Remove llvm-upgrade.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49347 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Tanya Lattner 2008-04-07 18:32:47 +00:00
parent 148df159a3
commit cb76b12a3a
10 changed files with 0 additions and 19786 deletions

View File

@ -1,32 +0,0 @@
##===- tools/llvm-upgrade/Makefile -------------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../..
TOOLNAME = llvm-upgrade
LINK_COMPONENTS := Core support system
REQUIRES_EH := 1
include $(LEVEL)/Makefile.common
# Make the object code file for the lexer depend upon the header file generated
# by the Bison parser. This prevents the Lexer from being compiled before the
# header file it needs is built.
$(ObjDir)/upgradeLexer.o: $(PROJ_SRC_DIR)/UpgradeParser.h
TESTCASE=../../test/Regression/Assembler/2004-09-29-VerifierIsReallySlow.llx
test:
llvm-as $(TESTCASE) -o - | llvm-dis -o source.ll -f
../../Debug/bin/llvm-upgrade -o - $(TESTCASE) 2>err.out | llvm-as | \
llvm-dis > upgrade.ll -f
diff source.ll upgrade.ll > diff.out
valgrind:
valgrind ../../Debug/bin/llvm-upgrade -o /dev/null -f $(TESTCASE)
$(ObjDir)/UpgradeLexer.o: $(PROJ_SRC_DIR)/UpgradeParser.y $(PROJ_SRC_DIR)/UpgradeParser.h

View File

@ -1,396 +0,0 @@
//===-- ParserInternals.h - Definitions internal to the parser --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines the various variables that are shared among the
// different components of the parser...
//
//===----------------------------------------------------------------------===//
#ifndef PARSER_INTERNALS_H
#define PARSER_INTERNALS_H
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/StringExtras.h"
#include <list>
#include <iostream>
#include <cstring>
// Global variables exported from the lexer.
extern int yydebug;
extern void error(const std::string& msg, int line = -1);
extern char* Upgradetext;
extern int Upgradeleng;
extern int Upgradelineno;
namespace llvm {
class Module;
Module* UpgradeAssembly(const std::string &infile, std::istream& in,
bool debug, bool addAttrs);
extern std::istream* LexInput;
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an error.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull = false);
/// InlineAsmDescriptor - This is a simple class that holds info about inline
/// asm blocks, for use by ValID.
struct InlineAsmDescriptor {
std::string AsmString, Constraints;
bool HasSideEffects;
InlineAsmDescriptor(const std::string &as, const std::string &c, bool HSE)
: AsmString(as), Constraints(c), HasSideEffects(HSE) {}
};
/// This class keeps track of the signedness of a type or value. It allows the
/// signedness of a composite type to be captured in a relatively simple form.
/// This is needed in order to retain the signedness of pre LLVM 2.0 types so
/// they can be upgraded properly. Signedness of composite types must be
/// captured in order to accurately get the signedness of a value through a
/// GEP instruction.
/// @brief Class to track signedness of types and values.
struct Signedness {
/// The basic kinds of signedness values.
enum Kind {
Signless, ///< The type doesn't have any sign.
Unsigned, ///< The type is an unsigned integer.
Signed, ///< The type is a signed integer.
Named, ///< The type is a named type (probably forward ref or up ref).
Composite ///< The type is composite (struct, array, pointer).
};
private:
/// @brief Keeps track of Signedness for composite types
typedef std::vector<Signedness> SignVector;
Kind kind; ///< The kind of signedness node
union {
SignVector *sv; ///< The vector of Signedness for composite types
std::string *name; ///< The name of the type for named types.
};
public:
/// The Signedness class is used as a member of a union so it cannot have
/// a constructor or assignment operator. This function suffices.
/// @brief Copy one signedness value to another
void copy(const Signedness &that);
/// The Signedness class is used as a member of a union so it cannot have
/// a destructor.
/// @brief Release memory, if any allocated.
void destroy();
/// @brief Make a Signless node.
void makeSignless() { kind = Signless; sv = 0; }
/// @brief Make a Signed node.
void makeSigned() { kind = Signed; sv = 0; }
/// @brief Make an Unsigned node.
void makeUnsigned() { kind = Unsigned; sv = 0; }
/// @brief Make a Named node.
void makeNamed(const std::string& nm){
kind = Named; name = new std::string(nm);
}
/// @brief Make an empty Composite node.
void makeComposite() { kind = Composite; sv = new SignVector(); }
/// @brief Make an Composite node, with the first element given.
void makeComposite(const Signedness &S) {
kind = Composite;
sv = new SignVector();
sv->push_back(S);
}
/// @brief Add an element to a Composite node.
void add(const Signedness &S) {
assert(isComposite() && "Must be composite to use add");
sv->push_back(S);
}
bool operator<(const Signedness &that) const;
bool operator==(const Signedness &that) const;
bool isSigned() const { return kind == Signed; }
bool isUnsigned() const { return kind == Unsigned; }
bool isSignless() const { return kind == Signless; }
bool isNamed() const { return kind == Named; }
bool isComposite() const { return kind == Composite; }
/// This is used by GetElementPtr to extract the sign of an element.
/// @brief Get a specific element from a Composite node.
Signedness get(uint64_t idx) const {
assert(isComposite() && "Invalid Signedness type for get()");
assert(sv && idx < sv->size() && "Invalid index");
return (*sv)[idx];
}
/// @brief Get the name from a Named node.
const std::string& getName() const {
assert(isNamed() && "Can't get name from non-name Sign");
return *name;
}
#ifndef NDEBUG
void dump() const;
#endif
};
// ValID - Represents a reference of a definition of some sort. This may either
// be a numeric reference or a symbolic (%var) reference. This is just a
// discriminated union.
//
// Note that I can't implement this class in a straight forward manner with
// constructors and stuff because it goes in a union.
//
struct ValID {
enum {
NumberVal, NameVal, ConstSIntVal, ConstUIntVal, ConstFPVal, ConstNullVal,
ConstUndefVal, ConstZeroVal, ConstantVal, InlineAsmVal
} Type;
union {
int Num; // If it's a numeric reference
char *Name; // If it's a named reference. Memory must be free'd.
int64_t ConstPool64; // Constant pool reference. This is the value
uint64_t UConstPool64;// Unsigned constant pool reference.
APFloat *ConstPoolFP; // Floating point constant pool reference
Constant *ConstantValue; // Fully resolved constant for ConstantVal case.
