* Convert the verifier to use an InstVisitor to be better structured

* Implement checking that a binary operator's two sides are the same type
* Actually check that an instruction does not have a name if it has a void
  return type.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2305 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-04-18 20:37:37 +00:00
parent 1d2535c0b1
commit d231fc3254

View File

@ -9,17 +9,16 @@
// . There are no duplicated names in a symbol table... ie there !exist a val // . There are no duplicated names in a symbol table... ie there !exist a val
// with the same name as something in the symbol table, but with a different // with the same name as something in the symbol table, but with a different
// address as what is in the symbol table... // address as what is in the symbol table...
// . Both of a binary operator's parameters are the same type // * Both of a binary operator's parameters are the same type
// . Verify that arithmetic and other things are only performed on first class // . Verify that arithmetic and other things are only performed on first class
// types. No adding structures or arrays. // types. No adding structures or arrays.
// . All of the constants in a switch statement are of the correct type // . All of the constants in a switch statement are of the correct type
// . The code is in valid SSA form // . The code is in valid SSA form
// . It should be illegal to put a label into any other type (like a structure) // . It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!] // or to return one. [except constant arrays!]
// . Right now 'add bool 0, 0' is valid. This isn't particularly good.
// * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad // * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras. // * PHI nodes must have an entry for each predecessor, with no extras.
// * All basic blocks should only end with terminator insts, not contain them // . All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors // * The entry node to a function must not have predecessors
// * All Instructions must be embeded into a basic block // * All Instructions must be embeded into a basic block
// . Verify that none of the Value getType()'s are null. // . Verify that none of the Value getType()'s are null.
@ -45,136 +44,66 @@
#include "llvm/Argument.h" #include "llvm/Argument.h"
#include "llvm/SymbolTable.h" #include "llvm/SymbolTable.h"
#include "llvm/Support/CFG.h" #include "llvm/Support/CFG.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/STLExtras.h" #include "Support/STLExtras.h"
#include <algorithm> #include <algorithm>
#if 0 namespace { // Anonymous namespace for class
#define t(x) (1 << (unsigned)Type::x)
#define SignedIntegralTypes (t(SByteTyID) | t(ShortTyID) | \
t(IntTyID) | t(LongTyID))
static long UnsignedIntegralTypes = t(UByteTyID) | t(UShortTyID) |
t(UIntTyID) | t(ULongTyID);
static const long FloatingPointTypes = t(FloatTyID) | t(DoubleTyID);
static const long IntegralTypes = SignedIntegralTypes | UnsignedIntegralTypes; struct Verifier : public MethodPass, InstVisitor<Verifier> {
bool Broken;
static long ValidTypes[Type::FirstDerivedTyID] = { Verifier() : Broken(false) {}
[(unsigned)Instruction::UnaryOps::Not] t(BoolTyID),
//[Instruction::UnaryOps::Add] = IntegralTypes,
// [Instruction::Sub] = IntegralTypes,
};
#undef t
#endif
// CheckFailed - A check failed, so print out the condition and the message that bool doInitialization(Module *M) {
// failed. This provides a nice place to put a breakpoint if you want to see verifySymbolTable(M->getSymbolTable());
// why something is not correct. return false;
// }
static inline void CheckFailed(const char *Cond, const std::string &Message,
const Value *V1 = 0, const Value *V2 = 0) { bool runOnMethod(Function *F) {
std::cerr << Message << "\n"; visit(F);
if (V1) { std::cerr << V1 << "\n"; } return false;
if (V2) { std::cerr << V2 << "\n"; } }
// Verification methods...
void verifySymbolTable(SymbolTable *ST);
void visitFunction(Function *F);
void visitBasicBlock(BasicBlock *BB);
void visitPHINode(PHINode *PN);
void visitBinaryOperator(BinaryOperator *B);
void visitInstruction(Instruction *I);
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
//
inline void CheckFailed(const char *Cond, const std::string &Message,
const Value *V1 = 0, const Value *V2 = 0) {
std::cerr << Message << "\n";
if (V1) { std::cerr << V1 << "\n"; }
if (V2) { std::cerr << V2 << "\n"; }
Broken = true;
}
};
} }
// Assert - We know that cond should be true, if not print an error message. // Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \ #define Assert(C, M) \
do { if (!(C)) { CheckFailed(#C, M); Broken = true; } } while (0) do { if (!(C)) { CheckFailed(#C, M); } } while (0)
#define Assert1(C, M, V1) \ #define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(#C, M, V1); Broken = true; } } while (0) do { if (!(C)) { CheckFailed(#C, M, V1); } } while (0)
#define Assert2(C, M, V1, V2) \ #define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(#C, M, V1, V2); Broken = true; } } while (0) do { if (!(C)) { CheckFailed(#C, M, V1, V2); } } while (0)
// verifyInstruction - Verify that a non-terminator instruction is well formed.
