mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 17:32:19 +00:00
Revert r75252 which was causing some crashes at compile time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75384 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
4f06649497
commit
d0cca24150
@ -26,7 +26,6 @@
|
||||
#include "llvm/Support/DataTypes.h"
|
||||
#include "llvm/Support/ValueHandle.h"
|
||||
#include "llvm/Support/Allocator.h"
|
||||
#include "llvm/Support/ConstantRange.h"
|
||||
#include "llvm/ADT/FoldingSet.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include <iosfwd>
|
||||
@ -334,20 +333,12 @@ namespace llvm {
|
||||
/// found.
|
||||
BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
|
||||
|
||||
/// isNecessaryCond - Test whether the condition described by Pred, LHS,
|
||||
/// and RHS is a necessary condition for the given Cond value to evaluate
|
||||
/// to true.
|
||||
/// isNecessaryCond - Test whether the given CondValue value is a condition
|
||||
/// which is at least as strict as the one described by Pred, LHS, and RHS.
|
||||
bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS,
|
||||
bool Inverse);
|
||||
|
||||
/// isNecessaryCondOperands - Test whether the condition described by Pred,
|
||||
/// LHS, and RHS is a necessary condition for the condition described by
|
||||
/// Pred, FoundLHS, and FoundRHS to evaluate to true.
|
||||
bool isNecessaryCondOperands(ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS,
|
||||
const SCEV *FoundLHS, const SCEV *FoundRHS);
|
||||
|
||||
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
|
||||
/// in the header of its containing loop, we know the loop executes a
|
||||
/// constant number of times, and the PHI node is just a recurrence
|
||||
@ -507,16 +498,10 @@ namespace llvm {
|
||||
|
||||
/// isLoopGuardedByCond - Test whether entry to the loop is protected by
|
||||
/// a conditional between LHS and RHS. This is used to help avoid max
|
||||
/// expressions in loop trip counts, and to eliminate casts.
|
||||
/// expressions in loop trip counts.
|
||||
bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS);
|
||||
|
||||
/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
|
||||
/// protected by a conditional between LHS and RHS. This is used to
|
||||
/// to eliminate casts.
|
||||
bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS);
|
||||
|
||||
/// getBackedgeTakenCount - If the specified loop has a predictable
|
||||
/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
|
||||
/// object. The backedge-taken count is the number of times the loop header
|
||||
@ -552,42 +537,13 @@ namespace llvm {
|
||||
/// bitwidth of S.
|
||||
uint32_t GetMinTrailingZeros(const SCEV *S);
|
||||
|
||||
/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
|
||||
///
|
||||
ConstantRange getUnsignedRange(const SCEV *S);
|
||||
/// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
|
||||
/// guaranteed to begin with (at every loop iteration).
|
||||
uint32_t GetMinLeadingZeros(const SCEV *S);
|
||||
|
||||
/// getSignedRange - Determine the signed range for a particular SCEV.
|
||||
///
|
||||
ConstantRange getSignedRange(const SCEV *S);
|
||||
|
||||
/// isKnownNegative - Test if the given expression is known to be negative.
|
||||
///
|
||||
bool isKnownNegative(const SCEV *S);
|
||||
|
||||
/// isKnownPositive - Test if the given expression is known to be positive.
|
||||
///
|
||||
bool isKnownPositive(const SCEV *S);
|
||||
|
||||
/// isKnownNonNegative - Test if the given expression is known to be
|
||||
/// non-negative.
|
||||
///
|
||||
bool isKnownNonNegative(const SCEV *S);
|
||||
|
||||
/// isKnownNonPositive - Test if the given expression is known to be
|
||||
/// non-positive.
|
||||
///
|
||||
bool isKnownNonPositive(const SCEV *S);
|
||||
|
||||
/// isKnownNonZero - Test if the given expression is known to be
|
||||
/// non-zero.
|
||||
///
|
||||
bool isKnownNonZero(const SCEV *S);
|
||||
|
||||
/// isKnownNonZero - Test if the given expression is known to satisfy
|
||||
/// the condition described by Pred, LHS, and RHS.
|
||||
///
|
||||
bool isKnownPredicate(ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS);
|
||||
/// GetMinSignBits - Determine the minimum number of sign bits that S is
|
||||
/// guaranteed to begin with.
|
||||
uint32_t GetMinSignBits(const SCEV *S);
|
||||
|
||||
virtual bool runOnFunction(Function &F);
|
||||
virtual void releaseMemory();
|
||||
|
@ -454,12 +454,6 @@ namespace llvm {
|
||||
const SCEV *Conc,
|
||||
ScalarEvolution &SE) const;
|
||||
|
||||
/// getPostIncExpr - Return an expression representing the value of
|
||||
/// this expression one iteration of the loop ahead.