InlineAsmDescriptor *IAD;
};
Signedness S;
static ValID create(int Num) {
ValID D; D.Type = NumberVal; D.Num = Num; D.S.makeSignless();
return D;
}
static ValID create(char *Name) {
ValID D; D.Type = NameVal; D.Name = Name; D.S.makeSignless();
return D;
}
static ValID create(int64_t Val) {
ValID D; D.Type = ConstSIntVal; D.ConstPool64 = Val;
D.S.makeSigned();
return D;
}
static ValID create(uint64_t Val) {
ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val;
D.S.makeUnsigned();
return D;
}
static ValID create(APFloat* Val) {
ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val;
D.S.makeSignless();
return D;
}
static ValID createNull() {
ValID D; D.Type = ConstNullVal;
D.S.makeSignless();
return D;
}
static ValID createUndef() {
ValID D; D.Type = ConstUndefVal;
D.S.makeSignless();
return D;
}
static ValID createZeroInit() {
ValID D; D.Type = ConstZeroVal;
D.S.makeSignless();
return D;
}
static ValID create(Constant *Val) {
ValID D; D.Type = ConstantVal; D.ConstantValue = Val;
D.S.makeSignless();
return D;
}
static ValID createInlineAsm(const std::string &AsmString,
const std::string &Constraints,
bool HasSideEffects) {
ValID D;
D.Type = InlineAsmVal;
D.IAD = new InlineAsmDescriptor(AsmString, Constraints, HasSideEffects);
D.S.makeSignless();
return D;
}
inline void destroy() const {
if (Type == NameVal)
free(Name); // Free this strdup'd memory.
else if (Type == InlineAsmVal)
delete IAD;
}
inline ValID copy() const {
if (Type != NameVal) return *this;
ValID Result = *this;
Result.Name = strdup(Name);
return Result;
}
inline std::string getName() const {
switch (Type) {
case NumberVal : return std::string("#") + itostr(Num);
case NameVal : return Name;
case ConstFPVal : return ftostr(*ConstPoolFP);
case ConstNullVal : return "null";
case ConstUndefVal : return "undef";
case ConstZeroVal : return "zeroinitializer";
case ConstUIntVal :
case ConstSIntVal : return std::string("%") + itostr(ConstPool64);
case ConstantVal:
if (ConstantValue == ConstantInt::get(Type::Int1Ty, true))
return "true";
if (ConstantValue == ConstantInt::get(Type::Int1Ty, false))
return "false";
return "<constant expression>";
default:
assert(0 && "Unknown value!");
abort();
return "";
}
}
bool operator<(const ValID &V) const {
if (Type != V.Type) return Type < V.Type;
switch (Type) {
case NumberVal: return Num < V.Num;
case NameVal: return strcmp(Name, V.Name) < 0;
case ConstSIntVal: return ConstPool64 < V.ConstPool64;
case ConstUIntVal: return UConstPool64 < V.UConstPool64;
case ConstFPVal: return ConstPoolFP->compare(*V.ConstPoolFP) ==
APFloat::cmpLessThan;
case ConstNullVal: return false;
case ConstUndefVal: return false;
case ConstZeroVal: return false;
case ConstantVal: return ConstantValue < V.ConstantValue;
default: assert(0 && "Unknown value type!"); return false;
}
}
};
/// The following enums are used to keep track of prior opcodes. The lexer will
/// retain the ability to parse obsolete opcode mnemonics and generates semantic
/// values containing one of these enumerators.
enum TermOps {
RetOp, BrOp, SwitchOp, InvokeOp, UnwindOp, UnreachableOp
};
enum BinaryOps {
AddOp, SubOp, MulOp,
DivOp, UDivOp, SDivOp, FDivOp,
RemOp, URemOp, SRemOp, FRemOp,
AndOp, OrOp, XorOp,
ShlOp, ShrOp, LShrOp, AShrOp,
SetEQ, SetNE, SetLE, SetGE, SetLT, SetGT
};
enum MemoryOps {
MallocOp, FreeOp, AllocaOp, LoadOp, StoreOp, GetElementPtrOp
};
enum OtherOps {
PHIOp, CallOp, SelectOp, UserOp1, UserOp2, VAArg,
ExtractElementOp, InsertElementOp, ShuffleVectorOp,
ICmpOp, FCmpOp
};
enum CastOps {
CastOp, TruncOp, ZExtOp, SExtOp, FPTruncOp, FPExtOp, FPToUIOp, FPToSIOp,
UIToFPOp, SIToFPOp, PtrToIntOp, IntToPtrOp, BitCastOp
};
// An enumeration for the old calling conventions, ala LLVM 1.9
namespace OldCallingConv {
enum ID {
C = 0, CSRet = 1, Fast = 8, Cold = 9, X86_StdCall = 64, X86_FastCall = 65,
None = 99999
};
}
/// These structures are used as the semantic values returned from various
/// productions in the grammar. They simply bundle an LLVM IR object with
/// its Signedness value. These help track signedness through the various
/// productions.
struct TypeInfo {
const llvm::Type *T;
Signedness S;
bool operator<(const TypeInfo& that) const {
if (this == &that)
return false;
if (T < that.T)
return true;
if (T == that.T) {
bool result = S < that.S;
//#define TYPEINFO_DEBUG
#ifdef TYPEINFO_DEBUG
std::cerr << (result?"true ":"false ") << T->getDescription() << " (";
S.dump();
std::cerr << ") < " << that.T->getDescription() << " (";
that.S.dump();
std::cerr << ")\n";
#endif
return result;
}
return false;
}
bool operator==(const TypeInfo& that) const {
if (this == &that)
return true;
return T == that.T && S == that.S;
}
void destroy() { S.destroy(); }
};
struct PATypeInfo {
llvm::PATypeHolder* PAT;
Signedness S;
void destroy() { S.destroy(); delete PAT; }
};
struct ConstInfo {
llvm::Constant* C;
Signedness S;
void destroy() { S.destroy(); }
};
struct ValueInfo {
llvm::Value* V;
Signedness S;
void destroy() { S.destroy(); }
};
struct InstrInfo {
llvm::Instruction *I;
Signedness S;
void destroy() { S.destroy(); }
};
struct TermInstInfo {
llvm::TerminatorInst *TI;
Signedness S;
void destroy() { S.destroy(); }
};
struct PHIListInfo {
std::list<std::pair<llvm::Value*, llvm::BasicBlock*> > *P;
Signedness S;
void destroy() { S.destroy(); delete P; }
};
} // End llvm namespace
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,430 +0,0 @@
/*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the flex scanner for LLVM 1.9 assembly languages files.
// This doesn't handle long double constants, since LLVM 1.9 did not have them.
