* Clean up data structures [AllocDSNode -> DSNode]

* TransformFunctionInfo now has call field form field mapping.  May be
  removed in the future.
* Moved the computation of "Scalars" into transformFunctionBody so
  transformFunction didn't have to recompute it.
* Implement the node mapping calculation in preparation to calculate
  PoolDescriptors to pass to transformFunctionBody
* Print out the node mapping [it looks right!]
* Other minor changes


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2056 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-03-30 09:12:35 +00:00
parent 9a691dbc82
commit cfb5f4ce2e

View File

@ -32,24 +32,28 @@ namespace {
// datastructure we are processing.
//
struct ScalarInfo {
Value *Val; // Scalar value in Current Function
AllocDSNode *AllocNode; // Allocation node it points to
Value *PoolHandle; // PoolTy* LLVM value
Value *Val; // Scalar value in Current Function
DSNode *Node; // DataStructure node it points to
Value *PoolHandle; // PoolTy* LLVM value
ScalarInfo(Value *V, AllocDSNode *AN, Value *PH)
: Val(V), AllocNode(AN), PoolHandle(PH) {}
ScalarInfo(Value *V, DSNode *N, Value *PH)
: Val(V), Node(N), PoolHandle(PH) {
assert(V && N && PH && "Null value passed to ScalarInfo ctor!");
}
};
// CallArgInfo - Information on one operand for a call that got expanded.
struct CallArgInfo {
int ArgNo; // Call argument number this corresponds to
AllocDSNode *AllocNode; // The allocation graph node for the pool
Value *PoolHandle; // The LLVM value that is the pool pointer
int ArgNo; // Call argument number this corresponds to
DSNode *Node; // The graph node for the pool
Value *PoolHandle; // The LLVM value that is the pool pointer
CallArgInfo(int Arg, AllocDSNode *AN, Value *PH)
: ArgNo(Arg), AllocNode(AN), PoolHandle(PH) {
CallArgInfo(int Arg, DSNode *N, Value *PH)
: ArgNo(Arg), Node(N), PoolHandle(PH) {
assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!");
}
// operator< when sorting, sort by argument number.
bool operator<(const CallArgInfo &CAI) const {
return ArgNo < CAI.ArgNo;
}
@ -71,8 +75,12 @@ namespace {
// Func - The function to be transformed...
Function *Func;
// The call instruction that is used to map CallArgInfo PoolHandle values
// into the new function values.
CallInst *Call;
// default ctor...
TransformFunctionInfo() : Func(0) {}
TransformFunctionInfo() : Func(0), Call(0) {}
bool operator<(const TransformFunctionInfo &TFI) const {
if (Func < TFI.Func) return true;
@ -84,8 +92,10 @@ namespace {
void finalizeConstruction() {
// Sort the vector so that the return value is first, followed by the
// argument records, in order.
sort(ArgInfo.begin(), ArgInfo.end());
// argument records, in order. Note that this must be a stable sort so
// that the entries with the same sorting criteria (ie they are multiple
// pool entries for the same argument) are kept in depth first order.
stable_sort(ArgInfo.begin(), ArgInfo.end());
}
};
@ -128,7 +138,10 @@ namespace {
// Prototypes that we add to support pool allocation...
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
// The map of already transformed functions...
// The map of already transformed functions... note that the keys of this
// map do not have meaningful values for 'Call' or the 'PoolHandle' elements
// of the ArgInfo elements.
//
map<TransformFunctionInfo, Function*> TransformedFunctions;
// getTransformedFunction - Get a transformed function, or return null if
@ -151,24 +164,31 @@ namespace {
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
// PoolDescriptors vector.
// PoolDescriptors map.
//
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
map<AllocDSNode*, AllocaInst*> &PoolDescriptors);
map<DSNode*, Value*> &PoolDescriptors);
// processFunction - Convert a function to use pool allocation where
// available.
//
bool processFunction(Function *F);
void transformFunctionBody(Function *F, vector<ScalarInfo> &Scalars,
map<AllocDSNode*, AllocaInst*> &PoolDescriptors);
// transformFunctionBody - This transforms the instruction in 'F' to use the
// pools specified in PoolDescriptors when modifying data structure nodes
// specified in the PoolDescriptors map. IPFGraph is the closed data
// structure graph for F, of which the PoolDescriptor nodes come from.
