Generalize TargetData strings, to support more interesting forms of data.

Patch by Scott Michel.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34266 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2007-02-14 05:52:17 +00:00
parent 879dfe1c9c
commit d2b7cec527
13 changed files with 442 additions and 399 deletions

View File

@ -22,6 +22,8 @@
#include "llvm/Pass.h" #include "llvm/Pass.h"
#include "llvm/Support/DataTypes.h" #include "llvm/Support/DataTypes.h"
#include "llvm/ADT/SmallVector.h"
#include <string>
namespace llvm { namespace llvm {
@ -31,45 +33,96 @@ class StructType;
class StructLayout; class StructLayout;
class GlobalVariable; class GlobalVariable;
/// Enum used to categorize the alignment types stored by TargetAlignElem
enum AlignTypeEnum {
INTEGER_ALIGN = 'i', ///< Integer type alignment
PACKED_ALIGN = 'v', ///< Vector type alignment
FLOAT_ALIGN = 'f', ///< Floating point type alignment
AGGREGATE_ALIGN = 'a' ///< Aggregate alignment
};
/// Target alignment element.
///
/// Stores the alignment data associated with a given alignment type (pointer,
/// integer, packed/vector, float) and type bit width.
///
/// @note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct TargetAlignElem {
unsigned char AlignType; //< Alignment type (AlignTypeEnum)
unsigned char ABIAlign; //< ABI alignment for this type/bitw
unsigned char PrefAlign; //< Pref. alignment for this type/bitw
short TypeBitWidth; //< Type bit width
/// Initializer
static TargetAlignElem get(AlignTypeEnum align_type, unsigned char abi_align,
unsigned char pref_align, short bit_width);
/// Less-than predicate
bool operator<(const TargetAlignElem &rhs) const;
/// Equality predicate
bool operator==(const TargetAlignElem &rhs) const;
/// output stream operator
std::ostream &dump(std::ostream &os) const;
};
//! TargetAlignElem output stream inserter
/*!
@sa TargetAlignElem::dump()
*/
std::ostream &operator<<(std::ostream &os, const TargetAlignElem &elem);
class TargetData : public ImmutablePass { class TargetData : public ImmutablePass {
bool LittleEndian; // Defaults to false private:
bool LittleEndian; ///< Defaults to false
unsigned char PointerMemSize; ///< Pointer size in bytes
unsigned char PointerABIAlign; ///< Pointer ABI alignment
unsigned char PointerPrefAlign; ///< Pointer preferred global alignment
// ABI alignments //! Where the primitive type alignment data is stored.
unsigned char BoolABIAlignment; // Defaults to 1 byte /*!
unsigned char ByteABIAlignment; // Defaults to 1 byte @sa init().
unsigned char ShortABIAlignment; // Defaults to 2 bytes @note Could support multiple size pointer alignments, e.g., 32-bit pointers
unsigned char IntABIAlignment; // Defaults to 4 bytes vs. 64-bit pointers by extending TargetAlignment, but for now, we don't.
unsigned char LongABIAlignment; // Defaults to 8 bytes */
unsigned char FloatABIAlignment; // Defaults to 4 bytes SmallVector<TargetAlignElem, 16> Alignments;
unsigned char DoubleABIAlignment; // Defaults to 8 bytes //! Alignment iterator shorthand
unsigned char PointerMemSize; // Defaults to 8 bytes typedef SmallVector<TargetAlignElem, 16>::iterator align_iterator;
unsigned char PointerABIAlignment; // Defaults to 8 bytes //! Constant alignment iterator shorthand
typedef SmallVector<TargetAlignElem, 16>::const_iterator align_const_iterator;
//! Invalid alignment.
/*!
This member is a signal that a requested alignment type and bit width were
not found in the SmallVector.
*/
static const TargetAlignElem InvalidAlignmentElem;
// Preferred stack/global type alignments //! Set/initialize target alignments
unsigned char BoolPrefAlignment; // Defaults to BoolABIAlignment void setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
unsigned char BytePrefAlignment; // Defaults to ByteABIAlignment unsigned char pref_align, short bit_width);
unsigned char ShortPrefAlignment; // Defaults to ShortABIAlignment //! Get TargetAlignElem from alignment type and bit width
unsigned char IntPrefAlignment; // Defaults to IntABIAlignment const TargetAlignElem &getAlignment(AlignTypeEnum, short) const;
unsigned char LongPrefAlignment; // Defaults to LongABIAlignment //! Internal helper method that returns requested alignment for type.
unsigned char FloatPrefAlignment; // Defaults to FloatABIAlignment unsigned char getAlignment(const Type *Ty, bool abi_or_pref) const;
unsigned char DoublePrefAlignment; // Defaults to DoubleABIAlignment
unsigned char PointerPrefAlignment; // Defaults to PointerABIAlignment /// Valid alignment predicate.
unsigned char AggMinPrefAlignment; // Defaults to 0 bytes ///
/// Predicate that tests a TargetAlignElem reference returned by get() against
/// InvalidAlignmentElem.
inline bool validAlignment(const TargetAlignElem &align) const {
return (&align != &InvalidAlignmentElem);
}
public: public:
/// Default ctor - This has to exist, because this is a pass, but it should /// Default ctor.
/// never be used. ///
/// @note This has to exist, because this is a pass, but it should never be
/// used.
TargetData() { TargetData() {
assert(0 && "ERROR: Bad TargetData ctor used. " assert(0 && "ERROR: Bad TargetData ctor used. "
"Tool did not specify a TargetData to use?"); "Tool did not specify a TargetData to use?");
abort(); abort();
} }
/// Constructs a TargetData from a string of the following format: /// Constructs a TargetData from a specification string. See init().
/// "E-p:64:64-d:64-f:32-l:64-i:32-s:16-b:8-B:8"
/// The above string is considered the default, and any values not specified
/// in the string will be assumed to be as above, with the caveat that unspecified
/// values are always assumed to be smaller than the size of a pointer.
TargetData(const std::string &TargetDescription) { TargetData(const std::string &TargetDescription) {
init(TargetDescription); init(TargetDescription);
} }
@ -80,143 +133,36 @@ public:
TargetData(const TargetData &TD) : TargetData(const TargetData &TD) :
ImmutablePass(), ImmutablePass(),
LittleEndian(TD.isLittleEndian()), LittleEndian(TD.isLittleEndian()),
BoolABIAlignment(TD.getBoolABIAlignment()), PointerMemSize(TD.PointerMemSize),
ByteABIAlignment(TD.getByteABIAlignment()), PointerABIAlign(TD.PointerABIAlign),
ShortABIAlignment(TD.getShortABIAlignment()), PointerPrefAlign(TD.PointerPrefAlign),
IntABIAlignment(TD.getIntABIAlignment()), Alignments(TD.Alignments)
LongABIAlignment(TD.getLongABIAlignment()), { }
FloatABIAlignment(TD.getFloatABIAlignment()),
DoubleABIAlignment(TD.getDoubleABIAlignment()),
PointerMemSize(TD.getPointerSize()),
PointerABIAlignment(TD.getPointerABIAlignment()),
BoolPrefAlignment(TD.getBoolPrefAlignment()),
BytePrefAlignment(TD.getBytePrefAlignment()),
ShortPrefAlignment(TD.getShortPrefAlignment()),
IntPrefAlignment(TD.getIntPrefAlignment()),
LongPrefAlignment(TD.getLongPrefAlignment()),
FloatPrefAlignment(TD.getFloatPrefAlignment()),
DoublePrefAlignment(TD.getDoublePrefAlignment()),
PointerPrefAlignment(TD.getPointerPrefAlignment()),
