* Remove trailing whitespace

* Convert tabs to spaces


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21421 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Misha Brukman 2005-04-21 22:43:08 +00:00
parent edf128a7fa
commit d1c881a8d4
4 changed files with 113 additions and 113 deletions

View File

@ -1,12 +1,12 @@
//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
@ -34,39 +34,39 @@ namespace {
// Value Manipulation code
//===----------------------------------------------------------------------===//
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeShlInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeShrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty);
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
GenericValue Src3);
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
@ -179,8 +179,8 @@ void Interpreter::initializeExecutionEngine() {
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(+, UByte);
@ -200,8 +200,8 @@ static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(-, UByte);
@ -221,8 +221,8 @@ static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(*, UByte);
@ -242,8 +242,8 @@ static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(/, UByte);
@ -263,8 +263,8 @@ static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(%, UByte);
@ -288,8 +288,8 @@ static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(&, Bool);
@ -308,7 +308,7 @@ static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
@ -328,7 +328,7 @@ static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
@ -360,8 +360,8 @@ static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \
(void*)(intptr_t)Src2.PointerVal; break
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_SETCC(==, UByte);
@ -382,8 +382,8 @@ static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_SETCC(!=, UByte);
@ -405,8 +405,8 @@ static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_SETCC(<=, UByte);
@ -427,8 +427,8 @@ static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_SETCC(>=, UByte);
@ -449,8 +449,8 @@ static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_SETCC(<, UByte);
@ -471,8 +471,8 @@ static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
return Dest;
}
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_SETCC(>, UByte);
@ -523,7 +523,7 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
SetValue(&I, R, SF);
}
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
GenericValue Src3) {
return Src1.BoolVal ? Src2 : Src3;
}
@ -564,15 +564,15 @@ void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
// Pop the current stack frame.
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy && RetTy->isIntegral()) { // Nonvoid return type?
ExitCode = Result.IntVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
} else {
// If we have a previous stack frame, and we have a previous call,
// fill in the return value...
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy && RetTy->isIntegral()) { // Nonvoid return type?
ExitCode = Result.IntVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
} else {
// If we have a previous stack frame, and we have a previous call,
// fill in the return value...
ExecutionContext &CallingSF = ECStack.back();
if (Instruction *I = CallingSF.Caller.getInstruction()) {
if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
@ -629,7 +629,7 @@ void Interpreter::visitBranchInst(BranchInst &I) {
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond...
Dest = I.getSuccessor(1);
Dest = I.getSuccessor(1);
}
SwitchToNewBasicBlock(Dest, SF);
}
@ -647,7 +647,7 @@ void Interpreter::visitSwitchInst(SwitchInst &I) {
Dest = cast<BasicBlock>(I.getOperand(i+1));
break;
}
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
SwitchToNewBasicBlock(Dest, SF);
}
@ -677,7 +677,7 @@ void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
int i = PN->getBasicBlockIndex(PrevBB);
assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
Value *IncomingValue = PN->getIncomingValue(i);
// Save the incoming value for this PHI node...
ResultValues.push_back(getOperandValue(IncomingValue, SF));
}
@ -724,8 +724,8 @@ void Interpreter::visitFreeInst(FreeInst &I) {
// getElementOffset - The workhorse for getelementptr.
//
GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
gep_type_iterator E,
ExecutionContext &SF) {
gep_type_iterator E,
ExecutionContext &SF) {
assert(isa<PointerType>(Ptr->getType()) &&
"Cannot getElementOffset of a nonpointer type!");
@ -734,10 +734,10 @@ GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
for (; I != E; ++I) {
if (const StructType *STy = dyn_cast<StructType>(*I)) {
const StructLayout *SLO = TD.getStructLayout(STy);
const ConstantUInt *CPU = cast<ConstantUInt>(I.getOperand());
unsigned Index = unsigned(CPU->getValue());
Total += (PointerTy)SLO->MemberOffsets[Index];
} else {
const SequentialType *ST = cast<SequentialType>(*I);
@ -845,23 +845,23 @@ void Interpreter::visitCallSite(CallSite CS) {
const Type *Ty = V->getType();
if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) {
if (Ty == Type::ShortTy)
ArgVals.back().IntVal = ArgVals.back().ShortVal;
ArgVals.back().IntVal = ArgVals.back().ShortVal;
else if (Ty == Type::UShortTy)
ArgVals.back().UIntVal = ArgVals.back().UShortVal;
ArgVals.back().UIntVal = ArgVals.back().UShortVal;
else if (Ty == Type::SByteTy)
ArgVals.back().IntVal = ArgVals.back().SByteVal;
ArgVals.back().IntVal = ArgVals.back().SByteVal;
else if (Ty == Type::UByteTy)
ArgVals.back().UIntVal = ArgVals.back().UByteVal;
ArgVals.back().UIntVal = ArgVals.back().UByteVal;
else if (Ty == Type::BoolTy)
ArgVals.back().UIntVal = ArgVals.back().BoolVal;
ArgVals.back().UIntVal = ArgVals.back().BoolVal;
else
assert(0 && "Unknown type!");
assert(0 && "Unknown type!");
}
}
// To handle indirect calls, we must get the pointer value from the argument
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
callFunction((Function*)GVTOP(SRC), ArgVals);
}
@ -958,7 +958,7 @@ void Interpreter::visitShr(ShiftInst &I) {
IMPLEMENT_CAST_CASE_END()
GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty,
ExecutionContext &SF) {
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
@ -994,7 +994,7 @@ void Interpreter::visitVANextInst(VANextInst &I) {
// Get the incoming valist parameter. LLI treats the valist as a
// (ec-stack-depth var-arg-index) pair.
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
// Move the pointer to the next vararg.
++VAList.UIntPairVal.second;
SetValue(&I, VAList, SF);
@ -1011,7 +1011,7 @@ void Interpreter::visitVAArgInst(VAArgInst &I) {
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
GenericValue Src = ECStack[VAList.UIntPairVal.first]
.VarArgs[VAList.UIntPairVal.second];
.VarArgs[VAList.UIntPairVal.second];
const Type *Ty = I.getType();
switch (Ty->getTypeID()) {
IMPLEMENT_VAARG(UByte);
@ -1030,7 +1030,7 @@ void Interpreter::visitVAArgInst(VAArgInst &I) {
std::cout << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
abort();
}
// Set the Value of this Instruction.
SetValue(&I, Dest, SF);
}
@ -1044,9 +1044,9 @@ void Interpreter::visitVAArgInst(VAArgInst &I) {
//
void Interpreter::callFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
ECStack.back().Caller.arg_size() == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
ECStack.back().Caller.arg_size() == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
// Make a new stack frame... and fill it in.
ECStack.push_back(ExecutionContext());
ExecutionContext &StackFrame = ECStack.back();
@ -1066,7 +1066,7 @@ void Interpreter::callFunction(Function *F,
// Run through the function arguments and initialize their values...
assert((ArgVals.size() == F->arg_size() ||
(ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg())) &&
(ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
"Invalid number of values passed to function invocation!");
// Handle non-varargs arguments...
@ -1083,7 +1083,7 @@ void Interpreter::run() {
// Interpret a single instruction & increment the "PC".
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
// Track the number of dynamic instructions executed.
++NumDynamicInsts;