//
//===----------------------------------------------------------------------===*/
%option prefix="Upgrade"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="UpgradeLexer.cpp"
%option ecs
%option noreject
%option noyymore
%{
#include "UpgradeInternals.h"
#include "llvm/Module.h"
#include <list>
#include "UpgradeParser.h"
#include <cctype>
#include <cstdlib>
#define YY_INPUT(buf,result,max_size) \
{ \
if (LexInput->good() && !LexInput->eof()) { \
LexInput->read(buf,max_size); \
result = LexInput->gcount(); \
} else {\
result = YY_NULL; \
} \
}
#define YY_NEVER_INTERACTIVE 1
// Construct a token value for a non-obsolete token
#define RET_TOK(type, Enum, sym) \
Upgradelval.type = Enum; \
return sym
#define RET_TY(sym,NewTY,sign) \
Upgradelval.PrimType.T = NewTY; \
switch (sign) { \
case 0: Upgradelval.PrimType.S.makeSignless(); break; \
case 1: Upgradelval.PrimType.S.makeUnsigned(); break; \
case 2: Upgradelval.PrimType.S.makeSigned(); break; \
default: assert(0 && "Invalid sign kind"); break; \
}\
return sym
namespace llvm {
// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an exception to be thrown.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
char *BOut = Buffer;
for (char *BIn = Buffer; *BIn; ) {
if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
if (!AllowNull && !*BOut)
error("String literal cannot accept \\00 escape!");
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
}
return BOut;
}
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
union {
uint64_t UI;
double FP;
} UIntToFP;
UIntToFP.UI = HexIntToVal(Buffer);
assert(sizeof(double) == sizeof(uint64_t) &&
"Data sizes incompatible on this target!");
return UIntToFP.FP; // Cast Hex constant to double
}
} // End llvm namespace
using namespace llvm;
%}
/* Comments start with a ; and go till end of line */
Comment ;.*
/* Variable(Value) identifiers start with a % sign */
VarID [%@][-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Label identifiers end with a colon */
Label [-a-zA-Z$._0-9]+:
QuoteLabel \"[^\"]+\":
/* Quoted names can contain any character except " and \ */
StringConstant @?\"[^\"]*\"
/* [PN]Integer: match positive and negative literal integer values that
* are preceeded by a '%' character. These represent unnamed variable slots.
*/
EPInteger %[0-9]+
ENInteger %-[0-9]+
/* E[PN]Integer: match positive and negative literal integer values */
PInteger [0-9]+
NInteger -[0-9]+
/* FPConstant - A Floating point constant.
*/
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/* HexFPConstant - Floating point constant represented in IEEE format as a
* hexadecimal number for when exponential notation is not precise enough.
*/
HexFPConstant 0x[0-9A-Fa-f]+
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
* it to deal with 64 bit numbers.
*/
HexIntConstant [us]0x[0-9A-Fa-f]+
%%
{Comment} { /* Ignore comments for now */ }
begin { return BEGINTOK; }
end { return ENDTOK; }
true { return TRUETOK; }
false { return FALSETOK; }
declare { return DECLARE; }
global { return GLOBAL; }
constant { return CONSTANT; }
internal { return INTERNAL; }
linkonce { return LINKONCE; }
weak { return WEAK; }
appending { return APPENDING; }
dllimport { return DLLIMPORT; }
dllexport { return DLLEXPORT; }
extern_weak { return EXTERN_WEAK; }
uninitialized { return EXTERNAL; } /* Deprecated, turn into external */
external { return EXTERNAL; }
implementation { return IMPLEMENTATION; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\. { return DOTDOTDOT; }
undef { return UNDEF; }
null { return NULL_TOK; }
to { return TO; }
except { return EXCEPT; }
not { return NOT; } /* Deprecated, turned into XOR */
tail { return TAIL; }
target { return TARGET; }
triple { return TRIPLE; }
deplibs { return DEPLIBS; }
endian { return ENDIAN; }
pointersize { return POINTERSIZE; }
datalayout { return DATALAYOUT; }
little { return LITTLE; }
big { return BIG; }
volatile { return VOLATILE; }
align { return ALIGN; }
section { return SECTION; }
module { return MODULE; }
asm { return ASM_TOK; }
sideeffect { return SIDEEFFECT; }
cc { return CC_TOK; }
ccc { return CCC_TOK; }
csretcc { return CSRETCC_TOK; }
fastcc { return FASTCC_TOK; }
coldcc { return COLDCC_TOK; }
x86_stdcallcc { return X86_STDCALLCC_TOK; }
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
sbyte { RET_TY(SBYTE, Type::Int8Ty, 2); }
ubyte { RET_TY(UBYTE, Type::Int8Ty, 1); }
i8 { RET_TY(UBYTE, Type::Int8Ty, 1); }
short { RET_TY(SHORT, Type::Int16Ty, 2); }
ushort { RET_TY(USHORT, Type::Int16Ty, 1); }
i16 { RET_TY(USHORT, Type::Int16Ty, 1); }
int { RET_TY(INT, Type::Int32Ty, 2); }
uint { RET_TY(UINT, Type::Int32Ty, 1); }
i32 { RET_TY(UINT, Type::Int32Ty, 1); }
long { RET_TY(LONG, Type::Int64Ty, 2); }
ulong { RET_TY(ULONG, Type::Int64Ty, 1); }
i64 { RET_TY(ULONG, Type::Int64Ty, 1); }
void { RET_TY(VOID, Type::VoidTy, 0); }
bool { RET_TY(BOOL, Type::Int1Ty, 1); }
i1 { RET_TY(BOOL, Type::Int1Ty, 1); }
float { RET_TY(FLOAT, Type::FloatTy, 0); }
double { RET_TY(DOUBLE, Type::DoubleTy,0); }
label { RET_TY(LABEL, Type::LabelTy, 0); }
type { return TYPE; }
opaque { return OPAQUE; }
add { RET_TOK(BinaryOpVal, AddOp, ADD); }
sub { RET_TOK(BinaryOpVal, SubOp, SUB); }
mul { RET_TOK(BinaryOpVal, MulOp, MUL); }
div { RET_TOK(BinaryOpVal, DivOp, DIV); }
udiv { RET_TOK(BinaryOpVal, UDivOp, UDIV); }
sdiv { RET_TOK(BinaryOpVal, SDivOp, SDIV); }
fdiv { RET_TOK(BinaryOpVal, FDivOp, FDIV); }
rem { RET_TOK(BinaryOpVal, RemOp, REM); }
urem { RET_TOK(BinaryOpVal, URemOp, UREM); }
srem { RET_TOK(BinaryOpVal, SRemOp, SREM); }
frem { RET_TOK(BinaryOpVal, FRemOp, FREM); }
and { RET_TOK(BinaryOpVal, AndOp, AND); }
or { RET_TOK(BinaryOpVal, OrOp , OR ); }
xor { RET_TOK(BinaryOpVal, XorOp, XOR); }
setne { RET_TOK(BinaryOpVal, SetNE, SETNE); }
seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); }
setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); }
setle { RET_TOK(BinaryOpVal, SetLE, SETLE); }
setge { RET_TOK(BinaryOpVal, SetGE, SETGE); }