//
void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
map<DSNode*, Value*> &PoolDescriptors);
// transformFunction - Transform the specified function the specified way.
// It we have already transformed that function that way, don't do anything.
// The nodes in the TransformFunctionInfo come out of callers data structure
// graph.
//
void transformFunction(TransformFunctionInfo &TFI);
void transformFunction(TransformFunctionInfo &TFI,
FunctionDSGraph &CallerIPGraph);
};
}
@ -220,43 +240,15 @@ bool PoolAllocate::processFunction(Function *F) {
// This fills in the PoolDescriptors map to associate the alloc node with the
// allocation of the memory pool corresponding to it.
//
map<AllocDSNode*, AllocaInst*> PoolDescriptors;
map<DSNode*, Value*> PoolDescriptors;
CreatePools(F, Allocs, PoolDescriptors);
// Loop through the value map looking for scalars that refer to nonescaping
// allocations. Add them to the Scalars vector. Note that we may have
// multiple entries in the Scalars vector for each value if it points to more
// than one object.
//
map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
vector<ScalarInfo> Scalars;
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I) {
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
assert(PVS.size() == 1 &&
"Only handle scalars that point to one thing so far!");
// Check to see if the scalar points to anything that is an allocation...
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
// If the allocation is in the nonescaping set...
map<AllocDSNode*, AllocaInst*>::iterator AI=PoolDescriptors.find(Alloc);
if (AI != PoolDescriptors.end()) // Add it to the list of scalars
Scalars.push_back(ScalarInfo(I->first, Alloc, AI->second));
}
}
// Now we need to figure out what called methods we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
//
transformFunctionBody(F, Scalars, PoolDescriptors);
transformFunctionBody(F, IPGraph, PoolDescriptors);
return true;
}
@ -393,29 +385,66 @@ public:
static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg,
DSNode *AllocNode,
map<AllocDSNode*, AllocaInst*> &PoolDescriptors) {
DSNode *GraphNode,
map<DSNode*, Value*> &PoolDescriptors) {
// For now, add the entire graph that is pointed to by the call argument.
// This graph can and should be pruned to only what the function itself will
// use, because often this will be a dramatically smaller subset of what we
// are providing.
//
for (df_iterator<DSNode*> I = df_begin(AllocNode), E = df_end(AllocNode);
for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
I != E; ++I) {
if (AllocDSNode *AN = dyn_cast<AllocDSNode>(*I))
TFI.ArgInfo.push_back(CallArgInfo(Arg, AN, PoolDescriptors[AN]));
TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I]));
}
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
"Function call record should always call the same function!");
assert(TFI.Call == 0 || TFI.Call == CI &&
"Call element already filled in with different value!");
TFI.Func = CI->getCalledFunction();
TFI.Call = CI;
}
void PoolAllocate::transformFunctionBody(Function *F,
vector<ScalarInfo> &Scalars,
map<AllocDSNode*, AllocaInst*> &PoolDescriptors) {
// transformFunctionBody - This transforms the instruction in 'F' to use the
// pools specified in PoolDescriptors when modifying data structure nodes
// specified in the PoolDescriptors map. Specifically, scalar values specified
// in the Scalars vector must be remapped. IPFGraph is the closed data
// structure graph for F, of which the PoolDescriptor nodes come from.
//
void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
map<DSNode*, Value*> &PoolDescriptors) {
// Loop through the value map looking for scalars that refer to nonescaping
// allocations. Add them to the Scalars vector. Note that we may have
// multiple entries in the Scalars vector for each value if it points to more
// than one object.
//
map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap();
vector<ScalarInfo> Scalars;
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I) {
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
assert(PVS.size() == 1 &&
"Only handle scalars that point to one thing so far!");
// Check to see if the scalar points to a data structure node...
for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
// If the allocation is in the nonescaping set...
map<DSNode*, Value*>::iterator AI = PoolDescriptors.find(PVS[i].Node);
if (AI != PoolDescriptors.end()) // Add it to the list of scalars
Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second));
}
}
cerr << "In '" << F->getName()
<< "': Found the following values that point to poolable nodes:\n";
@ -439,7 +468,7 @@ void PoolAllocate::transformFunctionBody(Function *F,
// Check to see if the scalar _IS_ a call...
