mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-27 14:34:58 +00:00
* Clean up data structures [AllocDSNode -> DSNode]
* TransformFunctionInfo now has call field form field mapping. May be removed in the future. * Moved the computation of "Scalars" into transformFunctionBody so transformFunction didn't have to recompute it. * Implement the node mapping calculation in preparation to calculate PoolDescriptors to pass to transformFunctionBody * Print out the node mapping [it looks right!] * Other minor changes git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2056 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
9a691dbc82
commit
cfb5f4ce2e
@ -32,24 +32,28 @@ namespace {
|
||||
// datastructure we are processing.
|
||||
//
|
||||
struct ScalarInfo {
|
||||
Value *Val; // Scalar value in Current Function
|
||||
AllocDSNode *AllocNode; // Allocation node it points to
|
||||
Value *PoolHandle; // PoolTy* LLVM value
|
||||
Value *Val; // Scalar value in Current Function
|
||||
DSNode *Node; // DataStructure node it points to
|
||||
Value *PoolHandle; // PoolTy* LLVM value
|
||||
|
||||
ScalarInfo(Value *V, AllocDSNode *AN, Value *PH)
|
||||
: Val(V), AllocNode(AN), PoolHandle(PH) {}
|
||||
ScalarInfo(Value *V, DSNode *N, Value *PH)
|
||||
: Val(V), Node(N), PoolHandle(PH) {
|
||||
assert(V && N && PH && "Null value passed to ScalarInfo ctor!");
|
||||
}
|
||||
};
|
||||
|
||||
// CallArgInfo - Information on one operand for a call that got expanded.
|
||||
struct CallArgInfo {
|
||||
int ArgNo; // Call argument number this corresponds to
|
||||
AllocDSNode *AllocNode; // The allocation graph node for the pool
|
||||
Value *PoolHandle; // The LLVM value that is the pool pointer
|
||||
int ArgNo; // Call argument number this corresponds to
|
||||
DSNode *Node; // The graph node for the pool
|
||||
Value *PoolHandle; // The LLVM value that is the pool pointer
|
||||
|
||||
CallArgInfo(int Arg, AllocDSNode *AN, Value *PH)
|
||||
: ArgNo(Arg), AllocNode(AN), PoolHandle(PH) {
|
||||
CallArgInfo(int Arg, DSNode *N, Value *PH)
|
||||
: ArgNo(Arg), Node(N), PoolHandle(PH) {
|
||||
assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!");
|
||||
}
|
||||
|
||||
// operator< when sorting, sort by argument number.
|
||||
bool operator<(const CallArgInfo &CAI) const {
|
||||
return ArgNo < CAI.ArgNo;
|
||||
}
|
||||
@ -71,8 +75,12 @@ namespace {
|
||||
// Func - The function to be transformed...
|
||||
Function *Func;
|
||||
|
||||
// The call instruction that is used to map CallArgInfo PoolHandle values
|
||||
// into the new function values.
|
||||
CallInst *Call;
|
||||
|
||||
// default ctor...
|
||||
TransformFunctionInfo() : Func(0) {}
|
||||
TransformFunctionInfo() : Func(0), Call(0) {}
|
||||
|
||||
bool operator<(const TransformFunctionInfo &TFI) const {
|
||||
if (Func < TFI.Func) return true;
|
||||
@ -84,8 +92,10 @@ namespace {
|
||||
|
||||
void finalizeConstruction() {
|
||||
// Sort the vector so that the return value is first, followed by the
|
||||
// argument records, in order.
|
||||
sort(ArgInfo.begin(), ArgInfo.end());
|
||||
// argument records, in order. Note that this must be a stable sort so
|
||||
// that the entries with the same sorting criteria (ie they are multiple
|
||||
// pool entries for the same argument) are kept in depth first order.
|
||||
stable_sort(ArgInfo.begin(), ArgInfo.end());
|
||||
}
|
||||
};
|
||||
|
||||
@ -128,7 +138,10 @@ namespace {
|
||||
// Prototypes that we add to support pool allocation...
|
||||
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
|
||||
|
||||
// The map of already transformed functions...
|
||||
// The map of already transformed functions... note that the keys of this
|
||||
// map do not have meaningful values for 'Call' or the 'PoolHandle' elements
|
||||
// of the ArgInfo elements.