|
||||
const SCEV *getPostIncExpr(ScalarEvolution &SE) const {
|
||||
return SE.getAddExpr(this, getStepRecurrence(SE));
|
||||
}
|
||||
|
||||
virtual void print(raw_ostream &OS) const;
|
||||
|
||||
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
||||
|
@ -812,11 +812,6 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
|
||||
// this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
|
||||
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
|
||||
if (AR->isAffine()) {
|
||||
const SCEV *Start = AR->getStart();
|
||||
const SCEV *Step = AR->getStepRecurrence(*this);
|
||||
unsigned BitWidth = getTypeSizeInBits(AR->getType());
|
||||
const Loop *L = AR->getLoop();
|
||||
|
||||
// Check whether the backedge-taken count is SCEVCouldNotCompute.
|
||||
// Note that this serves two purposes: It filters out loops that are
|
||||
// simply not analyzable, and it covers the case where this code is
|
||||
@ -825,10 +820,12 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
|
||||
// in infinite recursion. In the later case, the analysis code will
|
||||
// cope with a conservative value, and it will take care to purge
|
||||
// that value once it has finished.
|
||||
const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
|
||||
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
|
||||
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
|
||||
// Manually compute the final value for AR, checking for
|
||||
// overflow.
|
||||
const SCEV *Start = AR->getStart();
|
||||
const SCEV *Step = AR->getStepRecurrence(*this);
|
||||
|
||||
// Check whether the backedge-taken count can be losslessly casted to
|
||||
// the addrec's type. The count is always unsigned.
|
||||
@ -837,7 +834,8 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
|
||||
const SCEV *RecastedMaxBECount =
|
||||
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
|
||||
if (MaxBECount == RecastedMaxBECount) {
|
||||
const Type *WideTy = IntegerType::get(BitWidth * 2);
|
||||
const Type *WideTy =
|
||||
IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
|
||||
// Check whether Start+Step*MaxBECount has no unsigned overflow.
|
||||
const SCEV *ZMul =
|
||||
getMulExpr(CastedMaxBECount,
|
||||
@ -851,7 +849,7 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
|
||||
// Return the expression with the addrec on the outside.
|
||||
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
|
||||
getZeroExtendExpr(Step, Ty),
|
||||
L);
|
||||
AR->getLoop());
|
||||
|
||||
// Similar to above, only this time treat the step value as signed.
|
||||
// This covers loops that count down.
|
||||
@ -867,35 +865,7 @@ const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
|
||||
// Return the expression with the addrec on the outside.
|
||||
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
|
||||
getSignExtendExpr(Step, Ty),
|
||||
L);
|
||||
}
|
||||
|
||||
// If the backedge is guarded by a comparison with the pre-inc value
|
||||
// the addrec is safe. Also, if the entry is guarded by a comparison
|
||||
// with the start value and the backedge is guarded by a comparison
|
||||
// with the post-inc value, the addrec is safe.
|
||||
if (isKnownPositive(Step)) {
|
||||
const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
|
||||
getUnsignedRange(Step).getUnsignedMax());
|
||||
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
|
||||
(isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
|
||||
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
|
||||
AR->getPostIncExpr(*this), N)))
|
||||
// Return the expression with the addrec on the outside.
|
||||
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
|
||||
getZeroExtendExpr(Step, Ty),
|
||||
L);
|
||||
} else if (isKnownNegative(Step)) {
|
||||
const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
|
||||
getSignedRange(Step).getSignedMin());
|
||||
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
|
||||
(isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
|
||||
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
|
||||
AR->getPostIncExpr(*this), N)))
|
||||
// Return the expression with the addrec on the outside.
|
||||
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
|
||||
getSignExtendExpr(Step, Ty),
|
||||
L);
|
||||
AR->getLoop());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -938,11 +908,6 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
||||
// this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
|
||||
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
|
||||
if (AR->isAffine()) {
|
||||
const SCEV *Start = AR->getStart();
|
||||
const SCEV *Step = AR->getStepRecurrence(*this);
|
||||
unsigned BitWidth = getTypeSizeInBits(AR->getType());
|
||||
const Loop *L = AR->getLoop();
|
||||
|
||||
// Check whether the backedge-taken count is SCEVCouldNotCompute.
|
||||
// Note that this serves two purposes: It filters out loops that are
|
||||
// simply not analyzable, and it covers the case where this code is
|
||||
@ -951,10 +916,12 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
||||
// in infinite recursion. In the later case, the analysis code will
|
||||
// cope with a conservative value, and it will take care to purge
|
||||
// that value once it has finished.
|
||||
const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
|
||||
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
|
||||
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
|
||||
// Manually compute the final value for AR, checking for
|
||||
// overflow.