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
// If so, add information about the pool it will be returning...
addCallInfo(CallMap[CI], CI, -1, Scalars[i].AllocNode, PoolDescriptors);
addCallInfo(CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors);
// Check to see if the scalar is an operand to a call...
for (Value::use_iterator UI = ScalarVal->use_begin(),
@ -454,7 +483,7 @@ void PoolAllocate::transformFunctionBody(Function *F,
// than once! It will get multiple entries for the first pointer.
// Add the operand number and pool handle to the call table...
addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].AllocNode,
addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node,
PoolDescriptors);
}
}
@ -466,9 +495,9 @@ void PoolAllocate::transformFunctionBody(Function *F,
cerr << "\nFor call: ";
I->first->dump();
I->second.finalizeConstruction();
cerr << I->second.Func->getName() << " must pass pool pointer for arg #";
cerr << I->second.Func->getName() << " must pass pool pointer for args #";
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
cerr << I->second.ArgInfo[i].ArgNo << " ";
cerr << I->second.ArgInfo[i].ArgNo << ", ";
cerr << "\n";
}
@ -480,7 +509,10 @@ void PoolAllocate::transformFunctionBody(Function *F,
E = CallMap.end(); I != E; ++I) {
// Make sure the entries are sorted.
I->second.finalizeConstruction();
transformFunction(I->second);
// Transform all of the functions we need, or at least ensure there is a
// cached version available.
transformFunction(I->second, IPFGraph);
}
// Now that all of the functions that we want to call are available, transform
@ -519,15 +551,83 @@ void PoolAllocate::transformFunctionBody(Function *F,
DS->invalidateFunction(F);
}
static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS,
map<DSNode*, PointerValSet> &NodeMapping) {
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet?
assert(PVS[i].Index == 0 && "Node indexing not supported yet!");
DSNode *DestNode = PVS[i].Node;
// transformFunction - Transform the specified function the specified way.
// It we have already transformed that function that way, don't do anything.
// Loop over all of the outgoing links in the mapped graph
for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) {
PointerValSet &SrcSet = SrcNode->getOutgoingLink(l);
const PointerValSet &DestSet = DestNode->getOutgoingLink(l);
assert((!SrcSet.empty() || DestSet.empty()) &&
"Dest graph should be a proper subset of the src graph!");
// Add all of the node mappings now!
for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) {
assert(SrcSet[si].Index == 0 && "Can't handle node offset!");
addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping);
}
}
}
}
// CalculateNodeMapping - There is a partial isomorphism between the graph
// passed in and the graph that is actually used by the function. We need to
// figure out what this mapping is so that we can transformFunctionBody the
// instructions in the function itself. Note that every node in the graph that
// we are interested in must be both in the local graph of the called function,
// and in the local graph of the calling function. Because of this, we only
// define the mapping for these nodes [conveniently these are the only nodes we
// CAN define a mapping for...]
//
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
// The roots of the graph that we are transforming is rooted in the arguments
// passed into the function from the caller. This is where we start our
// mapping calculation.
//
// The NodeMapping calculated maps from the callers graph to the called graph.
//
static void CalculateNodeMapping(TransformFunctionInfo &TFI,
FunctionDSGraph &CallerGraph,
FunctionDSGraph &CalledGraph,
map<DSNode*, PointerValSet> &NodeMapping) {
int LastArgNo = -2;
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
// Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node
// corresponds to...
//
// Only consider first node of sequence. Extra nodes may may be added
// to the TFI if the data structure requires more nodes than just the
// one the argument points to. We are only interested in the one the
// argument points to though.
//
if (TFI.ArgInfo[i].ArgNo != LastArgNo) {
if (TFI.ArgInfo[i].ArgNo == -1) {
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(),
NodeMapping);
} else {
// Figure out which node argument # ArgNo points to in the called graph.
Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo];
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
NodeMapping);
}
LastArgNo = TFI.ArgInfo[i].ArgNo;
}
}
}
// transformFunction - Transform the specified function the specified way. It
// we have already transformed that function that way, don't do anything. The
// nodes in the TransformFunctionInfo come out of callers data structure graph.
//
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
FunctionDSGraph &CallerIPGraph) {
if (getTransformedFunction(TFI)) return; // Function xformation already done?
Function *FuncToXForm = TFI.Func;
const FunctionType *OldFuncType = FuncToXForm->getFunctionType();
const FunctionType *OldFuncType = TFI.Func->getFunctionType();
assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
@ -549,7 +649,7 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
// pointers. [in the future when they are implemented].
//
Function *NewFunc = new Function(NewFuncType, true,
FuncToXForm->getName()+".poolxform");
TFI.Func->getName()+".poolxform");
CurModule->getFunctionList().push_back(NewFunc);
// Add the newly formed function to the TransformedFunctions table so that
@ -559,8 +659,8 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
// Add arguments to the function... starting with all of the old arguments
vector<Value*> ArgMap;
for (unsigned i = 0, e = FuncToXForm->getArgumentList().size(); i != e; ++i) {
const FunctionArgument *OFA = FuncToXForm->getArgumentList()[i];
for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
const FunctionArgument *OFA = TFI.Func->getArgumentList()[i];
FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName());
NewFunc->getArgumentList().push_back(NFA);
ArgMap.push_back(NFA); // Keep track of the arguments
@ -578,12 +678,70 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
}
// Now clone the body of the old function into the new function...
CloneFunctionInto(NewFunc, FuncToXForm, ArgMap);
CloneFunctionInto(NewFunc, TFI.Func, ArgMap);
// Okay, now we have a function that is identical to the old one, except that
// it has extra arguments for the pools coming in.
// it has extra arguments for the pools coming in. Now we have to get the
// data structure graph for the function we are replacing, and figure out how
// our graph nodes map to the graph nodes in the dest function.
//
FunctionDSGraph &DSGraph = DS->getClosedDSGraph(TFI.Func);
// NodeMapping - Multimap from callers graph to called graph.
//
map<DSNode*, PointerValSet> NodeMapping;
CalculateNodeMapping(TFI, CallerIPGraph, DSGraph,
NodeMapping);
// Print out the node mapping...
cerr << "\nNode mapping for call of " << TFI.Func->getName() << "\n";
for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
I != NodeMapping.end(); ++I) {
cerr << "Map: "; I->first->print(cerr);
cerr << "To: "; I->second.print(cerr);
cerr << "\n";
}
// Fill in the PoolDescriptor information for the transformed function so that
// it can determine which value holds the pool descriptor for each data
// structure node that it accesses.
//
map<DSNode*, Value*> PoolDescriptors;
cerr << "FIXME: PoolDescriptors not built!\n";
#if 0
// First add the incoming arguments to the scalar map...
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
if (TFI.ArgInfo[i].ArgNo == -1) {
} else {
Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo];
// Find out what nodes the argument points to in the called functions data
// structure graph...
//
PointerValSet &ArgNodes = DSGraph.getValueMap()[Arg];
// Add mappings for all of the arguments of this function...
for (unsigned ArgVal = 0, AVE = ArgNodes.size(); ArgVal != AVE; ++ArgVal){
assert(ArgNodes[ArgVal].Index == 0 &&
"Arg that points into an object not handled yet!");
DSNode *ArgNode = ArgNodes[ArgVal].Node;
Scalars.push_back(ScalarInfo(Arg, ArgNode, PoolDescriptors[ArgNode]));
}
ArgOffset++;
}
// Now that we know everything we need about the function, transform the body
// now!
//
transformFunctionBody(TFI.Func, DSGraph, PoolDescriptors);
cerr << "Function after transformation:\n";
TFI.Func->dump();
#endif
}
@ -593,7 +751,7 @@ void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
// PoolDescriptors vector.
//
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
map<AllocDSNode*, AllocaInst*> &PoolDescriptors){
map<DSNode*, Value*> &PoolDescriptors) {
// FIXME: This should use an IP version of the UnifyAllExits pass!
vector<BasicBlock*> ReturnNodes;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)