shl { RET_TOK(BinaryOpVal, ShlOp, SHL); }
shr { RET_TOK(BinaryOpVal, ShrOp, SHR); }
lshr { RET_TOK(BinaryOpVal, LShrOp, LSHR); }
ashr { RET_TOK(BinaryOpVal, AShrOp, ASHR); }
icmp { RET_TOK(OtherOpVal, ICmpOp, ICMP); }
fcmp { RET_TOK(OtherOpVal, FCmpOp, FCMP); }
eq { return EQ; }
ne { return NE; }
slt { return SLT; }
sgt { return SGT; }
sle { return SLE; }
sge { return SGE; }
ult { return ULT; }
ugt { return UGT; }
ule { return ULE; }
uge { return UGE; }
oeq { return OEQ; }
one { return ONE; }
olt { return OLT; }
ogt { return OGT; }
ole { return OLE; }
oge { return OGE; }
ord { return ORD; }
uno { return UNO; }
ueq { return UEQ; }
une { return UNE; }
phi { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); }
call { RET_TOK(OtherOpVal, CallOp, CALL); }
cast { RET_TOK(CastOpVal, CastOp, CAST); }
trunc { RET_TOK(CastOpVal, TruncOp, TRUNC); }
zext { RET_TOK(CastOpVal, ZExtOp , ZEXT); }
sext { RET_TOK(CastOpVal, SExtOp, SEXT); }
fptrunc { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); }
fpext { RET_TOK(CastOpVal, FPExtOp, FPEXT); }
fptoui { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); }
fptosi { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); }
uitofp { RET_TOK(CastOpVal, UIToFPOp, UITOFP); }
sitofp { RET_TOK(CastOpVal, SIToFPOp, SITOFP); }
ptrtoint { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); }
inttoptr { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); }
bitcast { RET_TOK(CastOpVal, BitCastOp, BITCAST); }
select { RET_TOK(OtherOpVal, SelectOp, SELECT); }
vanext { return VANEXT_old; }
vaarg { return VAARG_old; }
va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret { RET_TOK(TermOpVal, RetOp, RET); }
br { RET_TOK(TermOpVal, BrOp, BR); }
switch { RET_TOK(TermOpVal, SwitchOp, SWITCH); }
invoke { RET_TOK(TermOpVal, InvokeOp, INVOKE); }
unwind { return UNWIND; }
unreachable { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); }
malloc { RET_TOK(MemOpVal, MallocOp, MALLOC); }
alloca { RET_TOK(MemOpVal, AllocaOp, ALLOCA); }
free { RET_TOK(MemOpVal, FreeOp, FREE); }
load { RET_TOK(MemOpVal, LoadOp, LOAD); }
store { RET_TOK(MemOpVal, StoreOp, STORE); }
getelementptr { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); }
extractelement { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); }
insertelement { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); }
shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }
{VarID} {
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1); // Skip %
return VAR_ID;
}
{Label} {
yytext[strlen(yytext)-1] = 0; // nuke colon
UnEscapeLexed(yytext);
Upgradelval.StrVal = strdup(yytext);
return LABELSTR;
}
{QuoteLabel} {
yytext[strlen(yytext)-2] = 0; // nuke colon, end quote
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1);
return LABELSTR;
}
{StringConstant} { // Note that we cannot unescape a string constant here! The
// string constant might contain a \00 which would not be
// understood by the string stuff. It is valid to make a
// [sbyte] c"Hello World\00" constant, for example.
//
yytext[strlen(yytext)-1] = 0; // nuke end quote
Upgradelval.StrVal = strdup(yytext+1); // Nuke start quote
return STRINGCONSTANT;
}
{PInteger} { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; }
{NInteger} {
uint64_t Val = atoull(yytext+1);
// +1: we have bigger negative range
if (Val > (uint64_t)INT64_MAX+1)
error("Constant too large for signed 64 bits!");
Upgradelval.SInt64Val = -Val;
return ESINT64VAL;
}
{HexIntConstant} {
Upgradelval.UInt64Val = HexIntToVal(yytext+3);
return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
}
{EPInteger} {
uint64_t Val = atoull(yytext+1);
if ((unsigned)Val != Val)
error("Invalid value number (too large)!");
Upgradelval.UIntVal = unsigned(Val);
return UINTVAL;
}
{ENInteger} {
uint64_t Val = atoull(yytext+2);
// +1: we have bigger negative range
if (Val > (uint64_t)INT32_MAX+1)
error("Constant too large for signed 32 bits!");
Upgradelval.SIntVal = (int)-Val;
return SINTVAL;
}
{FPConstant} { Upgradelval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
*/
yy_delete_buffer(YY_CURRENT_BUFFER);
return EOF;
}
[ \r\t\n] { /* Ignore whitespace */ }
. { return yytext[0]; }
%%

View File

@ -1,430 +0,0 @@
/*===-- UpgradeLexer.l - Scanner for 1.9 assembly files --------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the flex scanner for LLVM 1.9 assembly languages files.
// This doesn't handle long double constants, since LLVM 1.9 did not have them.
//
//===----------------------------------------------------------------------===*/
%option prefix="Upgrade"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="UpgradeLexer.cpp"
%option ecs
%option noreject
%option noyymore
%{
#include "UpgradeInternals.h"
#include "llvm/Module.h"
#include <list>
#include "UpgradeParser.h"
#include <cctype>
#include <cstdlib>
#define YY_INPUT(buf,result,max_size) \
{ \
if (LexInput->good() && !LexInput->eof()) { \
LexInput->read(buf,max_size); \
result = LexInput->gcount(); \
} else {\
result = YY_NULL; \
} \
}
#define YY_NEVER_INTERACTIVE 1
// Construct a token value for a non-obsolete token
#define RET_TOK(type, Enum, sym) \
Upgradelval.type = Enum; \
return sym
#define RET_TY(sym,NewTY,sign) \
Upgradelval.PrimType.T = NewTY; \
switch (sign) { \
case 0: Upgradelval.PrimType.S.makeSignless(); break; \
case 1: Upgradelval.PrimType.S.makeUnsigned(); break; \
case 2: Upgradelval.PrimType.S.makeSigned(); break; \
default: assert(0 && "Invalid sign kind"); break; \
}\
return sym
namespace llvm {
// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an exception to be thrown.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
char *BOut = Buffer;
for (char *BIn = Buffer; *BIn; ) {
if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
if (!AllowNull && !*BOut)
error("String literal cannot accept \\00 escape!");
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
}
return BOut;
}
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) // Uh, oh, overflow detected!!!