AggMinPrefAlignment(TD.getAggMinPrefAlignment()) {
}
~TargetData(); // Not virtual, do not subclass this class ~TargetData(); // Not virtual, do not subclass this class
/// Parse a target data layout string and initialize TargetData members. //! Parse a target data layout string and initialize TargetData alignments.
///
/// Parse a target data layout string, initializing the various TargetData
/// members along the way. A TargetData specification string looks like
/// "E-p:64:64-d:64-f:32-l:64-i:32-s:16-b:8-B:8" and specifies the
/// target's endianess, the ABI alignments of various data types and
/// the size of pointers.
///
/// "-" is used as a separator and ":" separates a token from its argument.
///
/// Alignment is indicated in bits and internally converted to the
/// appropriate number of bytes.
///
/// The preferred stack/global alignment specifications (":[prefalign]") are
/// optional and default to the ABI alignment.
///
/// Valid tokens:
/// <br>
/// <em>E</em> specifies big endian architecture (1234) [default]<br>
/// <em>e</em> specifies little endian architecture (4321) <br>
/// <em>p:[ptr size]:[ptr align]</em> specifies pointer size and alignment
/// [default = 64:64] <br>
/// <em>d:[align]:[prefalign]</em> specifies double floating
/// point alignment [default = 64] <br>
/// <em>f:[align]:[prefalign]</em> specifies single floating
/// point alignment [default = 32] <br>
/// <em>l:[align]:[prefalign]:[globalign[</em> specifies long integer
/// alignment [default = 64] <br>
/// <em>i:[align]:[prefalign]</em> specifies integer alignment
/// [default = 32] <br>
/// <em>s:[align]:[prefalign]</em> specifies short integer
/// alignment [default = 16] <br>
/// <em>b:[align]:[prefalign]</em> specifies byte data type
/// alignment [default = 8] <br>
/// <em>B:[align]:[prefalign]</em> specifies boolean data type
/// alignment [default = 8] <br>
/// <em>A:[prefalign]</em> specifies an aggregates' minimum alignment
/// on the stack and when emitted as a global. The default minimum aggregate
/// alignment defaults to 0, which causes the aggregate's "natural" internal
/// alignment calculated by llvm to be preferred.
///
/// All other token types are silently ignored.
void init(const std::string &TargetDescription); void init(const std::string &TargetDescription);
/// Target endianness... /// Target endianness...
bool isLittleEndian() const { return LittleEndian; } bool isLittleEndian() const { return LittleEndian; }
bool isBigEndian() const { return !LittleEndian; } bool isBigEndian() const { return !LittleEndian; }
/// Target boolean alignment
unsigned char getBoolABIAlignment() const { return BoolABIAlignment; }
/// Target byte alignment
unsigned char getByteABIAlignment() const { return ByteABIAlignment; }
/// Target short alignment
unsigned char getShortABIAlignment() const { return ShortABIAlignment; }
/// Target integer alignment
unsigned char getIntABIAlignment() const { return IntABIAlignment; }
/// Target long alignment
unsigned char getLongABIAlignment() const { return LongABIAlignment; }
/// Target single precision float alignment
unsigned char getFloatABIAlignment() const { return FloatABIAlignment; }
/// Target double precision float alignment
unsigned char getDoubleABIAlignment() const { return DoubleABIAlignment; }
/// Target pointer alignment
unsigned char getPointerABIAlignment() const { return PointerABIAlignment; }
/// Target pointer size
unsigned char getPointerSize() const { return PointerMemSize; }
/// Target pointer size, in bits
unsigned char getPointerSizeInBits() const { return 8*PointerMemSize; }
/// Return target's alignment for booleans on stack
unsigned char getBoolPrefAlignment() const {
return BoolPrefAlignment;
}
/// Return target's alignment for integers on stack
unsigned char getBytePrefAlignment() const {
return BytePrefAlignment;
}
/// Return target's alignment for shorts on stack
unsigned char getShortPrefAlignment() const {
return ShortPrefAlignment;
}
/// Return target's alignment for integers on stack
unsigned char getIntPrefAlignment() const {
return IntPrefAlignment;
}
/// Return target's alignment for longs on stack
unsigned char getLongPrefAlignment() const {
return LongPrefAlignment;
}
/// Return target's alignment for single precision floats on stack
unsigned char getFloatPrefAlignment() const {
return FloatPrefAlignment;
}
/// Return target's alignment for double preceision floats on stack
unsigned char getDoublePrefAlignment() const {
return DoublePrefAlignment;
}
/// Return target's alignment for stack-based pointers
unsigned char getPointerPrefAlignment() const {
return PointerPrefAlignment;
}
/// Return target's alignment for stack-based structures
unsigned char getAggMinPrefAlignment() const {
return AggMinPrefAlignment;
}
/// getStringRepresentation - Return the string representation of the /// getStringRepresentation - Return the string representation of the
/// TargetData. This representation is in the same format accepted by the /// TargetData. This representation is in the same format accepted by the
/// string constructor above. /// string constructor above.
std::string getStringRepresentation() const; std::string getStringRepresentation() const;
/// Target pointer alignment
unsigned char getPointerABIAlignment() const { return PointerABIAlign; }
/// Return target's alignment for stack-based pointers
unsigned char getPointerPrefAlignment() const { return PointerPrefAlign; }
/// Target pointer size
unsigned char getPointerSize() const { return PointerMemSize; }
/// Target pointer size, in bits
unsigned char getPointerSizeInBits() const { return 8*PointerMemSize; }
/// getTypeSize - Return the number of bytes necessary to hold the specified /// getTypeSize - Return the number of bytes necessary to hold the specified
/// type. /// type.
///
uint64_t getTypeSize(const Type *Ty) const; uint64_t getTypeSize(const Type *Ty) const;
/// getTypeSizeInBits - Return the number of bytes necessary to hold the /// getTypeSizeInBits - Return the number of bytes necessary to hold the
@ -225,11 +171,11 @@ public:
/// getTypeAlignmentABI - Return the minimum ABI-required alignment for the /// getTypeAlignmentABI - Return the minimum ABI-required alignment for the
/// specified type. /// specified type.
unsigned char getTypeAlignmentABI(const Type *Ty) const; unsigned char getABITypeAlignment(const Type *Ty) const;
/// getTypeAlignmentPref - Return the preferred stack/global alignment for /// getTypeAlignmentPref - Return the preferred stack/global alignment for
/// the specified type. /// the specified type.
unsigned char getTypeAlignmentPref(const Type *Ty) const; unsigned char getPrefTypeAlignment(const Type *Ty) const;
/// getPreferredTypeAlignmentShift - Return the preferred alignment for the /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
/// specified type, returned as log2 of the value (a shift amount). /// specified type, returned as log2 of the value (a shift amount).