//
static bool verifyInstruction(const Instruction *I) {
bool Broken = false;
assert(I->getParent() && "Instruction not embedded in basic block!");
Assert1(!isa<TerminatorInst>(I),
"Terminator instruction found embedded in basic block!\n", I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks.
//
for (User::use_const_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
if (Instruction *Used = dyn_cast<Instruction>(*UI))
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embeded in a basic block!", I, Used);
}
// Check that PHI nodes look ok
if (const PHINode *PN = dyn_cast<PHINode>(I)) {
std::vector<const BasicBlock*> Preds(pred_begin(I->getParent()),
pred_end(I->getParent()));
// Loop over all of the incoming values, make sure that there are
// predecessors for each one...
//
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
const BasicBlock *BB = PN->getIncomingBlock(i);
std::vector<const BasicBlock*>::iterator PI =
find(Preds.begin(), Preds.end(), BB);
Assert2(PI != Preds.end(), "PHI node has entry for basic block that"
" is not a predecessor!", PN, BB);
if (PI != Preds.end()) Preds.erase(PI);
}
// There should be no entries left in the predecessor list...
for (std::vector<const BasicBlock*>::iterator I = Preds.begin(),
E = Preds.end(); I != E; ++I)
Assert2(0, "PHI node does not have entry for a predecessor basic block!",
PN, *I);
} else {
// Check that non-phi nodes are not self referential...
for (Value::use_const_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
Assert1(*UI != (const User*)I,
"Only PHI nodes may reference their own value!", I);
}
return Broken;
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
static bool verifyBasicBlock(const BasicBlock *BB) {
bool Broken = false;
// Verify all instructions, except the terminator...
Broken |= reduce_apply_bool(BB->begin(), BB->end()-1, verifyInstruction);
Assert1(BB->getTerminator(), "Basic Block does not have terminator!\n", BB);
// Check that the terminator is ok as well...
if (BB->getTerminator() && isa<ReturnInst>(BB->getTerminator())) {
const Instruction *I = BB->getTerminator();
const Function *F = I->getParent()->getParent();
if (I->getNumOperands() == 0)
Assert1(F->getReturnType() == Type::VoidTy,
"Function returns no value, but ret instruction found that does!",
I);
else
Assert2(F->getReturnType() == I->getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", I, F->getReturnType());
}
return Broken;
}
// verifySymbolTable - Verify that a function or module symbol table is ok // verifySymbolTable - Verify that a function or module symbol table is ok
// //
static bool verifySymbolTable(const SymbolTable *ST) { void Verifier::verifySymbolTable(SymbolTable *ST) {
if (ST == 0) return false; if (ST == 0) return; // No symbol table to process
bool Broken = false;
// Loop over all of the types in the symbol table... // Loop over all of the types in the symbol table...
for (SymbolTable::const_iterator TI = ST->begin(), TE = ST->end(); for (SymbolTable::iterator TI = ST->begin(), TE = ST->end(); TI != TE; ++TI)
TI != TE; ++TI) for (SymbolTable::type_iterator I = TI->second.begin(),
for (SymbolTable::type_const_iterator I = TI->second.begin(),
E = TI->second.end(); I != E; ++I) { E = TI->second.end(); I != E; ++I) {
Value *V = I->second; Value *V = I->second;
@ -184,17 +113,14 @@ static bool verifySymbolTable(const SymbolTable *ST) {
Assert1(V->getType() != Type::VoidTy, Assert1(V->getType() != Type::VoidTy,
"Values with void type are not allowed to have names!\n", V); "Values with void type are not allowed to have names!\n", V);
} }
return Broken;
} }
// verifyFunction - Verify that a function is ok. Return true if not so that
// verifyModule and direct clients of the verifyFunction function are correctly // visitFunction - Verify that a function is ok.
// informed.
// //
bool verifyFunction(const Function *F) { void Verifier::visitFunction(Function *F) {
if (F->isExternal()) return false; // Can happen if called by verifyModule if (F->isExternal()) return;
bool Broken = verifySymbolTable(F->getSymbolTable()); verifySymbolTable(F->getSymbolTable());
// Check linkage of function... // Check linkage of function...