error("constant bigger than 64 bits detected!");
}
return Result;
}
// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
union {
uint64_t UI;
double FP;
} UIntToFP;
UIntToFP.UI = HexIntToVal(Buffer);
assert(sizeof(double) == sizeof(uint64_t) &&
"Data sizes incompatible on this target!");
return UIntToFP.FP; // Cast Hex constant to double
}
} // End llvm namespace
using namespace llvm;
%}
/* Comments start with a ; and go till end of line */
Comment ;.*
/* Variable(Value) identifiers start with a % sign */
VarID [%@][-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Label identifiers end with a colon */
Label [-a-zA-Z$._0-9]+:
QuoteLabel \"[^\"]+\":
/* Quoted names can contain any character except " and \ */
StringConstant @?\"[^\"]*\"
/* [PN]Integer: match positive and negative literal integer values that
* are preceeded by a '%' character. These represent unnamed variable slots.
*/
EPInteger %[0-9]+
ENInteger %-[0-9]+
/* E[PN]Integer: match positive and negative literal integer values */
PInteger [0-9]+
NInteger -[0-9]+
/* FPConstant - A Floating point constant.
*/
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/* HexFPConstant - Floating point constant represented in IEEE format as a
* hexadecimal number for when exponential notation is not precise enough.
*/
HexFPConstant 0x[0-9A-Fa-f]+
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
* it to deal with 64 bit numbers.
*/
HexIntConstant [us]0x[0-9A-Fa-f]+
%%
{Comment} { /* Ignore comments for now */ }
begin { return BEGINTOK; }
end { return ENDTOK; }
true { return TRUETOK; }
false { return FALSETOK; }
declare { return DECLARE; }
global { return GLOBAL; }
constant { return CONSTANT; }
internal { return INTERNAL; }
linkonce { return LINKONCE; }
weak { return WEAK; }
appending { return APPENDING; }
dllimport { return DLLIMPORT; }
dllexport { return DLLEXPORT; }
extern_weak { return EXTERN_WEAK; }
uninitialized { return EXTERNAL; } /* Deprecated, turn into external */
external { return EXTERNAL; }
implementation { return IMPLEMENTATION; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\. { return DOTDOTDOT; }
undef { return UNDEF; }
null { return NULL_TOK; }
to { return TO; }
except { return EXCEPT; }
not { return NOT; } /* Deprecated, turned into XOR */
tail { return TAIL; }
target { return TARGET; }
triple { return TRIPLE; }
deplibs { return DEPLIBS; }
endian { return ENDIAN; }
pointersize { return POINTERSIZE; }
datalayout { return DATALAYOUT; }
little { return LITTLE; }
big { return BIG; }
volatile { return VOLATILE; }
align { return ALIGN; }
section { return SECTION; }
module { return MODULE; }
asm { return ASM_TOK; }
sideeffect { return SIDEEFFECT; }
cc { return CC_TOK; }
ccc { return CCC_TOK; }
csretcc { return CSRETCC_TOK; }
fastcc { return FASTCC_TOK; }
coldcc { return COLDCC_TOK; }
x86_stdcallcc { return X86_STDCALLCC_TOK; }
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
sbyte { RET_TY(SBYTE, Type::Int8Ty, 2); }
ubyte { RET_TY(UBYTE, Type::Int8Ty, 1); }
i8 { RET_TY(UBYTE, Type::Int8Ty, 1); }
short { RET_TY(SHORT, Type::Int16Ty, 2); }
ushort { RET_TY(USHORT, Type::Int16Ty, 1); }
i16 { RET_TY(USHORT, Type::Int16Ty, 1); }
int { RET_TY(INT, Type::Int32Ty, 2); }
uint { RET_TY(UINT, Type::Int32Ty, 1); }
i32 { RET_TY(UINT, Type::Int32Ty, 1); }
long { RET_TY(LONG, Type::Int64Ty, 2); }
ulong { RET_TY(ULONG, Type::Int64Ty, 1); }
i64 { RET_TY(ULONG, Type::Int64Ty, 1); }
void { RET_TY(VOID, Type::VoidTy, 0); }
bool { RET_TY(BOOL, Type::Int1Ty, 1); }
i1 { RET_TY(BOOL, Type::Int1Ty, 1); }
float { RET_TY(FLOAT, Type::FloatTy, 0); }
double { RET_TY(DOUBLE, Type::DoubleTy,0); }
label { RET_TY(LABEL, Type::LabelTy, 0); }
type { return TYPE; }
opaque { return OPAQUE; }
add { RET_TOK(BinaryOpVal, AddOp, ADD); }
sub { RET_TOK(BinaryOpVal, SubOp, SUB); }
mul { RET_TOK(BinaryOpVal, MulOp, MUL); }
div { RET_TOK(BinaryOpVal, DivOp, DIV); }
udiv { RET_TOK(BinaryOpVal, UDivOp, UDIV); }
sdiv { RET_TOK(BinaryOpVal, SDivOp, SDIV); }
fdiv { RET_TOK(BinaryOpVal, FDivOp, FDIV); }
rem { RET_TOK(BinaryOpVal, RemOp, REM); }
urem { RET_TOK(BinaryOpVal, URemOp, UREM); }
srem { RET_TOK(BinaryOpVal, SRemOp, SREM); }
frem { RET_TOK(BinaryOpVal, FRemOp, FREM); }
and { RET_TOK(BinaryOpVal, AndOp, AND); }
or { RET_TOK(BinaryOpVal, OrOp , OR ); }
xor { RET_TOK(BinaryOpVal, XorOp, XOR); }
setne { RET_TOK(BinaryOpVal, SetNE, SETNE); }
seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); }
setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); }
setle { RET_TOK(BinaryOpVal, SetLE, SETLE); }
setge { RET_TOK(BinaryOpVal, SetGE, SETGE); }
shl { RET_TOK(BinaryOpVal, ShlOp, SHL); }
shr { RET_TOK(BinaryOpVal, ShrOp, SHR); }
lshr { RET_TOK(BinaryOpVal, LShrOp, LSHR); }
ashr { RET_TOK(BinaryOpVal, AShrOp, ASHR); }
icmp { RET_TOK(OtherOpVal, ICmpOp, ICMP); }
fcmp { RET_TOK(OtherOpVal, FCmpOp, FCMP); }