View File

@ -255,7 +255,7 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
} }
const Type *GVType = (const Type*)GV->getType(); const Type *GVType = (const Type*)GV->getType();
unsigned Align = TM.getTargetData()->getTypeAlignmentPref(GVType); unsigned Align = TM.getTargetData()->getPrefTypeAlignment(GVType);
unsigned Size = TM.getTargetData()->getTypeSize(GVType); unsigned Size = TM.getTargetData()->getTypeSize(GVType);
// If this global has a zero initializer, it is part of the .bss or common // If this global has a zero initializer, it is part of the .bss or common

View File

@ -147,7 +147,7 @@ void MachOCodeEmitter::startFunction(MachineFunction &MF) {
// Align the output buffer to the appropriate alignment, power of 2. // Align the output buffer to the appropriate alignment, power of 2.
unsigned FnAlign = F->getAlignment(); unsigned FnAlign = F->getAlignment();
unsigned TDAlign = TD->getTypeAlignmentPref(F->getType()); unsigned TDAlign = TD->getPrefTypeAlignment(F->getType());
unsigned Align = Log2_32(std::max(FnAlign, TDAlign)); unsigned Align = Log2_32(std::max(FnAlign, TDAlign));
assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
@ -332,7 +332,7 @@ void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
unsigned Size = TM.getTargetData()->getTypeSize(Ty); unsigned Size = TM.getTargetData()->getTypeSize(Ty);
unsigned Align = GV->getAlignment(); unsigned Align = GV->getAlignment();
if (Align == 0) if (Align == 0)
Align = TM.getTargetData()->getTypeAlignmentPref(Ty); Align = TM.getTargetData()->getPrefTypeAlignment(Ty);
MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TM); MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TM);

View File

@ -13,6 +13,7 @@
// //
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/SSARegMap.h"
@ -123,7 +124,7 @@ MachineFunction::MachineFunction(const Function *F,
const TargetData &TD = *TM.getTargetData(); const TargetData &TD = *TM.getTargetData();
bool IsPic = TM.getRelocationModel() == Reloc::PIC_; bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
unsigned EntrySize = IsPic ? 4 : TD.getPointerSize(); unsigned EntrySize = IsPic ? 4 : TD.getPointerSize();
unsigned Alignment = IsPic ? TD.getIntABIAlignment() unsigned Alignment = IsPic ? TD.getABITypeAlignment(Type::Int32Ty)
: TD.getPointerABIAlignment(); : TD.getPointerABIAlignment();
JumpTableInfo = new MachineJumpTableInfo(EntrySize, Alignment); JumpTableInfo = new MachineJumpTableInfo(EntrySize, Alignment);

View File

@ -3056,7 +3056,7 @@ SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) {
// new ones, as reuse may inhibit scheduling. // new ones, as reuse may inhibit scheduling.
const Type *Ty = MVT::getTypeForValueType(ExtraVT); const Type *Ty = MVT::getTypeForValueType(ExtraVT);
unsigned TySize = (unsigned)TLI.getTargetData()->getTypeSize(Ty); unsigned TySize = (unsigned)TLI.getTargetData()->getTypeSize(Ty);
unsigned Align = TLI.getTargetData()->getTypeAlignmentPref(Ty); unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
MachineFunction &MF = DAG.getMachineFunction(); MachineFunction &MF = DAG.getMachineFunction();
int SSFI = int SSFI =
MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
@ -3979,7 +3979,7 @@ SDOperand SelectionDAGLegalize::CreateStackTemporary(MVT::ValueType VT) {
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
unsigned ByteSize = MVT::getSizeInBits(VT)/8; unsigned ByteSize = MVT::getSizeInBits(VT)/8;
const Type *Ty = MVT::getTypeForValueType(VT); const Type *Ty = MVT::getTypeForValueType(VT);
unsigned StackAlign = (unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty); unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign); int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
return DAG.getFrameIndex(FrameIdx, TLI.getPointerTy()); return DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
} }
@ -4289,7 +4289,7 @@ SDOperand SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
MachineFunction &MF = DAG.getMachineFunction(); MachineFunction &MF = DAG.getMachineFunction();
const Type *F64Type = MVT::getTypeForValueType(MVT::f64); const Type *F64Type = MVT::getTypeForValueType(MVT::f64);
unsigned StackAlign = unsigned StackAlign =
(unsigned)TLI.getTargetData()->getTypeAlignmentPref(F64Type); (unsigned)TLI.getTargetData()->getPrefTypeAlignment(F64Type);
int SSFI = MF.getFrameInfo()->CreateStackObject(8, StackAlign); int SSFI = MF.getFrameInfo()->CreateStackObject(8, StackAlign);
// get address of 8 byte buffer // get address of 8 byte buffer
SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());