|
||||
const SCEV *Start = AR->getStart();
|
||||
const SCEV *Step = AR->getStepRecurrence(*this);
|
||||
|
||||
// Check whether the backedge-taken count can be losslessly casted to
|
||||
// the addrec's type. The count is always unsigned.
|
||||
@ -963,7 +930,8 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
||||
const SCEV *RecastedMaxBECount =
|
||||
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
|
||||
if (MaxBECount == RecastedMaxBECount) {
|
||||
const Type *WideTy = IntegerType::get(BitWidth * 2);
|
||||
const Type *WideTy =
|
||||
IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
|
||||
// Check whether Start+Step*MaxBECount has no signed overflow.
|
||||
const SCEV *SMul =
|
||||
getMulExpr(CastedMaxBECount,
|
||||
@ -977,35 +945,7 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
||||
// Return the expression with the addrec on the outside.
|
||||
return getAddRecExpr(getSignExtendExpr(Start, Ty),
|
||||
getSignExtendExpr(Step, Ty),
|
||||
L);
|
||||
}
|
||||
|
||||
// If the backedge is guarded by a comparison with the pre-inc value
|
||||
// the addrec is safe. Also, if the entry is guarded by a comparison
|
||||
// with the start value and the backedge is guarded by a comparison
|
||||
// with the post-inc value, the addrec is safe.
|
||||
if (isKnownPositive(Step)) {
|
||||
const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
|
||||
getSignedRange(Step).getSignedMax());
|
||||
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
|
||||
(isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
|
||||
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
|
||||
AR->getPostIncExpr(*this), N)))
|
||||
// Return the expression with the addrec on the outside.
|
||||
return getAddRecExpr(getSignExtendExpr(Start, Ty),
|
||||
getSignExtendExpr(Step, Ty),
|
||||
L);
|
||||
} else if (isKnownNegative(Step)) {
|
||||
const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
|
||||
getSignedRange(Step).getSignedMin());
|
||||
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
|
||||
(isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
|
||||
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
|
||||
AR->getPostIncExpr(*this), N)))
|
||||
// Return the expression with the addrec on the outside.
|
||||
return getAddRecExpr(getSignExtendExpr(Start, Ty),
|
||||
getSignExtendExpr(Step, Ty),
|
||||
L);
|
||||
AR->getLoop());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2446,16 +2386,19 @@ const SCEV *ScalarEvolution::createNodeForGEP(User *GEP) {
|
||||
const StructLayout &SL = *TD->getStructLayout(STy);
|
||||
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
|
||||
uint64_t Offset = SL.getElementOffset(FieldNo);
|
||||
TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
|
||||
TotalOffset = getAddExpr(TotalOffset,
|
||||
getIntegerSCEV(Offset, IntPtrTy));
|
||||
} else {
|
||||
// For an array, add the element offset, explicitly scaled.
|
||||
const SCEV *LocalOffset = getSCEV(Index);
|
||||
if (!isa<PointerType>(LocalOffset->getType()))
|
||||
// Getelementptr indicies are signed.
|
||||
LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
|
||||
LocalOffset = getTruncateOrSignExtend(LocalOffset,
|
||||
IntPtrTy);
|
||||
LocalOffset =
|
||||
getMulExpr(LocalOffset,
|
||||
getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
|
||||
getIntegerSCEV(TD->getTypeAllocSize(*GTI),
|
||||
IntPtrTy));
|
||||
TotalOffset = getAddExpr(TotalOffset, LocalOffset);
|
||||
}
|
||||
}
|
||||
@ -2543,95 +2486,18 @@ ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
|
||||
///
|
||||
ConstantRange
|
||||
ScalarEvolution::getUnsignedRange(const SCEV *S) {
|
||||
uint32_t
|
||||
ScalarEvolution::GetMinLeadingZeros(const SCEV *S) {
|
||||
// TODO: Handle other SCEV expression types here.
