Delete unused EmitByteSwap method

Implement mul/div/rem constant expressions


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9424 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner
2003-10-23 17:21:43 +00:00
parent d358e6fed5
commit cadff4477e
2 changed files with 86 additions and 98 deletions

View File

@@ -192,10 +192,6 @@ namespace {
/// ///
void promote32(unsigned targetReg, const ValueRecord &VR); void promote32(unsigned targetReg, const ValueRecord &VR);
/// EmitByteSwap - Byteswap SrcReg into DestReg.
///
void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support. /// constant expression GEP support.
/// ///
@@ -215,6 +211,11 @@ namespace {
Value *Op0, Value *Op1, Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned TargetReg); unsigned OperatorClass, unsigned TargetReg);
void emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator &IP,
unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
const Type *Ty, unsigned TargetReg);
/// emitSetCCOperation - Common code shared between visitSetCondInst and /// emitSetCCOperation - Common code shared between visitSetCondInst and
/// constant expression support. /// constant expression support.
void emitSetCCOperation(MachineBasicBlock *BB, void emitSetCCOperation(MachineBasicBlock *BB,
@@ -355,6 +356,22 @@ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Class, R); Class, R);
return; return;
case Instruction::Mul: {
unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
return;
}
case Instruction::Div:
case Instruction::Rem: {
unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
CE->getOpcode() == Instruction::Div,
CE->getType(), R);
return;
}
case Instruction::SetNE: case Instruction::SetNE:
case Instruction::SetEQ: case Instruction::SetEQ:
case Instruction::SetLT: case Instruction::SetLT:
@@ -1339,21 +1356,30 @@ void ISel::visitMul(BinaryOperator &I) {
/// instructions work differently for signed and unsigned operands. /// instructions work differently for signed and unsigned operands.
/// ///
void ISel::visitDivRem(BinaryOperator &I) { void ISel::visitDivRem(BinaryOperator &I) {
unsigned Class = getClass(I.getType()); unsigned Op0Reg = getReg(I.getOperand(0));
unsigned Op0Reg, Op1Reg, ResultReg = getReg(I); unsigned Op1Reg = getReg(I.getOperand(1));
unsigned ResultReg = getReg(I);
MachineBasicBlock::iterator IP = BB->end();
emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
I.getType(), ResultReg);
}
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator &IP,
unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
const Type *Ty, unsigned ResultReg) {
unsigned Class = getClass(Ty);
switch (Class) { switch (Class) {
case cFP: // Floating point divide case cFP: // Floating point divide
if (I.getOpcode() == Instruction::Div) { if (isDiv) {
Op0Reg = getReg(I.getOperand(0));
Op1Reg = getReg(I.getOperand(1));
BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
} else { // Floating point remainder... } else { // Floating point remainder...
MachineInstr *TheCall = MachineInstr *TheCall =
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
std::vector<ValueRecord> Args; std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(I.getOperand(0))); Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
Args.push_back(ValueRecord(I.getOperand(1))); Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
} }
return; return;
@@ -1361,14 +1387,13 @@ void ISel::visitDivRem(BinaryOperator &I) {
static const char *FnName[] = static const char *FnName[] =
{ "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
unsigned NameIdx = I.getType()->isUnsigned()*2; unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
NameIdx += I.getOpcode() == Instruction::Div;
MachineInstr *TheCall = MachineInstr *TheCall =
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
std::vector<ValueRecord> Args; std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(I.getOperand(0))); Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
Args.push_back(ValueRecord(I.getOperand(1))); Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
return; return;
} }
@@ -1388,17 +1413,16 @@ void ISel::visitDivRem(BinaryOperator &I) {
{ X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
}; };
bool isSigned = I.getType()->isSigned(); bool isSigned = Ty->isSigned();
unsigned Reg = Regs[Class]; unsigned Reg = Regs[Class];
unsigned ExtReg = ExtRegs[Class]; unsigned ExtReg = ExtRegs[Class];
// Put the first operand into one of the A registers... // Put the first operand into one of the A registers...
Op0Reg = getReg(I.getOperand(0));
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg); BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
if (isSigned) { if (isSigned) {
// Emit a sign extension instruction... // Emit a sign extension instruction...
unsigned ShiftResult = makeAnotherReg(I.getType()); unsigned ShiftResult = makeAnotherReg(Ty);
BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31); BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
} else { } else {
@@ -1407,11 +1431,10 @@ void ISel::visitDivRem(BinaryOperator &I) {
} }
// Emit the appropriate divide or remainder instruction... // Emit the appropriate divide or remainder instruction...
Op1Reg = getReg(I.getOperand(1));
BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg); BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
// Figure out which register we want to pick the result out of... // Figure out which register we want to pick the result out of...
unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg; unsigned DestReg = isDiv ? Reg : ExtReg;
// Put the result into the destination register... // Put the result into the destination register...
BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg); BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
@@ -1544,35 +1567,6 @@ void ISel::visitShiftInst(ShiftInst &I) {
} }
/// EmitByteSwap - Byteswap SrcReg into DestReg.
///
void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
// Emit the byte swap instruction...
switch (Class) {
case cByte:
// No byteswap necessary for 8 bit value...
BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
break;
case cInt:
// Use the 32 bit bswap instruction to do a 32 bit swap...
BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
break;
case cShort:
// For 16 bit we have to use an xchg instruction, because there is no
// 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
// into AX to do the xchg.
//
BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
.addReg(X86::AH, MOTy::UseAndDef);
BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
break;
default: assert(0 && "Cannot byteswap this class!");
}
}
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
/// instruction. The load and store instructions are the only place where we /// instruction. The load and store instructions are the only place where we
/// need to worry about the memory layout of the target machine. /// need to worry about the memory layout of the target machine.