View File

@ -244,7 +244,7 @@ FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
const Type *Ty = AI->getAllocatedType(); const Type *Ty = AI->getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
unsigned Align = unsigned Align =
std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty), std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
AI->getAlignment()); AI->getAlignment());
TySize *= CUI->getZExtValue(); // Get total allocated size. TySize *= CUI->getZExtValue(); // Get total allocated size.
@ -1733,7 +1733,7 @@ void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
const Type *Ty = I.getAllocatedType(); const Type *Ty = I.getAllocatedType();
uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty); uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
unsigned Align = unsigned Align =
std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty), std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
I.getAlignment()); I.getAlignment());
SDOperand AllocSize = getValue(I.getArraySize()); SDOperand AllocSize = getValue(I.getArraySize());
@ -2934,7 +2934,7 @@ TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
bool isInReg = FTy->paramHasAttr(j, FunctionType::InRegAttribute); bool isInReg = FTy->paramHasAttr(j, FunctionType::InRegAttribute);
bool isSRet = FTy->paramHasAttr(j, FunctionType::StructRetAttribute); bool isSRet = FTy->paramHasAttr(j, FunctionType::StructRetAttribute);
unsigned OriginalAlignment = unsigned OriginalAlignment =
getTargetData()->getTypeAlignmentABI(I->getType()); getTargetData()->getABITypeAlignment(I->getType());
// Flags[31:27] -> OriginalAlignment // Flags[31:27] -> OriginalAlignment
// Flags[2] -> isSRet // Flags[2] -> isSRet
// Flags[1] -> isInReg // Flags[1] -> isInReg
@ -3120,7 +3120,7 @@ TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
bool isInReg = Args[i].isInReg; bool isInReg = Args[i].isInReg;
bool isSRet = Args[i].isSRet; bool isSRet = Args[i].isSRet;
unsigned OriginalAlignment = unsigned OriginalAlignment =
getTargetData()->getTypeAlignmentABI(Args[i].Ty); getTargetData()->getABITypeAlignment(Args[i].Ty);
// Flags[31:27] -> OriginalAlignment // Flags[31:27] -> OriginalAlignment
// Flags[2] -> isSRet // Flags[2] -> isSRet
// Flags[1] -> isInReg // Flags[1] -> isInReg

View File

@ -338,7 +338,7 @@ void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
// compilation. // compilation.
const Type *GlobalType = GV->getType()->getElementType(); const Type *GlobalType = GV->getType()->getElementType();
size_t S = getTargetData()->getTypeSize(GlobalType); size_t S = getTargetData()->getTypeSize(GlobalType);
size_t A = getTargetData()->getTypeAlignmentPref(GlobalType); size_t A = getTargetData()->getPrefTypeAlignment(GlobalType);
if (A <= 8) { if (A <= 8) {
Ptr = malloc(S); Ptr = malloc(S);
} else { } else {

View File

@ -37,12 +37,14 @@ ARMTargetMachine::ARMTargetMachine(const Module &M, const std::string &FS)
DataLayout(Subtarget.isAPCS_ABI() ? DataLayout(Subtarget.isAPCS_ABI() ?
// APCS ABI // APCS ABI
(Subtarget.isThumb() ? (Subtarget.isThumb() ?
std::string("e-p:32:32-d:32:32-l:32:32-s:16:32-b:8:32-B:8:32-A:32") : std::string("e-p:32:32-f64:32:32-i64:32:32-"
std::string("e-p:32:32-d:32:32-l:32:32")) : "i16:16:32-i8:8:32-i1:8:32-a:0:32") :
std::string("e-p:32:32-f64:32:32-i64:32:32")) :
// AAPCS ABI // AAPCS ABI
(Subtarget.isThumb() ? (Subtarget.isThumb() ?
std::string("e-p:32:32-d:64:64-l:64:64-s:16:32-b:8:32-B:8:32-A:32") : std::string("e-p:32:32-f64:64:64-i64:64:64-"
std::string("e-p:32:32-d:64:64-l:64:64"))), "i16:16:32-i8:8:32-i1:8:32-a:0:32") :
std::string("e-p:32:32-f64:64:64-i64:64:64"))),
InstrInfo(Subtarget), InstrInfo(Subtarget),
FrameInfo(Subtarget) {} FrameInfo(Subtarget) {}

View File

@ -104,8 +104,8 @@ public:
/// getTargetDataString - Return the pointer size and type alignment /// getTargetDataString - Return the pointer size and type alignment
/// properties of this subtarget. /// properties of this subtarget.
const char *getTargetDataString() const { const char *getTargetDataString() const {
return isPPC64() ? "E-p:64:64-d:32:64-l:32:64" return isPPC64() ? "E-p:64:64-f64:32:64-i64:32:64"
: "E-p:32:32-d:32:64-l:32:64"; : "E-p:32:32-f64:32:64-i64:32:64";
} }
/// isPPC64 - Return true if we are generating code for 64-bit pointer mode. /// isPPC64 - Return true if we are generating code for 64-bit pointer mode.

View File

@ -229,7 +229,7 @@ bool SparcAsmPrinter::doFinalization(Module &M) {
std::string name = Mang->getValueName(I); std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer(); Constant *C = I->getInitializer();
unsigned Size = TD->getTypeSize(C->getType()); unsigned Size = TD->getTypeSize(C->getType());
unsigned Align = TD->getTypeAlignmentPref(C->getType()); unsigned Align = TD->getPrefTypeAlignment(C->getType());
if (C->isNullValue() && if (C->isNullValue() &&
(I->hasLinkOnceLinkage() || I->hasInternalLinkage() || (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||