eq { return EQ; }
ne { return NE; }
slt { return SLT; }
sgt { return SGT; }
sle { return SLE; }
sge { return SGE; }
ult { return ULT; }
ugt { return UGT; }
ule { return ULE; }
uge { return UGE; }
oeq { return OEQ; }
one { return ONE; }
olt { return OLT; }
ogt { return OGT; }
ole { return OLE; }
oge { return OGE; }
ord { return ORD; }
uno { return UNO; }
ueq { return UEQ; }
une { return UNE; }
phi { RET_TOK(OtherOpVal, PHIOp, PHI_TOK); }
call { RET_TOK(OtherOpVal, CallOp, CALL); }
cast { RET_TOK(CastOpVal, CastOp, CAST); }
trunc { RET_TOK(CastOpVal, TruncOp, TRUNC); }
zext { RET_TOK(CastOpVal, ZExtOp , ZEXT); }
sext { RET_TOK(CastOpVal, SExtOp, SEXT); }
fptrunc { RET_TOK(CastOpVal, FPTruncOp, FPTRUNC); }
fpext { RET_TOK(CastOpVal, FPExtOp, FPEXT); }
fptoui { RET_TOK(CastOpVal, FPToUIOp, FPTOUI); }
fptosi { RET_TOK(CastOpVal, FPToSIOp, FPTOSI); }
uitofp { RET_TOK(CastOpVal, UIToFPOp, UITOFP); }
sitofp { RET_TOK(CastOpVal, SIToFPOp, SITOFP); }
ptrtoint { RET_TOK(CastOpVal, PtrToIntOp, PTRTOINT); }
inttoptr { RET_TOK(CastOpVal, IntToPtrOp, INTTOPTR); }
bitcast { RET_TOK(CastOpVal, BitCastOp, BITCAST); }
select { RET_TOK(OtherOpVal, SelectOp, SELECT); }
vanext { return VANEXT_old; }
vaarg { return VAARG_old; }
va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret { RET_TOK(TermOpVal, RetOp, RET); }
br { RET_TOK(TermOpVal, BrOp, BR); }
switch { RET_TOK(TermOpVal, SwitchOp, SWITCH); }
invoke { RET_TOK(TermOpVal, InvokeOp, INVOKE); }
unwind { return UNWIND; }
unreachable { RET_TOK(TermOpVal, UnreachableOp, UNREACHABLE); }
malloc { RET_TOK(MemOpVal, MallocOp, MALLOC); }
alloca { RET_TOK(MemOpVal, AllocaOp, ALLOCA); }
free { RET_TOK(MemOpVal, FreeOp, FREE); }
load { RET_TOK(MemOpVal, LoadOp, LOAD); }
store { RET_TOK(MemOpVal, StoreOp, STORE); }
getelementptr { RET_TOK(MemOpVal, GetElementPtrOp, GETELEMENTPTR); }
extractelement { RET_TOK(OtherOpVal, ExtractElementOp, EXTRACTELEMENT); }
insertelement { RET_TOK(OtherOpVal, InsertElementOp, INSERTELEMENT); }
shufflevector { RET_TOK(OtherOpVal, ShuffleVectorOp, SHUFFLEVECTOR); }
{VarID} {
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1); // Skip %
return VAR_ID;
}
{Label} {
yytext[strlen(yytext)-1] = 0; // nuke colon
UnEscapeLexed(yytext);
Upgradelval.StrVal = strdup(yytext);
return LABELSTR;
}
{QuoteLabel} {
yytext[strlen(yytext)-2] = 0; // nuke colon, end quote
UnEscapeLexed(yytext+1);
Upgradelval.StrVal = strdup(yytext+1);
return LABELSTR;
}
{StringConstant} { // Note that we cannot unescape a string constant here! The
// string constant might contain a \00 which would not be
// understood by the string stuff. It is valid to make a
// [sbyte] c"Hello World\00" constant, for example.
//
yytext[strlen(yytext)-1] = 0; // nuke end quote
Upgradelval.StrVal = strdup(yytext+1); // Nuke start quote
return STRINGCONSTANT;
}
{PInteger} { Upgradelval.UInt64Val = atoull(yytext); return EUINT64VAL; }
{NInteger} {
uint64_t Val = atoull(yytext+1);
// +1: we have bigger negative range
if (Val > (uint64_t)INT64_MAX+1)
error("Constant too large for signed 64 bits!");
Upgradelval.SInt64Val = -Val;
return ESINT64VAL;
}
{HexIntConstant} {
Upgradelval.UInt64Val = HexIntToVal(yytext+3);
return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
}
{EPInteger} {
uint64_t Val = atoull(yytext+1);
if ((unsigned)Val != Val)
error("Invalid value number (too large)!");
Upgradelval.UIntVal = unsigned(Val);
return UINTVAL;
}
{ENInteger} {
uint64_t Val = atoull(yytext+2);
// +1: we have bigger negative range
if (Val > (uint64_t)INT32_MAX+1)
error("Constant too large for signed 32 bits!");
Upgradelval.SIntVal = (int)-Val;
return SINTVAL;
}
{FPConstant} { Upgradelval.FPVal = new APFloat(atof(yytext)); return FPVAL; }
{HexFPConstant} { Upgradelval.FPVal = new APFloat(HexToFP(yytext));
return FPVAL;
}
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
*/
yy_delete_buffer(YY_CURRENT_BUFFER);
return EOF;
}
[ \r\t\n] { /* Ignore whitespace */ }
. { return yytext[0]; }
%%

File diff suppressed because it is too large Load Diff

View File

@ -1,400 +0,0 @@
/* A Bison parser, made by GNU Bison 2.3. */
/* Skeleton interface for Bison's Yacc-like parsers in C
Copyright (C) 1984, 1989, 1990, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* As a special exception, you may create a larger work that contains
part or all of the Bison parser skeleton and distribute that work
under terms of your choice, so long as that work isn't itself a
parser generator using the skeleton or a modified version thereof
as a parser skeleton. Alternatively, if you modify or redistribute
the parser skeleton itself, you may (at your option) remove this
special exception, which will cause the skeleton and the resulting
Bison output files to be licensed under the GNU General Public
License without this special exception.