|
||||
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
|
||||
return ConstantRange(C->getValue()->getValue());
|
||||
return C->getValue()->getValue().countLeadingZeros();
|
||||
|
||||
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(Add->getOperand(0));
|
||||
for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
|
||||
X = X.add(getUnsignedRange(Add->getOperand(i)));
|
||||
return X;
|
||||
}
|
||||
|
||||
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(Mul->getOperand(0));
|
||||
for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
|
||||
X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
|
||||
return X;
|
||||
}
|
||||
|
||||
if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(SMax->getOperand(0));
|
||||
for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
|
||||
X = X.smax(getUnsignedRange(SMax->getOperand(i)));
|
||||
return X;
|
||||
}
|
||||
|
||||
if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(UMax->getOperand(0));
|
||||
for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
|
||||
X = X.umax(getUnsignedRange(UMax->getOperand(i)));
|
||||
return X;
|
||||
}
|
||||
|
||||
if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(UDiv->getLHS());
|
||||
ConstantRange Y = getUnsignedRange(UDiv->getRHS());
|
||||
return X.udiv(Y);
|
||||
}
|
||||
|
||||
if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(ZExt->getOperand());
|
||||
return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
|
||||
}
|
||||
|
||||
if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(SExt->getOperand());
|
||||
return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
|
||||
}
|
||||
|
||||
if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
|
||||
ConstantRange X = getUnsignedRange(Trunc->getOperand());
|
||||
return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
|
||||
}
|
||||
|
||||
ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
|
||||
|
||||
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
|
||||
const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
|
||||
const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
|
||||
if (!Trip) return FullSet;
|
||||
|
||||
// TODO: non-affine addrec
|
||||
if (AddRec->isAffine()) {
|
||||
const Type *Ty = AddRec->getType();
|
||||
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
|
||||
if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
|
||||
MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
|
||||
|
||||
const SCEV *Start = AddRec->getStart();
|
||||
const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
|
||||
|
||||
// Check for overflow.
|
||||
if (!isKnownPredicate(ICmpInst::ICMP_ULE, Start, End))
|
||||
return FullSet;
|
||||
|
||||
ConstantRange StartRange = getUnsignedRange(Start);
|
||||
ConstantRange EndRange = getUnsignedRange(End);
|
||||
APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
|
||||
EndRange.getUnsignedMin());
|
||||
APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
|
||||
EndRange.getUnsignedMax());
|
||||
if (Min.isMinValue() && Max.isMaxValue())
|
||||
return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
|
||||
return ConstantRange(Min, Max+1);
|
||||
}
|
||||
}
|
||||
if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
|
||||
// A zero-extension cast adds zero bits.
|
||||
return GetMinLeadingZeros(C->getOperand()) +
|
||||
(getTypeSizeInBits(C->getType()) -
|
||||
getTypeSizeInBits(C->getOperand()->getType()));
|
||||
}
|
||||
|
||||
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
|
||||
@ -2640,119 +2506,67 @@ ScalarEvolution::getUnsignedRange(const SCEV *S) {
|
||||
APInt Mask = APInt::getAllOnesValue(BitWidth);
|
||||
APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
|
||||
ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
|
||||
return ConstantRange(Ones, ~Zeros);
|
||||
return Zeros.countLeadingOnes();
|
||||
}
|
||||
|
||||
return FullSet;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/// getSignedRange - Determine the signed range for a particular SCEV.
|
||||
///
|
||||
ConstantRange
|
||||
ScalarEvolution::getSignedRange(const SCEV *S) {
|
||||
uint32_t
|
||||
ScalarEvolution::GetMinSignBits(const SCEV *S) {
|
||||
// TODO: Handle other SCEV expression types here.
|
||||
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
|
||||
return ConstantRange(C->getValue()->getValue());
|
||||
|
||||
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(Add->getOperand(0));
|
||||
for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
|
||||
X = X.add(getSignedRange(Add->getOperand(i)));
|
||||
return X;
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
|
||||
const APInt &A = C->getValue()->getValue();
|
||||
return A.isNegative() ? A.countLeadingOnes() :
|
||||
A.countLeadingZeros();
|
||||
}
|
||||
|
||||
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(Mul->getOperand(0));
|
||||
for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
|
||||
X = X.multiply(getSignedRange(Mul->getOperand(i)));
|
||||
return X;
|
||||
if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
|
||||
// A sign-extension cast adds sign bits.
|
||||
return GetMinSignBits(C->getOperand()) +
|
||||
(getTypeSizeInBits(C->getType()) -
|
||||
getTypeSizeInBits(C->getOperand()->getType()));
|
||||
}
|
||||
|
||||
if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(SMax->getOperand(0));
|
||||
for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
|
||||
X = X.smax(getSignedRange(SMax->getOperand(i)));
|
||||
return X;
|
||||
}
|
||||
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
|
||||
unsigned BitWidth = getTypeSizeInBits(A->getType());
|
||||
|
||||
if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(UMax->getOperand(0));
|
||||
for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
|
||||
X = X.umax(getSignedRange(UMax->getOperand(i)));
|
||||
return X;
|
||||
}
|
||||
// Special case decrementing a value (ADD X, -1):
|
||||
if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
|
||||
if (CRHS->isAllOnesValue()) {
|
||||
SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
|
||||
const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
|
||||
unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
|
||||
|
||||
if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(UDiv->getLHS());
|
||||
ConstantRange Y = getSignedRange(UDiv->getRHS());
|
||||
return X.udiv(Y);
|
||||
}
|
||||
// If the input is known to be 0 or 1, the output is 0/-1, which is all
|
||||
// sign bits set.