View File

@ -36,12 +36,6 @@ namespace {
RegisterPass<TargetData> X("targetdata", "Target Data Layout"); RegisterPass<TargetData> X("targetdata", "Target Data Layout");
} }
static inline void getTypeInfoABI(const Type *Ty, const TargetData *TD,
uint64_t &Size, unsigned char &Alignment);
static inline void getTypeInfoPref(const Type *Ty, const TargetData *TD,
uint64_t &Size, unsigned char &Alignment);
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// Support for StructLayout // Support for StructLayout
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -54,11 +48,10 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
// Loop over each of the elements, placing them in memory... // Loop over each of the elements, placing them in memory...
for (unsigned i = 0, e = NumElements; i != e; ++i) { for (unsigned i = 0, e = NumElements; i != e; ++i) {
const Type *Ty = ST->getElementType(i); const Type *Ty = ST->getElementType(i);
unsigned char A;
unsigned TyAlign; unsigned TyAlign;
uint64_t TySize; uint64_t TySize;
getTypeInfoABI(Ty, &TD, TySize, A); TyAlign = (unsigned) TD.getABITypeAlignment(Ty);
TyAlign = ST->isPacked() ? 1 : A; TySize = (unsigned) TD.getTypeSize(Ty);
// Add padding if necessary to make the data element aligned properly... // Add padding if necessary to make the data element aligned properly...
if (StructSize % TyAlign != 0) if (StructSize % TyAlign != 0)
@ -95,39 +88,127 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
return SI-&MemberOffsets[0]; return SI-&MemberOffsets[0];
} }
//===----------------------------------------------------------------------===//
// TargetAlignElem, TargetAlign support
//===----------------------------------------------------------------------===//
TargetAlignElem
TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align,
unsigned char pref_align, short bit_width)
{
TargetAlignElem retval;
retval.AlignType = align_type;
retval.ABIAlign = abi_align;
retval.PrefAlign = pref_align;
retval.TypeBitWidth = bit_width;
return retval;
}
bool
TargetAlignElem::operator<(const TargetAlignElem &rhs) const
{
return ((AlignType < rhs.AlignType)
|| (AlignType == rhs.AlignType && TypeBitWidth < rhs.TypeBitWidth));
}
bool
TargetAlignElem::operator==(const TargetAlignElem &rhs) const
{
return (AlignType == rhs.AlignType
&& ABIAlign == rhs.ABIAlign
&& PrefAlign == rhs.PrefAlign
&& TypeBitWidth == rhs.TypeBitWidth);
}
std::ostream &
TargetAlignElem::dump(std::ostream &os) const
{
return os << AlignType
<< TypeBitWidth
<< ":" << (int) (ABIAlign * 8)
<< ":" << (int) (PrefAlign * 8);
}
std::ostream &
llvm::operator<<(std::ostream &os, const TargetAlignElem &elem)
{
return elem.dump(os);
}
const TargetAlignElem TargetData::InvalidAlignmentElem =
TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// TargetData Class Implementation // TargetData Class Implementation
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
/*!
A TargetDescription string consists of a sequence of hyphen-delimited
specifiers for target endianness, pointer size and alignments, and various
primitive type sizes and alignments. A typical string looks something like:
<br>
"E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64"
<br>
(note: this string is not fully specified and is only an example.)
\p
Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align,
below) dictates how a type will be aligned within an aggregate and when used
as an argument. Preferred alignment (pref_align, below) determines a type's
alignment when emitted as a global.
\p
Specifier string details:
<br><br>
<i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e"
specifies a little-endian target data model.
<br><br>
<i>p:<size>:<abi_align>:<pref_align></i>: Pointer size, ABI and preferred
alignment.
<br><br>
<i><type><size>:<abi_align>:<pref_align></i>: Numeric type alignment. Type is
one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka
packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits.
\p
The default string, fully specified is:
<br><br>
"E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64"
"-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64"
"-v64:64:64-v128:128:128"
<br><br>
Note that in the case of aggregates, 0 is the default ABI and preferred
alignment. This is a special case, where the aggregate's computed worst-case
alignment will be used.
*/
void TargetData::init(const std::string &TargetDescription) { void TargetData::init(const std::string &TargetDescription) {
std::string temp = TargetDescription; std::string temp = TargetDescription;
LittleEndian = false; LittleEndian = false;
PointerMemSize = 8; PointerMemSize = 8;
PointerABIAlignment = 8; PointerABIAlign = 8;
DoubleABIAlignment = 0; PointerPrefAlign = PointerABIAlign;
FloatABIAlignment = 4;
LongABIAlignment = 0; // Default alignments
IntABIAlignment = 4; setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool
ShortABIAlignment = 2; setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte
ByteABIAlignment = 1; setAlignment(INTEGER_ALIGN, 2, 2, 16); // short
BoolABIAlignment = 1; setAlignment(INTEGER_ALIGN, 4, 4, 32); // int
BoolPrefAlignment = BoolABIAlignment; setAlignment(INTEGER_ALIGN, 0, 8, 64); // long
BytePrefAlignment = ByteABIAlignment; setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
ShortPrefAlignment = ShortABIAlignment; setAlignment(FLOAT_ALIGN, 0, 8, 64); // double
IntPrefAlignment = IntABIAlignment; setAlignment(PACKED_ALIGN, 8, 8, 64); // v2i32
LongPrefAlignment = 8; setAlignment(PACKED_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
FloatPrefAlignment = FloatABIAlignment; setAlignment(AGGREGATE_ALIGN, 0, 0, 0); // struct, union, class, ...
DoublePrefAlignment = 8;
PointerPrefAlignment = PointerABIAlignment;
AggMinPrefAlignment = 0;
while (!temp.empty()) { while (!temp.empty()) {
std::string token = getToken(temp, "-"); std::string token = getToken(temp, "-");
char signal = getToken(token, ":")[0]; std::string arg0 = getToken(token, ":");
const char *p = arg0.c_str();
switch(signal) { AlignTypeEnum align_type;
short size;
unsigned char abi_align;
unsigned char pref_align;
switch(*p) {
case 'E': case 'E':
LittleEndian = false; LittleEndian = false;
break; break;
@ -136,56 +217,26 @@ void TargetData::init(const std::string &TargetDescription) {
break; break;
case 'p': case 'p':
PointerMemSize = atoi(getToken(token,":").c_str()) / 8; PointerMemSize = atoi(getToken(token,":").c_str()) / 8;
PointerABIAlignment = atoi(getToken(token,":").c_str()) / 8; PointerABIAlign = atoi(getToken(token,":").c_str()) / 8;
PointerPrefAlignment = atoi(getToken(token,":").c_str()) / 8; PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8;
if (PointerPrefAlignment == 0) if (PointerPrefAlign == 0)
PointerPrefAlignment = PointerABIAlignment; PointerPrefAlign = PointerABIAlign;
break;
case 'd':
DoubleABIAlignment = atoi(getToken(token,":").c_str()) / 8;
DoublePrefAlignment = atoi(getToken(token,":").c_str()) / 8;
if (DoublePrefAlignment == 0)
DoublePrefAlignment = DoubleABIAlignment;
break;
case 'f':
FloatABIAlignment = atoi(getToken(token, ":").c_str()) / 8;
FloatPrefAlignment = atoi(getToken(token,":").c_str()) / 8;
if (FloatPrefAlignment == 0)