View File

@ -1,16 +1,16 @@
//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
//
// This file contains both code to deal with invoking "external" functions, but
// also contains code that implements "exported" external functions.
//
// External functions in the interpreter are implemented by
// External functions in the interpreter are implemented by
// using the system's dynamic loader to look up the address of the function
// we want to invoke. If a function is found, then one of the
// many lle_* wrapper functions in this file will translate its arguments from
@ -301,7 +301,7 @@ GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
Last = *FB++ = *FmtStr++;
}
*FB = 0;
switch (Last) {
case '%':
sprintf(Buffer, FmtBuf); break;
@ -328,7 +328,7 @@ GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
case 'p':
sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
case 's':
case 's':
sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
default: std::cout << "<unknown printf code '" << *FmtStr << "'!>";
ArgNo++; break;
@ -504,7 +504,7 @@ static GenericValue size_t_to_GV (size_t n) {
return Ret;
}
static size_t GV_to_size_t (GenericValue GV) {
static size_t GV_to_size_t (GenericValue GV) {
size_t count;
if (sizeof (size_t) == sizeof (uint64_t)) {
count = (size_t)GV.ULongVal;

View File

@ -1,10 +1,10 @@
//===- Interpreter.cpp - Top-Level LLVM Interpreter Implementation --------===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
// This file implements the top-level functionality for the LLVM interpreter.
@ -50,7 +50,7 @@ ExecutionEngine *Interpreter::create(Module *M, IntrinsicLowering *IL) {
//
Interpreter::Interpreter(Module *M, bool isLittleEndian, bool isLongPointer,
IntrinsicLowering *il)
: ExecutionEngine(M), ExitCode(0),
: ExecutionEngine(M), ExitCode(0),
TD("lli", isLittleEndian, isLongPointer ? 8 : 4, isLongPointer ? 8 : 4,
isLongPointer ? 8 : 4), IL(il) {
@ -92,13 +92,13 @@ GenericValue Interpreter::runFunction(Function *F,
const unsigned ArgCount = F->getFunctionType()->getNumParams();
for (unsigned i = 0; i < ArgCount; ++i)
ActualArgs.push_back(ArgValues[i]);
// Set up the function call.
callFunction(F, ActualArgs);
// Start executing the function.
run();
GenericValue rv;
rv.IntVal = ExitCode;
return rv;

View File

@ -1,10 +1,10 @@
//===-- Interpreter.h ------------------------------------------*- C++ -*--===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
// This header file defines the interpreter structure
@ -123,7 +123,7 @@ public:
/// freeMachineCodeForFunction - The interpreter does not generate any code.
///
void freeMachineCodeForFunction(Function *F) { }
// Methods used to execute code:
// Place a call on the stack
void callFunction(Function *F, const std::vector<GenericValue> &ArgVals);
@ -160,7 +160,7 @@ public:
assert(0 && "Instruction not interpretable yet!");
}
GenericValue callExternalFunction(Function *F,
GenericValue callExternalFunction(Function *F,
const std::vector<GenericValue> &ArgVals);
void exitCalled(GenericValue GV);
@ -181,7 +181,7 @@ private: // Helper functions
// SwitchToNewBasicBlock - Start execution in a new basic block and run any
// PHI nodes in the top of the block. This is used for intraprocedural
// control flow.
//
//
void SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF);
void *getPointerToFunction(Function *F) { return (void*)F; }