|
||||
if (LZ == BitWidth - 1)
|
||||
return BitWidth;
|
||||
|
||||
if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(ZExt->getOperand());
|
||||
return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
|
||||
}
|
||||
|
||||
if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(SExt->getOperand());
|
||||
return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
|
||||
}
|
||||
|
||||
if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
|
||||
ConstantRange X = getSignedRange(Trunc->getOperand());
|
||||
return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
|
||||
}
|
||||
|
||||
ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
|
||||
|
||||
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
|
||||
const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
|
||||
const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
|
||||
if (!Trip) return FullSet;
|
||||
|
||||
// TODO: non-affine addrec
|
||||
if (AddRec->isAffine()) {
|
||||
const Type *Ty = AddRec->getType();
|
||||
const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
|
||||
if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
|
||||
MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
|
||||
|
||||
const SCEV *Start = AddRec->getStart();
|
||||
const SCEV *Step = AddRec->getStepRecurrence(*this);
|
||||
const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
|
||||
|
||||
// Check for overflow.
|
||||
if (!(isKnownPositive(Step) &&
|
||||
isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
|
||||
!(isKnownNegative(Step) &&
|
||||
isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
|
||||
return FullSet;
|
||||
|
||||
ConstantRange StartRange = getSignedRange(Start);
|
||||
ConstantRange EndRange = getSignedRange(End);
|
||||
APInt Min = APIntOps::smin(StartRange.getSignedMin(),
|
||||
EndRange.getSignedMin());
|
||||
APInt Max = APIntOps::smax(StartRange.getSignedMax(),
|
||||
EndRange.getSignedMax());
|
||||
if (Min.isMinSignedValue() && Max.isMaxSignedValue())
|
||||
return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
|
||||
return ConstantRange(Min, Max+1);
|
||||
// If we are subtracting one from a positive number, there is no carry
|
||||
// out of the result.
|
||||
if (LZ > 0)
|
||||
return GetMinSignBits(OtherOpsAdd);
|
||||
}
|
||||
|
||||
// Add can have at most one carry bit. Thus we know that the output
|
||||
// is, at worst, one more bit than the inputs.
|
||||
unsigned Min = BitWidth;
|
||||
for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
|
||||
unsigned N = GetMinSignBits(A->getOperand(i));
|
||||
Min = std::min(Min, N) - 1;
|
||||
if (Min == 0) return 1;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
|
||||
// For a SCEVUnknown, ask ValueTracking.
|
||||
unsigned BitWidth = getTypeSizeInBits(U->getType());
|
||||
unsigned NS = ComputeNumSignBits(U->getValue(), TD);
|
||||
if (NS == 1)
|
||||
return FullSet;
|
||||
return
|
||||
ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
|
||||
APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
|
||||
return ComputeNumSignBits(U->getValue(), TD);
|
||||
}
|
||||
|
||||
return FullSet;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/// createSCEV - We know that there is no SCEV for the specified value.
|
||||
@ -3832,7 +3646,7 @@ const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
|
||||
if (!isSCEVable(Op->getType()))
|
||||
return V;
|
||||
|
||||
const SCEV* OpV = getSCEVAtScope(Op, L);
|
||||
const SCEV *OpV = getSCEVAtScope(getSCEV(Op), L);
|
||||
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
|
||||
Constant *C = SC->getValue();
|
||||
if (C->getType() != Op->getType())
|
||||
@ -4233,176 +4047,12 @@ static bool HasSameValue(const SCEV *A, const SCEV *B) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ScalarEvolution::isKnownNegative(const SCEV *S) {
|
||||
return getSignedRange(S).getSignedMax().isNegative();
|
||||
}
|
||||
|
||||
bool ScalarEvolution::isKnownPositive(const SCEV *S) {
|
||||
return getSignedRange(S).getSignedMin().isStrictlyPositive();
|
||||
}
|
||||
|
||||
bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
|
||||
return !getSignedRange(S).getSignedMin().isNegative();
|
||||
}
|
||||
|
||||
bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
|
||||
return !getSignedRange(S).getSignedMax().isStrictlyPositive();
|
||||
}
|
||||
|
||||
bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
|
||||
return isKnownNegative(S) || isKnownPositive(S);
|
||||
}
|
||||
|
||||
bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS) {
|
||||
|
||||
if (HasSameValue(LHS, RHS))
|
||||
return ICmpInst::isTrueWhenEqual(Pred);