|
||||
//
|
||||
map<TransformFunctionInfo, Function*> TransformedFunctions;
|
||||
|
||||
// getTransformedFunction - Get a transformed function, or return null if
|
||||
@ -151,24 +164,31 @@ namespace {
|
||||
// CreatePools - Insert instructions into the function we are processing to
|
||||
// create all of the memory pool objects themselves. This also inserts
|
||||
// destruction code. Add an alloca for each pool that is allocated to the
|
||||
// PoolDescriptors vector.
|
||||
// PoolDescriptors map.
|
||||
//
|
||||
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
||||
map<AllocDSNode*, AllocaInst*> &PoolDescriptors);
|
||||
map<DSNode*, Value*> &PoolDescriptors);
|
||||
|
||||
// processFunction - Convert a function to use pool allocation where
|
||||
// available.
|
||||
//
|
||||
bool processFunction(Function *F);
|
||||
|
||||
|
||||
void transformFunctionBody(Function *F, vector<ScalarInfo> &Scalars,
|
||||
map<AllocDSNode*, AllocaInst*> &PoolDescriptors);
|
||||
// transformFunctionBody - This transforms the instruction in 'F' to use the
|
||||
// pools specified in PoolDescriptors when modifying data structure nodes
|
||||
// specified in the PoolDescriptors map. IPFGraph is the closed data
|
||||
// structure graph for F, of which the PoolDescriptor nodes come from.
|
||||
//
|
||||
void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
|
||||
map<DSNode*, Value*> &PoolDescriptors);
|
||||
|
||||
// transformFunction - Transform the specified function the specified way.
|
||||
// It we have already transformed that function that way, don't do anything.
|
||||
// The nodes in the TransformFunctionInfo come out of callers data structure
|
||||
// graph.
|
||||
//
|
||||
void transformFunction(TransformFunctionInfo &TFI);
|
||||
void transformFunction(TransformFunctionInfo &TFI,
|
||||
FunctionDSGraph &CallerIPGraph);
|
||||
|
||||
};
|
||||
}
|
||||
@ -220,43 +240,15 @@ bool PoolAllocate::processFunction(Function *F) {
|
||||
// This fills in the PoolDescriptors map to associate the alloc node with the
|
||||
// allocation of the memory pool corresponding to it.
|
||||
//
|
||||
map<AllocDSNode*, AllocaInst*> PoolDescriptors;
|
||||
map<DSNode*, Value*> PoolDescriptors;
|
||||
CreatePools(F, Allocs, PoolDescriptors);
|
||||
|
||||
|
||||
// Loop through the value map looking for scalars that refer to nonescaping
|
||||
// allocations. Add them to the Scalars vector. Note that we may have
|
||||
// multiple entries in the Scalars vector for each value if it points to more
|
||||
// than one object.
|
||||
//
|
||||
map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
|
||||
vector<ScalarInfo> Scalars;
|
||||
|
||||
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
|
||||
E = ValMap.end(); I != E; ++I) {
|
||||
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
|
||||
|
||||
assert(PVS.size() == 1 &&
|
||||
"Only handle scalars that point to one thing so far!");
|
||||
|
||||
// Check to see if the scalar points to anything that is an allocation...
|
||||
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
||||
if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
|
||||
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
|
||||
|
||||
// If the allocation is in the nonescaping set...
|
||||
map<AllocDSNode*, AllocaInst*>::iterator AI=PoolDescriptors.find(Alloc);
|
||||
if (AI != PoolDescriptors.end()) // Add it to the list of scalars
|
||||
Scalars.push_back(ScalarInfo(I->first, Alloc, AI->second));
|
||||
}
|
||||
}
|
||||
|
||||
// Now we need to figure out what called methods we need to transform, and
|
||||
// how. To do this, we look at all of the scalars, seeing which functions are
|
||||
// either used as a scalar value (so they return a data structure), or are
|
||||
// passed one of our scalar values.
|
||||
//
|
||||
transformFunctionBody(F, Scalars, PoolDescriptors);
|
||||
transformFunctionBody(F, IPGraph, PoolDescriptors);
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -393,29 +385,66 @@ public:
|
||||
|
||||
|
||||
static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg,
|
||||
DSNode *AllocNode,
|
||||
map<AllocDSNode*, AllocaInst*> &PoolDescriptors) {
|
||||
DSNode *GraphNode,
|
||||
map<DSNode*, Value*> &PoolDescriptors) {
|
||||
|
||||
// For now, add the entire graph that is pointed to by the call argument.
|
||||
// This graph can and should be pruned to only what the function itself will
|
||||
// use, because often this will be a dramatically smaller subset of what we
|
||||
// are providing.
