Remove a bunch of duplicated code. Among other things, this fixes

constant folding of signed comparisons of bool.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33134 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2007-01-12 18:42:52 +00:00
parent f6e7bb4a5e
commit d333d90673

View File

@ -554,71 +554,55 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
// so look at directly computing the value.
if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
if (CI1->getType() == Type::Int1Ty && CI2->getType() == Type::Int1Ty) {
switch (Opcode) {
default:
break;
case Instruction::And:
return ConstantInt::get(Type::Int1Ty,
CI1->getZExtValue() & CI2->getZExtValue());
case Instruction::Or:
return ConstantInt::get(Type::Int1Ty,
CI1->getZExtValue() | CI2->getZExtValue());
case Instruction::Xor:
return ConstantInt::get(Type::Int1Ty,
CI1->getZExtValue() ^ CI2->getZExtValue());
}
} else {
uint64_t C1Val = CI1->getZExtValue();
uint64_t C2Val = CI2->getZExtValue();
switch (Opcode) {
default:
break;
case Instruction::Add:
return ConstantInt::get(C1->getType(), C1Val + C2Val);
case Instruction::Sub:
return ConstantInt::get(C1->getType(), C1Val - C2Val);
case Instruction::Mul:
return ConstantInt::get(C1->getType(), C1Val * C2Val);
case Instruction::UDiv:
if (CI2->isNullValue()) // X / 0 -> can't fold
return 0;
return ConstantInt::get(C1->getType(), C1Val / C2Val);
case Instruction::SDiv:
if (CI2->isNullValue()) return 0; // X / 0 -> can't fold
if (CI2->isAllOnesValue() &&
(((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
(CI1->getSExtValue() == INT64_MIN)) ||
(CI1->getSExtValue() == -CI1->getSExtValue())))
return 0; // MIN_INT / -1 -> overflow
return ConstantInt::get(C1->getType(),
CI1->getSExtValue() / CI2->getSExtValue());
case Instruction::URem:
if (C2->isNullValue()) return 0; // X / 0 -> can't fold
return ConstantInt::get(C1->getType(), C1Val % C2Val);
case Instruction::SRem:
if (CI2->isNullValue()) return 0; // X % 0 -> can't fold
if (CI2->isAllOnesValue() &&
(((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
(CI1->getSExtValue() == INT64_MIN)) ||
(CI1->getSExtValue() == -CI1->getSExtValue())))
return 0; // MIN_INT % -1 -> overflow
return ConstantInt::get(C1->getType(),
CI1->getSExtValue() % CI2->getSExtValue());
case Instruction::And:
return ConstantInt::get(C1->getType(), C1Val & C2Val);
case Instruction::Or:
return ConstantInt::get(C1->getType(), C1Val | C2Val);
case Instruction::Xor:
return ConstantInt::get(C1->getType(), C1Val ^ C2Val);
case Instruction::Shl:
return ConstantInt::get(C1->getType(), C1Val << C2Val);
case Instruction::LShr:
return ConstantInt::get(C1->getType(), C1Val >> C2Val);
case Instruction::AShr:
return ConstantInt::get(C1->getType(),
CI1->getSExtValue() >> C2Val);
}
uint64_t C1Val = CI1->getZExtValue();
uint64_t C2Val = CI2->getZExtValue();
switch (Opcode) {
default:
break;
case Instruction::Add:
return ConstantInt::get(C1->getType(), C1Val + C2Val);
case Instruction::Sub:
return ConstantInt::get(C1->getType(), C1Val - C2Val);
case Instruction::Mul:
return ConstantInt::get(C1->getType(), C1Val * C2Val);
case Instruction::UDiv:
if (CI2->isNullValue()) // X / 0 -> can't fold
return 0;
return ConstantInt::get(C1->getType(), C1Val / C2Val);
case Instruction::SDiv:
if (CI2->isNullValue()) return 0; // X / 0 -> can't fold
if (CI2->isAllOnesValue() &&
(((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
(CI1->getSExtValue() == INT64_MIN)) ||
(CI1->getSExtValue() == -CI1->getSExtValue())))
return 0; // MIN_INT / -1 -> overflow
return ConstantInt::get(C1->getType(),
CI1->getSExtValue() / CI2->getSExtValue());
case Instruction::URem:
if (C2->isNullValue()) return 0; // X / 0 -> can't fold
return ConstantInt::get(C1->getType(), C1Val % C2Val);
case Instruction::SRem:
if (CI2->isNullValue()) return 0; // X % 0 -> can't fold
if (CI2->isAllOnesValue() &&
(((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
(CI1->getSExtValue() == INT64_MIN)) ||
(CI1->getSExtValue() == -CI1->getSExtValue())))
return 0; // MIN_INT % -1 -> overflow
return ConstantInt::get(C1->getType(),
CI1->getSExtValue() % CI2->getSExtValue());
case Instruction::And:
return ConstantInt::get(C1->getType(), C1Val & C2Val);
case Instruction::Or:
return ConstantInt::get(C1->getType(), C1Val | C2Val);
case Instruction::Xor:
return ConstantInt::get(C1->getType(), C1Val ^ C2Val);
case Instruction::Shl:
return ConstantInt::get(C1->getType(), C1Val << C2Val);
case Instruction::LShr:
return ConstantInt::get(C1->getType(), C1Val >> C2Val);
case Instruction::AShr:
return ConstantInt::get(C1->getType(),
CI1->getSExtValue() >> C2Val);
}
}
} else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
@ -1059,34 +1043,7 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
return ConstantInt::getTrue();
}
if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2) &&
C1->getType() == Type::Int1Ty && C2->getType() == Type::Int1Ty) {
bool C1Val = cast<ConstantInt>(C1)->getZExtValue();
bool C2Val = cast<ConstantInt>(C2)->getZExtValue();
switch (pred) {
default: assert(0 && "Invalid ICmp Predicate"); return 0;
case ICmpInst::ICMP_EQ:
return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
case ICmpInst::ICMP_NE:
return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
case ICmpInst::ICMP_ULT:
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
case ICmpInst::ICMP_UGT:
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
case ICmpInst::ICMP_ULE:
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
case ICmpInst::ICMP_UGE:
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
case ICmpInst::ICMP_SLT:
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
case ICmpInst::ICMP_SGT:
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
case ICmpInst::ICMP_SLE:
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
case ICmpInst::ICMP_SGE:
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
}
} else if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
if (ICmpInst::isSignedPredicate(ICmpInst::Predicate(pred))) {
int64_t V1 = cast<ConstantInt>(C1)->getSExtValue();
int64_t V2 = cast<ConstantInt>(C2)->getSExtValue();