCStrategy</tt> and register it with the compiler:</p>
|
||||
|
||||
@ -1203,7 +1163,7 @@ yet computed.)</p>
|
||||
|
||||
<p>Since AsmWriter and CodeGen are separate components of LLVM, a separate
|
||||
abstract base class and registry is provided for printing assembly code, the
|
||||
<tt>GCMetadaPrinter</tt> and <tt>GCMetadaPrinterRegistry</tt>. The AsmWriter
|
||||
<tt>GCMetadaPrinter</tt> and <tt>GCMetadataPrinterRegistry</tt>. The AsmWriter
|
||||
will look for such a subclass if the <tt>GCStrategy</tt> sets
|
||||
<tt>UsesMetadata</tt>:</p>
|
||||
|
||||
@ -1337,70 +1297,6 @@ void MyGCPrinter::finishAssembly(std::ostream &OS, AsmPrinter &AP,
|
||||
</div>
|
||||
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="runtime-impl">Implementing a collector runtime</a>
|
||||
</div>
|
||||
<!-- *********************************************************************** -->
|
||||
|
||||
<div class="doc_text">
|
||||
|
||||
<p>Implementing a garbage collector for LLVM is fairly straightforward. The
|
||||
LLVM garbage collectors are provided in a form that makes them easy to link into
|
||||
the language-specific runtime that a language front-end would use. They require
|
||||
functionality from the language-specific runtime to get information about <a
|
||||
href="#gcdescriptors">where pointers are located in heap objects</a>.</p>
|
||||
|
||||
<p>The implementation must include the
|
||||
<a href="#allocate"><tt>llvm_gc_allocate</tt></a> and
|
||||
<a href="#explicit"><tt>llvm_gc_collect</tt></a> functions. To do this, it will
|
||||
probably have to <a href="#traceroots">trace through the roots
|
||||
from the stack</a> and understand the <a href="#gcdescriptors">GC descriptors
|
||||
for heap objects</a>. Luckily, there are some <a href="#usage">example
|
||||
implementations</a> available.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
|
||||
<!-- ======================================================================= -->
|
||||
<div class="doc_subsection">
|
||||
<a name="gcdescriptors">Tracing GC pointers from heap objects</a>
|
||||
</div>
|
||||
|
||||
<div class="doc_text">
|
||||
<p>
|
||||
The three most common ways to keep track of where pointers live in heap objects
|
||||
are (listed in order of space overhead required):</p>
|
||||
|
||||
<ol>
|
||||
<li>In languages with polymorphic objects, pointers from an object header are
|
||||
usually used to identify the GC pointers in the heap object. This is common for
|
||||
object-oriented languages like Self, Smalltalk, Java, or C#.</li>
|
||||
|
||||
<li>If heap objects are not polymorphic, often the "shape" of the heap can be
|
||||
determined from the roots of the heap or from some other meta-data [<a
|
||||
href="#appel89">Appel89</a>, <a href="#goldberg91">Goldberg91</a>, <a
|
||||
href="#tolmach94">Tolmach94</a>]. In this case, the garbage collector can
|
||||
propagate the information around from meta data stored with the roots. This
|
||||
often eliminates the need to have a header on objects in the heap. This is
|
||||
common in the ML family.</li>
|
||||
|
||||
<li>If all heap objects have pointers in the same locations, or pointers can be
|
||||
distinguished just by looking at them (e.g., the low order bit is clear), no
|
||||
book-keeping is needed at all. This is common for Lisp-like languages.</li>
|
||||
</ol>
|
||||
|
||||
<p>The LLVM garbage collectors are capable of supporting all of these styles of
|
||||
language, including ones that mix various implementations. To do this, it
|
||||
allows the source-language to associate meta-data with the <a
|
||||
href="#gcroot">stack roots</a>, and the heap tracing routines can propagate the
|
||||
information. In addition, LLVM allows the front-end to extract GC information
|
||||
in any form from a specific object pointer (this supports situations #1 and #3).
|
||||
</p>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<!-- *********************************************************************** -->
|
||||
<div class="doc_section">
|
||||
<a name="references">References</a>
|
||||
|
Loading…
x
Reference in New Issue
Block a user