|
||||
//
|
||||
for (df_iterator<DSNode*> I = df_begin(AllocNode), E = df_end(AllocNode);
|
||||
for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
|
||||
I != E; ++I) {
|
||||
if (AllocDSNode *AN = dyn_cast<AllocDSNode>(*I))
|
||||
TFI.ArgInfo.push_back(CallArgInfo(Arg, AN, PoolDescriptors[AN]));
|
||||
TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I]));
|
||||
}
|
||||
|
||||
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
|
||||
assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
|
||||
"Function call record should always call the same function!");
|
||||
assert(TFI.Call == 0 || TFI.Call == CI &&
|
||||
"Call element already filled in with different value!");
|
||||
TFI.Func = CI->getCalledFunction();
|
||||
TFI.Call = CI;
|
||||
}
|
||||
|
||||
void PoolAllocate::transformFunctionBody(Function *F,
|
||||
vector<ScalarInfo> &Scalars,
|
||||
map<AllocDSNode*, AllocaInst*> &PoolDescriptors) {
|
||||
|
||||
// transformFunctionBody - This transforms the instruction in 'F' to use the
|
||||
// pools specified in PoolDescriptors when modifying data structure nodes
|
||||
// specified in the PoolDescriptors map. Specifically, scalar values specified
|
||||
// in the Scalars vector must be remapped. IPFGraph is the closed data
|
||||
// structure graph for F, of which the PoolDescriptor nodes come from.
|
||||
//
|
||||
void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
|
||||
map<DSNode*, Value*> &PoolDescriptors) {
|
||||
|
||||
// Loop through the value map looking for scalars that refer to nonescaping
|
||||
// allocations. Add them to the Scalars vector. Note that we may have
|
||||
// multiple entries in the Scalars vector for each value if it points to more
|
||||
// than one object.
|
||||
//
|
||||
map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap();
|
||||
vector<ScalarInfo> Scalars;
|
||||
|
||||
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
|
||||
E = ValMap.end(); I != E; ++I) {
|
||||
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
|
||||
|
||||
assert(PVS.size() == 1 &&
|
||||
"Only handle scalars that point to one thing so far!");
|
||||
|
||||
// Check to see if the scalar points to a data structure node...
|
||||
for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
|
||||
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
|
||||
|
||||
// If the allocation is in the nonescaping set...
|
||||
map<DSNode*, Value*>::iterator AI = PoolDescriptors.find(PVS[i].Node);
|
||||
if (AI != PoolDescriptors.end()) // Add it to the list of scalars
|
||||
Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
cerr << "In '" << F->getName()
|
||||
<< "': Found the following values that point to poolable nodes:\n";
|
||||
|
||||
@ -439,7 +468,7 @@ void PoolAllocate::transformFunctionBody(Function *F,
|
||||
// Check to see if the scalar _IS_ a call...
|
||||
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
|
||||
// If so, add information about the pool it will be returning...
|
||||
addCallInfo(CallMap[CI], CI, -1, Scalars[i].AllocNode, PoolDescriptors);
|
||||
addCallInfo(CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors);
|
||||
|
||||
// Check to see if the scalar is an operand to a call...
|
||||
for (Value::use_iterator UI = ScalarVal->use_begin(),
|
||||
@ -454,7 +483,7 @@ void PoolAllocate::transformFunctionBody(Function *F,
|
||||
// than once! It will get multiple entries for the first pointer.
|
||||
|
||||
// Add the operand number and pool handle to the call table...
|
||||
addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].AllocNode,
|
||||
addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node,
|
||||
PoolDescriptors);
|
||||
}
|
||||
}
|
||||
@ -466,9 +495,9 @@ void PoolAllocate::transformFunctionBody(Function *F,
|
||||
cerr << "\nFor call: ";
|
||||
I->first->dump();
|
||||
I->second.finalizeConstruction();
|
||||
cerr << I->second.Func->getName() << " must pass pool pointer for arg #";
|
||||
cerr << I->second.Func->getName() << " must pass pool pointer for args #";
|
||||
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
|
||||
cerr << I->second.ArgInfo[i].ArgNo << " ";
|
||||
cerr << I->second.ArgInfo[i].ArgNo << ", ";
|
||||
cerr << "\n";
|
||||
}
|
||||
|
||||
@ -480,7 +509,10 @@ void PoolAllocate::transformFunctionBody(Function *F,
|
||||
E = CallMap.end(); I != E; ++I) {
|
||||
// Make sure the entries are sorted.