This special exception was added by the Free Software Foundation in
version 2.2 of Bison. */
/* Tokens. */
#ifndef YYTOKENTYPE
# define YYTOKENTYPE
/* Put the tokens into the symbol table, so that GDB and other debuggers
know about them. */
enum yytokentype {
ESINT64VAL = 258,
EUINT64VAL = 259,
SINTVAL = 260,
UINTVAL = 261,
FPVAL = 262,
VOID = 263,
BOOL = 264,
SBYTE = 265,
UBYTE = 266,
SHORT = 267,
USHORT = 268,
INT = 269,
UINT = 270,
LONG = 271,
ULONG = 272,
FLOAT = 273,
DOUBLE = 274,
TYPE = 275,
LABEL = 276,
VAR_ID = 277,
LABELSTR = 278,
STRINGCONSTANT = 279,
IMPLEMENTATION = 280,
ZEROINITIALIZER = 281,
TRUETOK = 282,
FALSETOK = 283,
BEGINTOK = 284,
ENDTOK = 285,
DECLARE = 286,
GLOBAL = 287,
CONSTANT = 288,
SECTION = 289,
VOLATILE = 290,
TO = 291,
DOTDOTDOT = 292,
NULL_TOK = 293,
UNDEF = 294,
CONST = 295,
INTERNAL = 296,
LINKONCE = 297,
WEAK = 298,
APPENDING = 299,
DLLIMPORT = 300,
DLLEXPORT = 301,
EXTERN_WEAK = 302,
OPAQUE = 303,
NOT = 304,
EXTERNAL = 305,
TARGET = 306,
TRIPLE = 307,
ENDIAN = 308,
POINTERSIZE = 309,
LITTLE = 310,
BIG = 311,
ALIGN = 312,
DEPLIBS = 313,
CALL = 314,
TAIL = 315,
ASM_TOK = 316,
MODULE = 317,
SIDEEFFECT = 318,
CC_TOK = 319,
CCC_TOK = 320,
CSRETCC_TOK = 321,
FASTCC_TOK = 322,
COLDCC_TOK = 323,
X86_STDCALLCC_TOK = 324,
X86_FASTCALLCC_TOK = 325,
DATALAYOUT = 326,
RET = 327,
BR = 328,
SWITCH = 329,
INVOKE = 330,
UNREACHABLE = 331,
UNWIND = 332,
EXCEPT = 333,
ADD = 334,
SUB = 335,
MUL = 336,
DIV = 337,
UDIV = 338,
SDIV = 339,
FDIV = 340,
REM = 341,
UREM = 342,
SREM = 343,
FREM = 344,
AND = 345,
OR = 346,
XOR = 347,
SHL = 348,
SHR = 349,
ASHR = 350,
LSHR = 351,
SETLE = 352,
SETGE = 353,
SETLT = 354,
SETGT = 355,
SETEQ = 356,
SETNE = 357,
ICMP = 358,
FCMP = 359,
MALLOC = 360,
ALLOCA = 361,
FREE = 362,
LOAD = 363,
STORE = 364,
GETELEMENTPTR = 365,
PHI_TOK = 366,
SELECT = 367,
VAARG = 368,
EXTRACTELEMENT = 369,
INSERTELEMENT = 370,
SHUFFLEVECTOR = 371,
VAARG_old = 372,
VANEXT_old = 373,
EQ = 374,
NE = 375,
SLT = 376,
SGT = 377,
SLE = 378,
SGE = 379,
ULT = 380,
UGT = 381,
ULE = 382,
UGE = 383,
OEQ = 384,
ONE = 385,
OLT = 386,
OGT = 387,
OLE = 388,
OGE = 389,
ORD = 390,
UNO = 391,
UEQ = 392,
UNE = 393,
CAST = 394,
TRUNC = 395,
ZEXT = 396,
SEXT = 397,
FPTRUNC = 398,
FPEXT = 399,
FPTOUI = 400,
FPTOSI = 401,
UITOFP = 402,
SITOFP = 403,
PTRTOINT = 404,
INTTOPTR = 405,
BITCAST = 406
};
#endif
/* Tokens. */
#define ESINT64VAL 258
#define EUINT64VAL 259
#define SINTVAL 260
#define UINTVAL 261
#define FPVAL 262
#define VOID 263
#define BOOL 264
#define SBYTE 265
#define UBYTE 266
#define SHORT 267
#define USHORT 268
#define INT 269
#define UINT 270
#define LONG 271
#define ULONG 272
#define FLOAT 273
#define DOUBLE 274
#define TYPE 275
#define LABEL 276
#define VAR_ID 277
#define LABELSTR 278
#define STRINGCONSTANT 279
#define IMPLEMENTATION 280
#define ZEROINITIALIZER 281
#define TRUETOK 282
#define FALSETOK 283
#define BEGINTOK 284
#define ENDTOK 285
#define DECLARE 286
#define GLOBAL 287
#define CONSTANT 288
#define SECTION 289
#define VOLATILE 290
#define TO 291
#define DOTDOTDOT 292
#define NULL_TOK 293
#define UNDEF 294
#define CONST 295
#define INTERNAL 296
#define LINKONCE 297
#define WEAK 298
#define APPENDING 299
#define DLLIMPORT 300
#define DLLEXPORT 301
#define EXTERN_WEAK 302
#define OPAQUE 303
#define NOT 304
#define EXTERNAL 305
#define TARGET 306
#define TRIPLE 307
#define ENDIAN 308
#define POINTERSIZE 309
#define LITTLE 310
#define BIG 311
#define ALIGN 312
#define DEPLIBS 313
#define CALL 314
#define TAIL 315
#define ASM_TOK 316
#define MODULE 317
#define SIDEEFFECT 318
#define CC_TOK 319
#define CCC_TOK 320
#define CSRETCC_TOK 321
#define FASTCC_TOK 322
#define COLDCC_TOK 323
#define X86_STDCALLCC_TOK 324
#define X86_FASTCALLCC_TOK 325
#define DATALAYOUT 326
#define RET 327
#define BR 328
#define SWITCH 329
#define INVOKE 330
#define UNREACHABLE 331
#define UNWIND 332
#define EXCEPT 333
#define ADD 334
#define SUB 335
#define MUL 336
#define DIV 337
#define UDIV 338
#define SDIV 339
#define FDIV 340
#define REM 341
#define UREM 342
#define SREM 343
#define FREM 344
#define AND 345
#define OR 346
#define XOR 347
#define SHL 348
#define SHR 349
#define ASHR 350
#define LSHR 351
#define SETLE 352
#define SETGE 353
#define SETLT 354
#define SETGT 355
#define SETEQ 356
#define SETNE 357
#define ICMP 358
#define FCMP 359
#define MALLOC 360
#define ALLOCA 361
#define FREE 362
#define LOAD 363
#define STORE 364
#define GETELEMENTPTR 365
#define PHI_TOK 366
#define SELECT 367
#define VAARG 368
#define EXTRACTELEMENT 369
#define INSERTELEMENT 370
#define SHUFFLEVECTOR 371
#define VAARG_old 372
#define VANEXT_old 373
#define EQ 374
#define NE 375
#define SLT 376
#define SGT 377
#define SLE 378
#define SGE 379
#define ULT 380
#define UGT 381
#define ULE 382
#define UGE 383
#define OEQ 384
#define ONE 385
#define OLT 386
#define OGT 387
#define OLE 388
#define OGE 389
#define ORD 390
#define UNO 391
#define UEQ 392
#define UNE 393
#define CAST 394
#define TRUNC 395
#define ZEXT 396
#define SEXT 397
#define FPTRUNC 398
#define FPEXT 399
#define FPTOUI 400
#define FPTOSI 401
#define UITOFP 402
#define SITOFP 403
#define PTRTOINT 404
#define INTTOPTR 405
#define BITCAST 406
#if ! defined YYSTYPE && ! defined YYSTYPE_IS_DECLARED
typedef union YYSTYPE
#line 1680 "/Users/sabre/llvm/tools/llvm-upgrade/UpgradeParser.y"
{
llvm::Module *ModuleVal;
llvm::Function *FunctionVal;
std::pair<llvm::PATypeInfo, char*> *ArgVal;
llvm::BasicBlock *BasicBlockVal;
llvm::TermInstInfo TermInstVal;
llvm::InstrInfo InstVal;
llvm::ConstInfo ConstVal;
llvm::ValueInfo ValueVal;
llvm::PATypeInfo TypeVal;
llvm::TypeInfo PrimType;
llvm::PHIListInfo PHIList;
std::list<llvm::PATypeInfo> *TypeList;
std::vector<llvm::ValueInfo> *ValueList;
std::vector<llvm::ConstInfo> *ConstVector;
std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
// Represent the RHS of PHI node
std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
llvm::GlobalValue::LinkageTypes Linkage;
int64_t SInt64Val;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
llvm::APFloat *FPVal;
bool BoolVal;
char *StrVal; // This memory is strdup'd!