FloatPrefAlignment = FloatABIAlignment;
break;
case 'l':
LongABIAlignment = atoi(getToken(token, ":").c_str()) / 8;
LongPrefAlignment = atoi(getToken(token,":").c_str()) / 8;
if (LongPrefAlignment == 0)
LongPrefAlignment = LongABIAlignment;
break; break;
case 'i': case 'i':
IntABIAlignment = atoi(getToken(token, ":").c_str()) / 8; case 'v':
IntPrefAlignment = atoi(getToken(token,":").c_str()) / 8; case 'f':
if (IntPrefAlignment == 0) case 'a': {
IntPrefAlignment = IntABIAlignment; align_type = (*p == 'i' ? INTEGER_ALIGN :
break; (*p == 'f' ? FLOAT_ALIGN :
case 's': (*p == 'v' ? PACKED_ALIGN : AGGREGATE_ALIGN)));
ShortABIAlignment = atoi(getToken(token, ":").c_str()) / 8; size = (short) atoi(++p);
ShortPrefAlignment = atoi(getToken(token,":").c_str()) / 8; abi_align = atoi(getToken(token, ":").c_str()) / 8;
if (ShortPrefAlignment == 0) pref_align = atoi(getToken(token, ":").c_str()) / 8;
ShortPrefAlignment = ShortABIAlignment; if (pref_align == 0)
break; pref_align = abi_align;
case 'b': setAlignment(align_type, abi_align, pref_align, size);
ByteABIAlignment = atoi(getToken(token, ":").c_str()) / 8;
BytePrefAlignment = atoi(getToken(token,":").c_str()) / 8;
if (BytePrefAlignment == 0)
BytePrefAlignment = ByteABIAlignment;
break;
case 'B':
BoolABIAlignment = atoi(getToken(token, ":").c_str()) / 8;
BoolPrefAlignment = atoi(getToken(token,":").c_str()) / 8;
if (BoolPrefAlignment == 0)
BoolPrefAlignment = BoolABIAlignment;
break;
case 'A':
AggMinPrefAlignment = atoi(getToken(token,":").c_str()) / 8;
break; break;
}
default: default:
break; break;
} }
@ -193,16 +244,62 @@ void TargetData::init(const std::string &TargetDescription) {
// Unless explicitly specified, the alignments for longs and doubles is // Unless explicitly specified, the alignments for longs and doubles is
// capped by pointer size. // capped by pointer size.
if (LongABIAlignment == 0) // FIXME: Is this still necessary?
LongABIAlignment = LongPrefAlignment = PointerMemSize; const TargetAlignElem &long_align = getAlignment(INTEGER_ALIGN, 64);
if (DoubleABIAlignment == 0) if (long_align.ABIAlign == 0)
DoubleABIAlignment = DoublePrefAlignment = PointerMemSize; setAlignment(INTEGER_ALIGN, PointerMemSize, PointerMemSize, 64);
const TargetAlignElem &double_align = getAlignment(FLOAT_ALIGN, 64);
if (double_align.ABIAlign == 0)
setAlignment(FLOAT_ALIGN, PointerMemSize, PointerMemSize, 64);
} }
TargetData::TargetData(const Module *M) { TargetData::TargetData(const Module *M) {
init(M->getDataLayout()); init(M->getDataLayout());
} }
void
TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
unsigned char pref_align, short bit_width) {
TargetAlignElem elt = TargetAlignElem::get(align_type, abi_align,
pref_align, bit_width);
std::pair<align_iterator, align_iterator> ins_result =
std::equal_range(Alignments.begin(), Alignments.end(), elt);
align_iterator I = ins_result.first;
if (I->AlignType == align_type && I->TypeBitWidth == bit_width) {
// Update the abi, preferred alignments.
I->ABIAlign = abi_align;
I->PrefAlign = pref_align;
} else
Alignments.insert(I, elt);
#if 0
// Keep around for debugging and testing...
align_iterator E = ins_result.second;
cerr << "setAlignment(" << elt << ")\n";
cerr << "I = " << (I - Alignments.begin())
<< ", E = " << (E - Alignments.begin()) << "\n";
std::copy(Alignments.begin(), Alignments.end(),
std::ostream_iterator<TargetAlignElem>(*cerr, "\n"));
cerr << "=====\n";
#endif
}
const TargetAlignElem &
TargetData::getAlignment(AlignTypeEnum align_type, short bit_width) const
{
std::pair<align_const_iterator, align_const_iterator> find_result =
std::equal_range(Alignments.begin(), Alignments.end(),
TargetAlignElem::get(align_type, 0, 0,
bit_width));
align_const_iterator I = find_result.first;
// Note: This may not be reasonable if variable-width integer sizes are
// passed, at which point, more sophisticated searching will need to be done.
return *I;
}
/// LayoutInfo - The lazy cache of structure layout information maintained by /// LayoutInfo - The lazy cache of structure layout information maintained by
/// TargetData. Note that the struct types must have been free'd before /// TargetData. Note that the struct types must have been free'd before
/// llvm_shutdown is called (and thus this is deallocated) because all the /// llvm_shutdown is called (and thus this is deallocated) because all the
@ -280,190 +377,187 @@ void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
} }
struct hyphen_delimited :
public std::iterator<std::output_iterator_tag, void, void, void, void>
{
std::ostream &o;
hyphen_delimited(std::ostream &os) :
o(os)
{ }
hyphen_delimited &operator=(const TargetAlignElem &elem)
{
o << "-" << elem;
return *this;
}
hyphen_delimited &operator*()
{
return *this;
}
hyphen_delimited &operator++()
{
return *this;
}
};
std::string TargetData::getStringRepresentation() const { std::string TargetData::getStringRepresentation() const {
std::stringstream repr; std::stringstream repr;
if (LittleEndian) if (LittleEndian)
repr << "e"; repr << "e";
else else
repr << "E"; repr << "E";
repr << "-p:" << (PointerMemSize * 8) << ":" << (PointerABIAlign * 8)
repr << "-p:" << (PointerMemSize * 8) << ":" << (PointerABIAlignment * 8); << ":" << (PointerPrefAlign * 8);
repr << "-d:" << (DoubleABIAlignment * 8) << ":" std::copy(Alignments.begin(), Alignments.end(), hyphen_delimited(repr));
<< (DoublePrefAlignment * 8);
repr << "-f:" << (FloatABIAlignment * 8) << ":"
<< (FloatPrefAlignment * 8);
repr << "-l:" << (LongABIAlignment * 8) << ":"
<< (LongPrefAlignment * 8);
repr << "-i:" << (IntABIAlignment * 8) << ":"
<< (IntPrefAlignment * 8);
repr << "-s:" << (ShortABIAlignment * 8) << ":"
<< (ShortPrefAlignment * 8);
repr << "-b:" << (ByteABIAlignment * 8) << ":"
<< (BytePrefAlignment * 8);
repr << "-B:" << (BoolABIAlignment * 8) << ":"
<< (BoolPrefAlignment * 8);
repr << "-A:" << (AggMinPrefAlignment * 8);
return repr.str(); return repr.str();
} }
static inline void getTypeInfoABI(const Type *Ty, const TargetData *TD, uint64_t TargetData::getTypeSize(const Type *Ty) const {
uint64_t &Size, unsigned char &Alignment) {
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
switch (Ty->getTypeID()) { switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
if (BitWidth <= 8) {
Size = 1; Alignment = TD->getByteABIAlignment();
} else if (BitWidth <= 16) {
Size = 2; Alignment = TD->getShortABIAlignment();
} else if (BitWidth <= 32) {
Size = 4; Alignment = TD->getIntABIAlignment();
} else if (BitWidth <= 64) {
Size = 8; Alignment = TD->getLongABIAlignment();
} else {
Size = ((BitWidth + 7) / 8) & ~1;
Alignment = TD->getLongABIAlignment();
}
return;
}
case Type::VoidTyID: Size = 1; Alignment = TD->getByteABIAlignment(); return;
case Type::FloatTyID: Size = 4; Alignment = TD->getFloatABIAlignment(); return;
case Type::DoubleTyID: Size = 8; Alignment = TD->getDoubleABIAlignment(); return;
case Type::LabelTyID: case Type::LabelTyID:
case Type::PointerTyID: case Type::PointerTyID:
Size = TD->getPointerSize(); Alignment = TD->getPointerABIAlignment(); return getPointerSize();
return;
case Type::ArrayTyID: { case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty); const ArrayType *ATy = cast<ArrayType>(Ty);