|
||||
I->second.finalizeConstruction();
|
||||
transformFunction(I->second);
|
||||
|
||||
// Transform all of the functions we need, or at least ensure there is a
|
||||
// cached version available.
|
||||
transformFunction(I->second, IPFGraph);
|
||||
}
|
||||
|
||||
// Now that all of the functions that we want to call are available, transform
|
||||
@ -519,15 +551,83 @@ void PoolAllocate::transformFunctionBody(Function *F,
|
||||
DS->invalidateFunction(F);
|
||||
}
|
||||
|
||||
static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS,
|
||||
map<DSNode*, PointerValSet> &NodeMapping) {
|
||||
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
||||
if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet?
|
||||
assert(PVS[i].Index == 0 && "Node indexing not supported yet!");
|
||||
DSNode *DestNode = PVS[i].Node;
|
||||
|
||||
// transformFunction - Transform the specified function the specified way.
|
||||
// It we have already transformed that function that way, don't do anything.
|
||||
// Loop over all of the outgoing links in the mapped graph
|
||||
for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) {
|
||||
PointerValSet &SrcSet = SrcNode->getOutgoingLink(l);
|
||||
const PointerValSet &DestSet = DestNode->getOutgoingLink(l);
|
||||
assert((!SrcSet.empty() || DestSet.empty()) &&
|
||||
"Dest graph should be a proper subset of the src graph!");
|
||||
|
||||
// Add all of the node mappings now!
|
||||
for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) {
|
||||
assert(SrcSet[si].Index == 0 && "Can't handle node offset!");
|
||||
addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// CalculateNodeMapping - There is a partial isomorphism between the graph
|
||||
// passed in and the graph that is actually used by the function. We need to
|
||||
// figure out what this mapping is so that we can transformFunctionBody the
|
||||
// instructions in the function itself. Note that every node in the graph that
|
||||
// we are interested in must be both in the local graph of the called function,
|
||||
// and in the local graph of the calling function. Because of this, we only
|
||||
// define the mapping for these nodes [conveniently these are the only nodes we
|
||||
// CAN define a mapping for...]
|
||||
//
|
||||
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
|
||||
// The roots of the graph that we are transforming is rooted in the arguments
|
||||
// passed into the function from the caller. This is where we start our
|
||||
// mapping calculation.
|
||||
//
|
||||
// The NodeMapping calculated maps from the callers graph to the called graph.
|
||||
//
|
||||
static void CalculateNodeMapping(TransformFunctionInfo &TFI,
|
||||
FunctionDSGraph &CallerGraph,
|
||||
FunctionDSGraph &CalledGraph,
|
||||
map<DSNode*, PointerValSet> &NodeMapping) {
|
||||
int LastArgNo = -2;
|
||||
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
|
||||
// Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node
|
||||
// corresponds to...
|
||||
//
|
||||
// Only consider first node of sequence. Extra nodes may may be added
|
||||
// to the TFI if the data structure requires more nodes than just the
|
||||
// one the argument points to. We are only interested in the one the
|
||||
// argument points to though.
|
||||
//
|
||||
if (TFI.ArgInfo[i].ArgNo != LastArgNo) {
|
||||
if (TFI.ArgInfo[i].ArgNo == -1) {
|
||||
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(),
|
||||
NodeMapping);
|
||||
} else {
|
||||
// Figure out which node argument # ArgNo points to in the called graph.
|
||||
Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo];
|
||||
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
|
||||
NodeMapping);
|
||||
}
|
||||
LastArgNo = TFI.ArgInfo[i].ArgNo;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// transformFunction - Transform the specified function the specified way. It
|
||||
// we have already transformed that function that way, don't do anything. The
|
||||
// nodes in the TransformFunctionInfo come out of callers data structure graph.
|
||||
//
|
||||
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
|
||||
FunctionDSGraph &CallerIPGraph) {
|
||||
if (getTransformedFunction(TFI)) return; // Function xformation already done?
|
||||
|
||||
Function *FuncToXForm = TFI.Func;
|
||||
const FunctionType *OldFuncType = FuncToXForm->getFunctionType();
|
||||
const FunctionType *OldFuncType = TFI.Func->getFunctionType();
|
||||
|
||||
assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
|
||||
|
||||
@ -549,7 +649,7 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
|
||||
// pointers. [in the future when they are implemented].