Assert1(!F->isExternal() || F->hasExternalLinkage(), Assert1(!F->isExternal() || F->hasExternalLinkage(),
@ -218,34 +144,125 @@ bool verifyFunction(const Function *F) {
} }
// Check the entry node // Check the entry node
const BasicBlock *Entry = F->getEntryNode(); BasicBlock *Entry = F->getEntryNode();
Assert1(pred_begin(Entry) == pred_end(Entry), Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry); "Entry block to function must not have predecessors!", Entry);
Broken |= reduce_apply_bool(F->begin(), F->end(), verifyBasicBlock);
return Broken;
} }
namespace { // Anonymous namespace for class // verifyBasicBlock - Verify that a basic block is well formed...
struct VerifierPass : public MethodPass { //
void Verifier::visitBasicBlock(BasicBlock *BB) {
Assert1(BB->getTerminator(), "Basic Block does not have terminator!\n", BB);
bool doInitialization(Module *M) { // Check that the terminator is ok as well...
verifySymbolTable(M->getSymbolTable()); if (BB->getTerminator() && isa<ReturnInst>(BB->getTerminator())) {
return false; Instruction *I = BB->getTerminator();
} Function *F = I->getParent()->getParent();
bool runOnMethod(Function *F) { verifyFunction(F); return false; } if (I->getNumOperands() == 0)
}; Assert1(F->getReturnType() == Type::VoidTy,
"Function returns no value, but ret instruction found that does!",
I);
else
Assert2(F->getReturnType() == I->getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", I, F->getReturnType());
}
} }
// visitPHINode - Ensure that a PHI node is well formed.
void Verifier::visitPHINode(PHINode *PN) {
std::vector<BasicBlock*> Preds(pred_begin(PN->getParent()),
pred_end(PN->getParent()));
// Loop over all of the incoming values, make sure that there are
// predecessors for each one...
//
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
// Make sure all of the incoming values are the right types...
Assert2(PN->getType() == PN->getIncomingValue(i)->getType(),
"PHI node argument type does not agree with PHI node type!",
PN, PN->getIncomingValue(i));
BasicBlock *BB = PN->getIncomingBlock(i);
std::vector<BasicBlock*>::iterator PI =
find(Preds.begin(), Preds.end(), BB);
Assert2(PI != Preds.end(), "PHI node has entry for basic block that"
" is not a predecessor!", PN, BB);
if (PI != Preds.end()) Preds.erase(PI);
}
// There should be no entries left in the predecessor list...
for (std::vector<BasicBlock*>::iterator I = Preds.begin(),
E = Preds.end(); I != E; ++I)
Assert2(0, "PHI node does not have entry for a predecessor basic block!",
PN, *I);
visitInstruction(PN);
}
// visitBinaryOperator - Check that both arguments to the binary operator are
// of the same type!
//
void Verifier::visitBinaryOperator(BinaryOperator *B) {
Assert2(B->getOperand(0)->getType() == B->getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!",
B->getOperand(0), B->getOperand(1));
visitInstruction(B);
}
// verifyInstruction - Verify that a non-terminator instruction is well formed.
//
void Verifier::visitInstruction(Instruction *I) {
assert(I->getParent() && "Instruction not embedded in basic block!");
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
//
for (User::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
*UI);
if (Instruction *Used = dyn_cast<Instruction>(*UI))
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embeded in a basic block!", I, Used);
}
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
Assert1(*UI != (User*)I,
"Only PHI nodes may reference their own value!", I);
}
Assert1(I->getType() != Type::VoidTy || !I->hasName(),
"Instruction has a name, but provides a void value!", I);
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
Pass *createVerifierPass() { Pass *createVerifierPass() {
return new VerifierPass(); return new Verifier();
}
bool verifyFunction(const Function *F) {
Verifier V;
V.visit((Function*)F);
return V.Broken;
} }
// verifyModule - Check a module for errors, printing messages on stderr. // verifyModule - Check a module for errors, printing messages on stderr.
// Return true if the module is corrupt. // Return true if the module is corrupt.
// //
bool verifyModule(const Module *M) { bool verifyModule(const Module *M) {
return verifySymbolTable(M->getSymbolTable()) | Verifier V;
reduce_apply_bool(M->begin(), M->end(), verifyFunction); V.run((Module*)M);
return V.Broken;
} }