|
||||
|
||||
switch (Pred) {
|
||||
default:
|
||||
LLVM_UNREACHABLE("Unexpected ICmpInst::Predicate value!");
|
||||
break;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
Pred = ICmpInst::ICMP_SLT;
|
||||
std::swap(LHS, RHS);
|
||||
case ICmpInst::ICMP_SLT: {
|
||||
ConstantRange LHSRange = getSignedRange(LHS);
|
||||
ConstantRange RHSRange = getSignedRange(RHS);
|
||||
if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
|
||||
return false;
|
||||
|
||||
const SCEV *Diff = getMinusSCEV(LHS, RHS);
|
||||
ConstantRange DiffRange = getUnsignedRange(Diff);
|
||||
if (isKnownNegative(Diff)) {
|
||||
if (DiffRange.getUnsignedMax().ult(LHSRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (DiffRange.getUnsignedMin().uge(LHSRange.getUnsignedMax()))
|
||||
return false;
|
||||
} else if (isKnownPositive(Diff)) {
|
||||
if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_SGE:
|
||||
Pred = ICmpInst::ICMP_SLE;
|
||||
std::swap(LHS, RHS);
|
||||
case ICmpInst::ICMP_SLE: {
|
||||
ConstantRange LHSRange = getSignedRange(LHS);
|
||||
ConstantRange RHSRange = getSignedRange(RHS);
|
||||
if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
|
||||
return false;
|
||||
|
||||
const SCEV *Diff = getMinusSCEV(LHS, RHS);
|
||||
ConstantRange DiffRange = getUnsignedRange(Diff);
|
||||
if (isKnownNonPositive(Diff)) {
|
||||
if (DiffRange.getUnsignedMax().ule(LHSRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (DiffRange.getUnsignedMin().ugt(LHSRange.getUnsignedMax()))
|
||||
return false;
|
||||
} else if (isKnownNonNegative(Diff)) {
|
||||
if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_UGT:
|
||||
Pred = ICmpInst::ICMP_ULT;
|
||||
std::swap(LHS, RHS);
|
||||
case ICmpInst::ICMP_ULT: {
|
||||
ConstantRange LHSRange = getUnsignedRange(LHS);
|
||||
ConstantRange RHSRange = getUnsignedRange(RHS);
|
||||
if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
|
||||
return false;
|
||||
|
||||
const SCEV *Diff = getMinusSCEV(LHS, RHS);
|
||||
ConstantRange DiffRange = getUnsignedRange(Diff);
|
||||
if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
|
||||
return false;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_UGE:
|
||||
Pred = ICmpInst::ICMP_ULE;
|
||||
std::swap(LHS, RHS);
|
||||
case ICmpInst::ICMP_ULE: {
|
||||
ConstantRange LHSRange = getUnsignedRange(LHS);
|
||||
ConstantRange RHSRange = getUnsignedRange(RHS);
|
||||
if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
|
||||
return false;
|
||||
|
||||
const SCEV *Diff = getMinusSCEV(LHS, RHS);
|
||||
ConstantRange DiffRange = getUnsignedRange(Diff);
|
||||
if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
|
||||
return true;
|
||||
if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
|
||||
return false;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_NE: {
|
||||
if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
|
||||
return true;
|
||||
if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
|
||||
return true;
|
||||
|
||||
const SCEV *Diff = getMinusSCEV(LHS, RHS);
|
||||
if (isKnownNonZero(Diff))
|
||||
return true;
|
||||
break;
|
||||
}
|
||||
case ICmpInst::ICMP_EQ:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
|
||||
/// protected by a conditional between LHS and RHS. This is used to
|
||||
/// to eliminate casts.
|
||||
bool
|
||||
ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
|
||||
ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS) {
|
||||
// Interpret a null as meaning no loop, where there is obviously no guard
|
||||
// (interprocedural conditions notwithstanding).
|
||||
if (!L) return true;
|
||||
|
||||
BasicBlock *Latch = L->getLoopLatch();
|
||||
if (!Latch)
|
||||
return false;
|
||||
|
||||
BranchInst *LoopContinuePredicate =
|
||||
dyn_cast<BranchInst>(Latch->getTerminator());
|
||||
if (!LoopContinuePredicate ||
|
||||
LoopContinuePredicate->isUnconditional())
|
||||
return false;
|
||||
|
||||
return
|
||||
isNecessaryCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
|
||||
LoopContinuePredicate->getSuccessor(0) != L->getHeader());
|
||||
}
|
||||
|
||||
/// isLoopGuardedByCond - Test whether entry to the loop is protected
|
||||
/// by a conditional between LHS and RHS. This is used to help avoid max
|
||||
/// expressions in loop trip counts, and to eliminate casts.
|
||||
bool
|
||||
ScalarEvolution::isLoopGuardedByCond(const Loop *L,
|
||||
ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS) {
|
||||
/// isLoopGuardedByCond - Test whether entry to the loop is protected by
|
||||
/// a conditional between LHS and RHS. This is used to help avoid max
|
||||
/// expressions in loop trip counts.