View File

@@ -192,10 +192,6 @@ namespace {
/// ///
void promote32(unsigned targetReg, const ValueRecord &VR); void promote32(unsigned targetReg, const ValueRecord &VR);
/// EmitByteSwap - Byteswap SrcReg into DestReg.
///
void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support. /// constant expression GEP support.
/// ///
@@ -215,6 +211,11 @@ namespace {
Value *Op0, Value *Op1, Value *Op0, Value *Op1,
unsigned OperatorClass, unsigned TargetReg); unsigned OperatorClass, unsigned TargetReg);
void emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator &IP,
unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
const Type *Ty, unsigned TargetReg);
/// emitSetCCOperation - Common code shared between visitSetCondInst and /// emitSetCCOperation - Common code shared between visitSetCondInst and
/// constant expression support. /// constant expression support.
void emitSetCCOperation(MachineBasicBlock *BB, void emitSetCCOperation(MachineBasicBlock *BB,
@@ -355,6 +356,22 @@ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Class, R); Class, R);
return; return;
case Instruction::Mul: {
unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
return;
}
case Instruction::Div:
case Instruction::Rem: {
unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
CE->getOpcode() == Instruction::Div,
CE->getType(), R);
return;
}
case Instruction::SetNE: case Instruction::SetNE:
case Instruction::SetEQ: case Instruction::SetEQ:
case Instruction::SetLT: case Instruction::SetLT:
@@ -1339,21 +1356,30 @@ void ISel::visitMul(BinaryOperator &I) {
/// instructions work differently for signed and unsigned operands. /// instructions work differently for signed and unsigned operands.
/// ///
void ISel::visitDivRem(BinaryOperator &I) { void ISel::visitDivRem(BinaryOperator &I) {
unsigned Class = getClass(I.getType()); unsigned Op0Reg = getReg(I.getOperand(0));
unsigned Op0Reg, Op1Reg, ResultReg = getReg(I); unsigned Op1Reg = getReg(I.getOperand(1));
unsigned ResultReg = getReg(I);
MachineBasicBlock::iterator IP = BB->end();
emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
I.getType(), ResultReg);
}
void ISel::emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator &IP,
unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
const Type *Ty, unsigned ResultReg) {
unsigned Class = getClass(Ty);
switch (Class) { switch (Class) {
case cFP: // Floating point divide case cFP: // Floating point divide
if (I.getOpcode() == Instruction::Div) { if (isDiv) {
Op0Reg = getReg(I.getOperand(0));
Op1Reg = getReg(I.getOperand(1));
BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
} else { // Floating point remainder... } else { // Floating point remainder...
MachineInstr *TheCall = MachineInstr *TheCall =
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
std::vector<ValueRecord> Args; std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(I.getOperand(0))); Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
Args.push_back(ValueRecord(I.getOperand(1))); Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
} }
return; return;
@@ -1361,14 +1387,13 @@ void ISel::visitDivRem(BinaryOperator &I) {
static const char *FnName[] = static const char *FnName[] =
{ "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
unsigned NameIdx = I.getType()->isUnsigned()*2; unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
NameIdx += I.getOpcode() == Instruction::Div;
MachineInstr *TheCall = MachineInstr *TheCall =
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
std::vector<ValueRecord> Args; std::vector<ValueRecord> Args;
Args.push_back(ValueRecord(I.getOperand(0))); Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
Args.push_back(ValueRecord(I.getOperand(1))); Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
return; return;
} }
@@ -1388,17 +1413,16 @@ void ISel::visitDivRem(BinaryOperator &I) {
{ X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
}; };
bool isSigned = I.getType()->isSigned(); bool isSigned = Ty->isSigned();
unsigned Reg = Regs[Class]; unsigned Reg = Regs[Class];
unsigned ExtReg = ExtRegs[Class]; unsigned ExtReg = ExtRegs[Class];
// Put the first operand into one of the A registers... // Put the first operand into one of the A registers...
Op0Reg = getReg(I.getOperand(0));
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg); BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
if (isSigned) { if (isSigned) {
// Emit a sign extension instruction... // Emit a sign extension instruction...
unsigned ShiftResult = makeAnotherReg(I.getType()); unsigned ShiftResult = makeAnotherReg(Ty);
BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31); BuildMI(BB, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); BuildMI(BB, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
} else { } else {
@@ -1407,11 +1431,10 @@ void ISel::visitDivRem(BinaryOperator &I) {
} }
// Emit the appropriate divide or remainder instruction... // Emit the appropriate divide or remainder instruction...
Op1Reg = getReg(I.getOperand(1));
BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg); BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
// Figure out which register we want to pick the result out of... // Figure out which register we want to pick the result out of...
unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg; unsigned DestReg = isDiv ? Reg : ExtReg;
// Put the result into the destination register... // Put the result into the destination register...
BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg); BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
@@ -1544,35 +1567,6 @@ void ISel::visitShiftInst(ShiftInst &I) {
} }
/// EmitByteSwap - Byteswap SrcReg into DestReg.
///
void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
// Emit the byte swap instruction...
switch (Class) {
case cByte:
// No byteswap necessary for 8 bit value...
BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
break;
case cInt:
// Use the 32 bit bswap instruction to do a 32 bit swap...
BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
break;
case cShort:
// For 16 bit we have to use an xchg instruction, because there is no
// 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
// into AX to do the xchg.
//
BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
.addReg(X86::AH, MOTy::UseAndDef);
BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
break;
default: assert(0 && "Cannot byteswap this class!");
}
}
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
/// instruction. The load and store instructions are the only place where we /// instruction. The load and store instructions are the only place where we
/// need to worry about the memory layout of the target machine. /// need to worry about the memory layout of the target machine.