llvm::ValID ValIDVal; // strdup'd memory maybe!
llvm::BinaryOps BinaryOpVal;
llvm::TermOps TermOpVal;
llvm::MemoryOps MemOpVal;
llvm::OtherOps OtherOpVal;
llvm::CastOps CastOpVal;
llvm::ICmpInst::Predicate IPred;
llvm::FCmpInst::Predicate FPred;
llvm::Module::Endianness Endianness;
}
/* Line 1529 of yacc.c. */
#line 393 "UpgradeParser.tab.h"
YYSTYPE;
# define yystype YYSTYPE /* obsolescent; will be withdrawn */
# define YYSTYPE_IS_DECLARED 1
# define YYSTYPE_IS_TRIVIAL 1
#endif
extern YYSTYPE Upgradelval;

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,144 +0,0 @@
//===--- llvm-upgrade.cpp - The LLVM Assembly Upgrader --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This utility will upgrade LLVM 1.9 Assembly to 2.0 format. It may be
// invoked as a filter, like this:
// llvm-1.9/bin/llvm-dis < 1.9.bc | llvm-upgrade | llvm-as > 2.0.bc
//
// or, you can directly upgrade, like this:
// llvm-upgrade -o 2.0.ll < 1.9.ll
//
// llvm-upgrade won't overwrite files by default. Use -f to force it to
// overwrite the output file.
//
//===----------------------------------------------------------------------===//
#include "UpgradeInternals.h"
#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/System/Signals.h"
#include <fstream>
#include <iostream>
#include <memory>
using namespace llvm;
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input .llvm file>"), cl::init("-"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"),
cl::value_desc("filename"), cl::init("-"));
static cl::opt<bool>
Force("f", cl::desc("Overwrite output files"), cl::init(false));
static cl::opt<bool>
AddAttrs("add-attrs", cl::desc("Add function result and argument attributes"),
cl::init(false));
static cl::opt<bool>
Debug("debug-upgrade-yacc", cl::desc("Print debug output from yacc parser"),
cl::Hidden, cl::init(false));
int main(int argc, char **argv) {
llvm_shutdown_obj X; // Call llvm_shutdown() on exit.
cl::ParseCommandLineOptions(argc, argv, "llvm .ll -> .bc assembler\n");
sys::PrintStackTraceOnErrorSignal();
int exitCode = 0;
std::ostream *Out = 0;
std::istream *In = 0;
try {
if (OutputFilename != "") { // Specified an output filename?
if (OutputFilename != "-") { // Not stdout?
if (!Force && std::ifstream(OutputFilename.c_str())) {
// If force is not specified, make sure not to overwrite a file!
cerr << argv[0] << ": error opening '" << OutputFilename
<< "': file exists!\n"
<< "Use -f command line argument to force output\n";
return 1;
}
Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
std::ios::trunc);
} else { // Specified stdout
Out = &std::cout;
}
} else {
if (InputFilename == "-") {
OutputFilename = "-";
Out = &std::cout;
} else {
std::string IFN = InputFilename;
int Len = IFN.length();
if (IFN[Len-3] == '.' && IFN[Len-2] == 'l' && IFN[Len-1] == 'l') {
// Source ends in .ll
OutputFilename = std::string(IFN.begin(), IFN.end()-3);
} else {
OutputFilename = IFN; // Append to it
}
OutputFilename += ".llu";
if (!Force && std::ifstream(OutputFilename.c_str())) {
// If force is not specified, make sure not to overwrite a file!
cerr << argv[0] << ": error opening '" << OutputFilename
<< "': file exists!\n"
<< "Use -f command line argument to force output\n";
return 1;
}
Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
std::ios::trunc);
// Make sure that the Out file gets unlinked from the disk if we get a
// SIGINT
sys::RemoveFileOnSignal(sys::Path(OutputFilename));
}
}
if (InputFilename == "-") {
In = &std::cin;
InputFilename = "<stdin>";
} else {
In = new std::ifstream(InputFilename.c_str());
}
if (!Out->good()) {
cerr << argv[0] << ": error opening " << OutputFilename << "!\n";
return 1;
}
if (!In->good()) {
cerr << argv[0] << ": error opening " << InputFilename << "!\n";
return 1;
}
Module *M = UpgradeAssembly(InputFilename, *In, Debug, AddAttrs);
if (!M) {
cerr << argv[0] << ": No module returned from assembly parsing\n";
*Out << argv[0] << ": parse failed.";
exit(1);
}
// Finally, print the module on the output stream.
M->print(Out);
} catch (const std::string& caught_message) {
cerr << argv[0] << ": " << caught_message << "\n";
exitCode = 1;
} catch (...) {
cerr << argv[0] << ": Unexpected unknown exception occurred.\n";
exitCode = 1;
}
if (Out != &std::cout) delete Out;
return exitCode;
}