|
||||
bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
|
||||
ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS) {
|
||||
// Interpret a null as meaning no loop, where there is obviously no guard
|
||||
// (interprocedural conditions notwithstanding).
|
||||
if (!L) return false;
|
||||
@ -4431,9 +4081,8 @@ ScalarEvolution::isLoopGuardedByCond(const Loop *L,
|
||||
return false;
|
||||
}
|
||||
|
||||
/// isNecessaryCond - Test whether the condition described by Pred, LHS,
|
||||
/// and RHS is a necessary condition for the given Cond value to evaluate
|
||||
/// to true.
|
||||
/// isNecessaryCond - Test whether the given CondValue value is a condition
|
||||
/// which is at least as strict as the one described by Pred, LHS, and RHS.
|
||||
bool ScalarEvolution::isNecessaryCond(Value *CondValue,
|
||||
ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS,
|
||||
@ -4458,35 +4107,30 @@ bool ScalarEvolution::isNecessaryCond(Value *CondValue,
|
||||
// see if it is the comparison we are looking for.
|
||||
Value *PreCondLHS = ICI->getOperand(0);
|
||||
Value *PreCondRHS = ICI->getOperand(1);
|
||||
ICmpInst::Predicate FoundPred;
|
||||
ICmpInst::Predicate Cond;
|
||||
if (Inverse)
|
||||
FoundPred = ICI->getInversePredicate();
|
||||
Cond = ICI->getInversePredicate();
|
||||
else
|
||||
FoundPred = ICI->getPredicate();
|
||||
Cond = ICI->getPredicate();
|
||||
|
||||
if (FoundPred == Pred)
|
||||
if (Cond == Pred)
|
||||
; // An exact match.
|
||||
else if (!ICmpInst::isTrueWhenEqual(FoundPred) && Pred == ICmpInst::ICMP_NE) {
|
||||
// The actual condition is beyond sufficient.
|
||||
FoundPred = ICmpInst::ICMP_NE;
|
||||
// NE is symmetric but the original comparison may not be. Swap
|
||||
// the operands if necessary so that they match below.
|
||||
if (isa<SCEVConstant>(LHS))
|
||||
std::swap(PreCondLHS, PreCondRHS);
|
||||
} else
|
||||
else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
|
||||
; // The actual condition is beyond sufficient.
|
||||
else
|
||||
// Check a few special cases.
|
||||
switch (FoundPred) {
|
||||
switch (Cond) {
|
||||
case ICmpInst::ICMP_UGT:
|
||||
if (Pred == ICmpInst::ICMP_ULT) {
|
||||
std::swap(PreCondLHS, PreCondRHS);
|
||||
FoundPred = ICmpInst::ICMP_ULT;
|
||||
Cond = ICmpInst::ICMP_ULT;
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
if (Pred == ICmpInst::ICMP_SLT) {
|
||||
std::swap(PreCondLHS, PreCondRHS);
|
||||
FoundPred = ICmpInst::ICMP_SLT;
|
||||
Cond = ICmpInst::ICMP_SLT;
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
@ -4495,8 +4139,8 @@ bool ScalarEvolution::isNecessaryCond(Value *CondValue,
|
||||
// so check for this case by checking if the NE is comparing against
|
||||
// a minimum or maximum constant.
|
||||
if (!ICmpInst::isTrueWhenEqual(Pred))
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(RHS)) {
|
||||
const APInt &A = C->getValue()->getValue();
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
|
||||
const APInt &A = CI->getValue();
|
||||
switch (Pred) {
|
||||
case ICmpInst::ICMP_SLT:
|
||||
if (A.isMaxSignedValue()) break;
|
||||
@ -4513,7 +4157,7 @@ bool ScalarEvolution::isNecessaryCond(Value *CondValue,
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
FoundPred = Pred;
|
||||
Cond = ICmpInst::ICMP_NE;
|
||||
// NE is symmetric but the original comparison may not be. Swap
|
||||
// the operands if necessary so that they match below.
|
||||
if (isa<SCEVConstant>(LHS))
|
||||
@ -4526,70 +4170,14 @@ bool ScalarEvolution::isNecessaryCond(Value *CondValue,
|
||||
return false;
|
||||
}
|
||||
|
||||
assert(Pred == FoundPred && "Conditions were not reconciled!");
|
||||
if (!PreCondLHS->getType()->isInteger()) return false;
|
||||
|
||||
const SCEV *FoundLHS = getSCEV(PreCondLHS);
|
||||
const SCEV *FoundRHS = getSCEV(PreCondRHS);
|
||||
|
||||
// Balance the types.