|
||||
//
|
||||
Function *NewFunc = new Function(NewFuncType, true,
|
||||
FuncToXForm->getName()+".poolxform");
|
||||
TFI.Func->getName()+".poolxform");
|
||||
CurModule->getFunctionList().push_back(NewFunc);
|
||||
|
||||
// Add the newly formed function to the TransformedFunctions table so that
|
||||
@ -559,8 +659,8 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
|
||||
|
||||
// Add arguments to the function... starting with all of the old arguments
|
||||
vector<Value*> ArgMap;
|
||||
for (unsigned i = 0, e = FuncToXForm->getArgumentList().size(); i != e; ++i) {
|
||||
const FunctionArgument *OFA = FuncToXForm->getArgumentList()[i];
|
||||
for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
|
||||
const FunctionArgument *OFA = TFI.Func->getArgumentList()[i];
|
||||
FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName());
|
||||
NewFunc->getArgumentList().push_back(NFA);
|
||||
ArgMap.push_back(NFA); // Keep track of the arguments
|
||||
@ -578,12 +678,70 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
|
||||
}
|
||||
|
||||
// Now clone the body of the old function into the new function...
|
||||
CloneFunctionInto(NewFunc, FuncToXForm, ArgMap);
|
||||
CloneFunctionInto(NewFunc, TFI.Func, ArgMap);
|
||||
|
||||
// Okay, now we have a function that is identical to the old one, except that
|
||||
// it has extra arguments for the pools coming in.
|
||||
// it has extra arguments for the pools coming in. Now we have to get the
|
||||
// data structure graph for the function we are replacing, and figure out how
|
||||
// our graph nodes map to the graph nodes in the dest function.
|
||||
//
|
||||
FunctionDSGraph &DSGraph = DS->getClosedDSGraph(TFI.Func);
|
||||
|
||||
// NodeMapping - Multimap from callers graph to called graph.
|
||||
//
|
||||
map<DSNode*, PointerValSet> NodeMapping;
|
||||
|
||||
CalculateNodeMapping(TFI, CallerIPGraph, DSGraph,
|
||||
NodeMapping);
|
||||
|
||||
// Print out the node mapping...
|
||||
cerr << "\nNode mapping for call of " << TFI.Func->getName() << "\n";
|
||||
for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
|
||||
I != NodeMapping.end(); ++I) {
|
||||
cerr << "Map: "; I->first->print(cerr);
|
||||
cerr << "To: "; I->second.print(cerr);
|
||||
cerr << "\n";
|
||||
}
|
||||
|
||||
// Fill in the PoolDescriptor information for the transformed function so that
|
||||
// it can determine which value holds the pool descriptor for each data
|
||||
// structure node that it accesses.
|
||||
//
|
||||
map<DSNode*, Value*> PoolDescriptors;
|
||||
|
||||
cerr << "FIXME: PoolDescriptors not built!\n";
|
||||
|
||||
#if 0
|
||||
// First add the incoming arguments to the scalar map...
|
||||
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
|
||||
if (TFI.ArgInfo[i].ArgNo == -1) {
|
||||
|
||||
} else {
|
||||
Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo];
|
||||
|
||||
// Find out what nodes the argument points to in the called functions data
|
||||
// structure graph...
|
||||
//
|
||||
PointerValSet &ArgNodes = DSGraph.getValueMap()[Arg];
|
||||
|
||||
// Add mappings for all of the arguments of this function...
|
||||
for (unsigned ArgVal = 0, AVE = ArgNodes.size(); ArgVal != AVE; ++ArgVal){
|
||||
assert(ArgNodes[ArgVal].Index == 0 &&
|
||||
"Arg that points into an object not handled yet!");
|
||||
DSNode *ArgNode = ArgNodes[ArgVal].Node;
|
||||
Scalars.push_back(ScalarInfo(Arg, ArgNode, PoolDescriptors[ArgNode]));
|
||||
}
|
||||
ArgOffset++;
|
||||
}
|
||||
|
||||
// Now that we know everything we need about the function, transform the body
|
||||
// now!
|
||||
//
|
||||
transformFunctionBody(TFI.Func, DSGraph, PoolDescriptors);
|
||||
|
||||
cerr << "Function after transformation:\n";
|
||||
TFI.Func->dump();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@ -593,7 +751,7 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
|
||||
// PoolDescriptors vector.
|
||||
//
|
||||
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
||||
map<AllocDSNode*, AllocaInst*> &PoolDescriptors){
|
||||
map<DSNode*, Value*> &PoolDescriptors) {
|
||||
// FIXME: This should use an IP version of the UnifyAllExits pass!
|
||||
vector<BasicBlock*> ReturnNodes;
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
||||
|
Loading…
x
Reference in New Issue
Block a user