getTypeInfoABI(ATy->getElementType(), TD, Size, Alignment); uint64_t Size;
unsigned char Alignment;
Size = getTypeSize(ATy->getElementType());
Alignment = getABITypeAlignment(ATy->getElementType());
unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
Size = AlignedSize*ATy->getNumElements(); return AlignedSize*ATy->getNumElements();
return;
}
case Type::PackedTyID: {
const PackedType *PTy = cast<PackedType>(Ty);
getTypeInfoABI(PTy->getElementType(), TD, Size, Alignment);
unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
Size = AlignedSize*PTy->getNumElements();
// FIXME: The alignments of specific packed types are target dependent.
// For now, just set it to be equal to Size.
Alignment = Size;
return;
} }
case Type::StructTyID: { case Type::StructTyID: {
// Get the layout annotation... which is lazily created on demand. // Get the layout annotation... which is lazily created on demand.
const StructLayout *Layout = TD->getStructLayout(cast<StructType>(Ty)); const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
Size = Layout->getSizeInBytes(); Alignment = Layout->getAlignment(); return Layout->getSizeInBytes();
return;
} }
default:
assert(0 && "Bad type for getTypeInfo!!!");
return;
}
}
static inline void getTypeInfoPref(const Type *Ty, const TargetData *TD,
uint64_t &Size, unsigned char &Alignment) {
assert(Ty->isSized() && "Cannot getTypeInfoPref() on a type that is unsized!");
switch (Ty->getTypeID()) {
case Type::IntegerTyID: { case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
if (BitWidth <= 8) { if (BitWidth <= 8) {
Size = 1; Alignment = TD->getBytePrefAlignment(); return 1;
} else if (BitWidth <= 16) { } else if (BitWidth <= 16) {
Size = 2; Alignment = TD->getShortPrefAlignment(); return 2;
} else if (BitWidth <= 32) { } else if (BitWidth <= 32) {
Size = 4; Alignment = TD->getIntPrefAlignment(); return 4;
} else if (BitWidth <= 64) { } else if (BitWidth <= 64) {
Size = 8; Alignment = TD->getLongPrefAlignment(); return 8;
} else } else
assert(0 && "Integer types > 64 bits not supported."); assert(0 && "Integer types > 64 bits not supported.");
return; break;
} }
case Type::VoidTyID: case Type::VoidTyID:
Size = 1; Alignment = TD->getBytePrefAlignment(); return 1;
return;
case Type::FloatTyID: case Type::FloatTyID:
Size = 4; Alignment = TD->getFloatPrefAlignment(); return 4;
return;
case Type::DoubleTyID: case Type::DoubleTyID:
Size = 8; Alignment = TD->getDoublePrefAlignment(); return 8;
return;
case Type::LabelTyID:
case Type::PointerTyID:
Size = TD->getPointerSize(); Alignment = TD->getPointerPrefAlignment();
return;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
getTypeInfoPref(ATy->getElementType(), TD, Size, Alignment);
unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
Size = AlignedSize*ATy->getNumElements();
return;
}
case Type::PackedTyID: { case Type::PackedTyID: {
const PackedType *PTy = cast<PackedType>(Ty); const PackedType *PTy = cast<PackedType>(Ty);
getTypeInfoPref(PTy->getElementType(), TD, Size, Alignment); return PTy->getBitWidth() / 8;
unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
Size = AlignedSize*PTy->getNumElements();
// FIXME: The alignments of specific packed types are target dependent.
// For now, just set it to be equal to Size.
Alignment = Size;
return;
} }
case Type::StructTyID: {
// Get the layout annotation... which is lazily created on demand;
// enforce minimum aggregate alignment.
const StructLayout *Layout = TD->getStructLayout(cast<StructType>(Ty));
Size = Layout->getSizeInBytes();
Alignment = std::max(Layout->getAlignment(),
(const unsigned int)TD->getAggMinPrefAlignment());
return;
}
default: default:
assert(0 && "Bad type for getTypeInfoPref!!!"); assert(0 && "TargetData::getTypeSize(): Unsupported type");
return; break;
} }
} return 0;
uint64_t TargetData::getTypeSize(const Type *Ty) const {
uint64_t Size;
unsigned char Align;
getTypeInfoABI(Ty, this, Size, Align);
return Size;
} }
uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
if (Ty->isInteger()) if (Ty->isInteger())
return cast<IntegerType>(Ty)->getBitWidth(); return cast<IntegerType>(Ty)->getBitWidth();
else
uint64_t Size; return getTypeSize(Ty) * 8;
unsigned char Align;
getTypeInfoABI(Ty, this, Size, Align);
return Size * 8;
} }
unsigned char TargetData::getTypeAlignmentABI(const Type *Ty) const {
uint64_t Size; /*!
unsigned char Align; \param abi_or_pref Flag that determines which alignment is returned. true
getTypeInfoABI(Ty, this, Size, Align); returns the ABI alignment, false returns the preferred alignment.
return Align; \param Ty The underlying type for which alignment is determined.
Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
== false) for the requested type \a Ty.
*/
unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const
{
int AlignType = -1;
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
switch (Ty->getTypeID()) {
/* Early escape for the non-numeric types */
case Type::LabelTyID:
case Type::PointerTyID:
return (abi_or_pref
? getPointerABIAlignment()
: getPointerPrefAlignment());
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
return (abi_or_pref
? getABITypeAlignment(ATy->getElementType())
: getPrefTypeAlignment(ATy->getElementType()));
}
case Type::StructTyID: {
// Get the layout annotation... which is lazily created on demand.
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
const TargetAlignElem &elem = getAlignment(AGGREGATE_ALIGN, 0);
assert(validAlignment(elem)
&& "Aggregate alignment return invalid in getAlignment");
if (abi_or_pref) {
return (elem.ABIAlign < Layout->getAlignment()
? Layout->StructAlignment
: elem.ABIAlign);
} else {
return (elem.PrefAlign < Layout->getAlignment()
? Layout->StructAlignment
: elem.PrefAlign);
}
}
case Type::IntegerTyID:
case Type::VoidTyID:
AlignType = INTEGER_ALIGN;
break;
case Type::FloatTyID:
case Type::DoubleTyID:
AlignType = FLOAT_ALIGN;
break;
case Type::PackedTyID:
AlignType = PACKED_ALIGN;
break;
default:
assert(0 && "Bad type for getAlignment!!!");
break;
}
const TargetAlignElem &elem = getAlignment((AlignTypeEnum) AlignType,
getTypeSize(Ty) * 8);
if (validAlignment(elem))
return (abi_or_pref ? elem.ABIAlign : elem.PrefAlign);
else {
cerr << "TargetData::getAlignment: align type " << AlignType
<< " size " << getTypeSize(Ty) << " not found in Alignments.\n";
abort();
/*NOTREACHED*/
return 0;
}
} }
unsigned char TargetData::getTypeAlignmentPref(const Type *Ty) const { unsigned char TargetData::getABITypeAlignment(const Type *Ty) const {
uint64_t Size; return getAlignment(Ty, true);
unsigned char Align; }
getTypeInfoPref(Ty, this, Size, Align);
return Align; unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const {
return getAlignment(Ty, false);
} }
unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
unsigned Align = getTypeAlignmentPref(Ty); unsigned Align = (unsigned) getPrefTypeAlignment(Ty);
assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
return Log2_32(Align); return Log2_32(Align);
} }
@ -533,4 +627,3 @@ unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
} }
return Alignment; return Alignment;
} }