|
||||
if (getTypeSizeInBits(LHS->getType()) >
|
||||
getTypeSizeInBits(FoundLHS->getType())) {
|
||||
if (CmpInst::isSigned(Pred)) {
|
||||
FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
|
||||
FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
|
||||
} else {
|
||||
FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
|
||||
FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
|
||||
}
|
||||
} else if (getTypeSizeInBits(LHS->getType()) <
|
||||
getTypeSizeInBits(FoundLHS->getType())) {
|
||||
// TODO: Cast LHS and RHS to FoundLHS' type. Currently this can
|
||||
// result in infinite recursion since the code to construct
|
||||
// cast expressions may want to know things about the loop
|
||||
// iteration in order to do simplifications.
|
||||
return false;
|
||||
}
|
||||
|
||||
return isNecessaryCondOperands(Pred, LHS, RHS,
|
||||
FoundLHS, FoundRHS) ||
|
||||
// ~x < ~y --> x > y
|
||||
isNecessaryCondOperands(Pred, LHS, RHS,
|
||||
getNotSCEV(FoundRHS), getNotSCEV(FoundLHS));
|
||||
}
|
||||
|
||||
/// isNecessaryCondOperands - Test whether the condition described by Pred,
|
||||
/// LHS, and RHS is a necessary condition for the condition described by
|
||||
/// Pred, FoundLHS, and FoundRHS to evaluate to true.
|
||||
bool
|
||||
ScalarEvolution::isNecessaryCondOperands(ICmpInst::Predicate Pred,
|
||||
const SCEV *LHS, const SCEV *RHS,
|
||||
const SCEV *FoundLHS,
|
||||
const SCEV *FoundRHS) {
|
||||
switch (Pred) {
|
||||
default: break;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
|
||||
isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
|
||||
return true;
|
||||
break;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
|
||||
isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
|
||||
return true;
|
||||
break;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
|
||||
isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
|
||||
return true;
|
||||
break;
|
||||
case ICmpInst::ICMP_UGT:
|
||||
if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
|
||||
isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
|
||||
return true;
|
||||
break;
|
||||
}
|
||||
|
||||
return false;
|
||||
const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
|
||||
const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
|
||||
return (HasSameValue(LHS, PreCondLHSSCEV) &&
|
||||
HasSameValue(RHS, PreCondRHSSCEV)) ||
|
||||
(HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
|
||||
HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
|
||||
}
|
||||
|
||||
/// getBECount - Subtract the end and start values and divide by the step,
|
||||
@ -4674,9 +4262,9 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
const SCEV *Start = AddRec->getOperand(0);
|
||||
|
||||
// Determine the minimum constant start value.
|
||||
const SCEV *MinStart = getConstant(isSigned ?
|
||||
getSignedRange(Start).getSignedMin() :
|
||||
getUnsignedRange(Start).getUnsignedMin());
|
||||
const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
|
||||
getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
|
||||
APInt::getMinValue(BitWidth));
|
||||
|
||||
// If we know that the condition is true in order to enter the loop,
|
||||
// then we know that it will run exactly (m-n)/s times. Otherwise, we
|
||||
@ -4684,16 +4272,18 @@ ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
// the division must round up.
|
||||
const SCEV *End = RHS;
|
||||
if (!isLoopGuardedByCond(L,
|
||||
isSigned ? ICmpInst::ICMP_SLT :
|
||||
ICmpInst::ICMP_ULT,
|
||||
isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
|
||||
getMinusSCEV(Start, Step), RHS))
|
||||
End = isSigned ? getSMaxExpr(RHS, Start)
|
||||
: getUMaxExpr(RHS, Start);
|
||||
|
||||
// Determine the maximum constant end value.
|
||||
const SCEV *MaxEnd = getConstant(isSigned ?
|
||||
getSignedRange(End).getSignedMax() :
|
||||
getUnsignedRange(End).getUnsignedMax());
|
||||
const SCEV *MaxEnd =
|
||||
isa<SCEVConstant>(End) ? End :
|
||||
getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
|
||||
.ashr(GetMinSignBits(End) - 1) :
|
||||
APInt::getMaxValue(BitWidth)
|
||||
.lshr(GetMinLeadingZeros(End)));
|
||||
|
||||
// Finally, we subtract these two values and divide, rounding up, to get
|
||||
// the number of times the backedge is executed.
|
||||
|
@ -1,6 +1,7 @@
|
||||
; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
|
||||
; RUN: grep {= sext} %t | count 4
|
||||
; RUN: grep {phi i64} %t | count 2
|
||||
; XFAIL: *
|
||||
|
||||
; Indvars should be able to promote the hiPart induction variable in the
|
||||
; inner loop to i64.
|
||||
|
Loading…
x
Reference in New Issue
Block a user