View File

@ -109,8 +109,8 @@ X86_64TargetMachine::X86_64TargetMachine(const Module &M, const std::string &FS)
X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS, bool is64Bit) X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS, bool is64Bit)
: Subtarget(M, FS, is64Bit), : Subtarget(M, FS, is64Bit),
DataLayout(Subtarget.is64Bit() ? DataLayout(Subtarget.is64Bit() ?
std::string("e-p:64:64-d:32:64-l:32:64") : std::string("e-p:64:64-f64:32:64-i64:32:64") :
std::string("e-p:32:32-d:32:64-l:32:64")), std::string("e-p:32:32-f64:32:64-i64:32:64")),
FrameInfo(TargetFrameInfo::StackGrowsDown, FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4), Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4),
InstrInfo(*this), JITInfo(*this), TLInfo(*this) { InstrInfo(*this), JITInfo(*this), TLInfo(*this) {

View File

@ -366,7 +366,6 @@ static Value *getBitCastOperand(Value *V) {
/// This function is a wrapper around CastInst::isEliminableCastPair. It /// This function is a wrapper around CastInst::isEliminableCastPair. It
/// simply extracts arguments and returns what that function returns. /// simply extracts arguments and returns what that function returns.
/// @Determine if it is valid to eliminate a Convert pair
static Instruction::CastOps static Instruction::CastOps
isEliminableCastPair( isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction const CastInst *CI, ///< The first cast instruction
@ -5813,8 +5812,8 @@ Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI,
const Type *CastElTy = PTy->getElementType(); const Type *CastElTy = PTy->getElementType();
if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
unsigned AllocElTyAlign = TD->getTypeAlignmentABI(AllocElTy); unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
unsigned CastElTyAlign = TD->getTypeAlignmentABI(CastElTy); unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
if (CastElTyAlign < AllocElTyAlign) return 0; if (CastElTyAlign < AllocElTyAlign) return 0;
// If the allocation has multiple uses, only promote it if we are strictly // If the allocation has multiple uses, only promote it if we are strictly
@ -6903,22 +6902,22 @@ static unsigned GetKnownAlignment(Value *V, TargetData *TD) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
unsigned Align = GV->getAlignment(); unsigned Align = GV->getAlignment();
if (Align == 0 && TD) if (Align == 0 && TD)
Align = TD->getTypeAlignmentPref(GV->getType()->getElementType()); Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
return Align; return Align;
} else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) { } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
unsigned Align = AI->getAlignment(); unsigned Align = AI->getAlignment();
if (Align == 0 && TD) { if (Align == 0 && TD) {
if (isa<AllocaInst>(AI)) if (isa<AllocaInst>(AI))
Align = TD->getTypeAlignmentPref(AI->getType()->getElementType()); Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
else if (isa<MallocInst>(AI)) { else if (isa<MallocInst>(AI)) {
// Malloc returns maximally aligned memory. // Malloc returns maximally aligned memory.
Align = TD->getTypeAlignmentABI(AI->getType()->getElementType()); Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Align = Align =
std::max(Align, std::max(Align,
(unsigned)TD->getTypeAlignmentABI(Type::DoubleTy)); (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
Align = Align =
std::max(Align, std::max(Align,
(unsigned)TD->getTypeAlignmentABI(Type::Int64Ty)); (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
} }
} }
return Align; return Align;
@ -6954,11 +6953,11 @@ static unsigned GetKnownAlignment(Value *V, TargetData *TD) {
const Type *BasePtrTy = GEPI->getOperand(0)->getType(); const Type *BasePtrTy = GEPI->getOperand(0)->getType();
const PointerType *PtrTy = cast<PointerType>(BasePtrTy); const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
if (TD->getTypeAlignmentABI(PtrTy->getElementType()) if (TD->getABITypeAlignment(PtrTy->getElementType())
<= BaseAlignment) { <= BaseAlignment) {
const Type *GEPTy = GEPI->getType(); const Type *GEPTy = GEPI->getType();
const PointerType *GEPPtrTy = cast<PointerType>(GEPTy); const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
return TD->getTypeAlignmentABI(GEPPtrTy->getElementType()); return TD->getABITypeAlignment(GEPPtrTy->getElementType());
} }
return 0; return 0;
} }
@ -8550,8 +8549,10 @@ static bool CheapToScalarize(Value *V, bool isConstant) {
return false; return false;
} }
/// getShuffleMask - Read and decode a shufflevector mask. It turns undef /// Read and decode a shufflevector mask.
/// elements into values that are larger than the #elts in the input. ///
/// It turns undef elements into values that are larger than the number of
/// elements in the input.
static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) { static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
unsigned NElts = SVI->getType()->getNumElements(); unsigned NElts = SVI->getType()->getNumElements();
if (isa<ConstantAggregateZero>(SVI->getOperand(2))) if (isa<ConstantAggregateZero>(SVI->getOperand(2)))