Fix trailing whitespace and 80-col violation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@79594 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Christopher 2009-08-21 04:06:45 +00:00
parent ae8f78d4de
commit d37eda8c1d

View File

@ -36,7 +36,7 @@ inline static uint64_t* getClearedMemory(unsigned numWords) {
return result;
}
/// A utility function for allocating memory and checking for allocation
/// A utility function for allocating memory and checking for allocation
/// failure. The content is not zeroed.
inline static uint64_t* getMemory(unsigned numWords) {
uint64_t * result = new uint64_t[numWords];
@ -76,7 +76,7 @@ inline static unsigned getDigit(char cdigit, uint8_t radix) {
void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
pVal = getClearedMemory(getNumWords());
pVal[0] = val;
if (isSigned && int64_t(val) < 0)
if (isSigned && int64_t(val) < 0)
for (unsigned i = 1; i < getNumWords(); ++i)
pVal[i] = -1ULL;
}
@ -105,7 +105,7 @@ APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
clearUnusedBits();
}
APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
: BitWidth(numbits), VAL(0) {
assert(BitWidth && "Bitwidth too small");
fromString(numbits, Str, radix);
@ -129,7 +129,7 @@ APInt& APInt::AssignSlowCase(const APInt& RHS) {
VAL = 0;
pVal = getMemory(RHS.getNumWords());
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
} else if (getNumWords() == RHS.getNumWords())
} else if (getNumWords() == RHS.getNumWords())
memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
else if (RHS.isSingleWord()) {
delete [] pVal;
@ -144,7 +144,7 @@ APInt& APInt::AssignSlowCase(const APInt& RHS) {
}
APInt& APInt::operator=(uint64_t RHS) {
if (isSingleWord())
if (isSingleWord())
VAL = RHS;
else {
pVal[0] = RHS;
@ -156,7 +156,7 @@ APInt& APInt::operator=(uint64_t RHS) {
/// Profile - This method 'profiles' an APInt for use with FoldingSet.
void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(BitWidth);
if (isSingleWord()) {
ID.AddInteger(VAL);
return;
@ -167,7 +167,7 @@ void APInt::Profile(FoldingSetNodeID& ID) const {
ID.AddInteger(pVal[i]);
}
/// add_1 - This function adds a single "digit" integer, y, to the multiple
/// add_1 - This function adds a single "digit" integer, y, to the multiple
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
/// 1 is returned if there is a carry out, otherwise 0 is returned.
/// @returns the carry of the addition.
@ -186,15 +186,15 @@ static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
if (isSingleWord())
if (isSingleWord())
++VAL;
else
add_1(pVal, pVal, getNumWords(), 1);
return clearUnusedBits();
}
/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
/// the multi-digit integer array, x[], propagating the borrowed 1 value until
/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
/// the multi-digit integer array, x[], propagating the borrowed 1 value until
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
/// In other words, if y > x then this function returns 1, otherwise 0.
@ -203,7 +203,7 @@ static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
for (unsigned i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= y;
if (y > X)
if (y > X)
y = 1; // We have to "borrow 1" from next "digit"
else {
y = 0; // No need to borrow
@ -215,7 +215,7 @@ static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
if (isSingleWord())
if (isSingleWord())
--VAL;
else
sub_1(pVal, getNumWords(), 1);
@ -223,10 +223,10 @@ APInt& APInt::operator--() {
}
/// add - This function adds the integer array x to the integer array Y and
/// places the result in dest.
/// places the result in dest.
/// @returns the carry out from the addition
/// @brief General addition of 64-bit integer arrays
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
unsigned len) {
bool carry = false;
for (unsigned i = 0; i< len; ++i) {
@ -239,10 +239,10 @@ static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
/// Adds the RHS APint to this APInt.
/// @returns this, after addition of RHS.
/// @brief Addition assignment operator.
/// @brief Addition assignment operator.
APInt& APInt::operator+=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
if (isSingleWord())
VAL += RHS.VAL;
else {
add(pVal, pVal, RHS.pVal, getNumWords());
@ -250,10 +250,10 @@ APInt& APInt::operator+=(const APInt& RHS) {
return clearUnusedBits();
}
/// Subtracts the integer array y from the integer array x
/// Subtracts the integer array y from the integer array x
/// @returns returns the borrow out.
/// @brief Generalized subtraction of 64-bit integer arrays.
static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
unsigned len) {
bool borrow = false;
for (unsigned i = 0; i < len; ++i) {
@ -266,10 +266,10 @@ static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
/// Subtracts the RHS APInt from this APInt
/// @returns this, after subtraction
/// @brief Subtraction assignment operator.
/// @brief Subtraction assignment operator.
APInt& APInt::operator-=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
if (isSingleWord())
VAL -= RHS.VAL;
else
sub(pVal, pVal, RHS.pVal, getNumWords());
@ -277,7 +277,7 @@ APInt& APInt::operator-=(const APInt& RHS) {
}
/// Multiplies an integer array, x by a a uint64_t integer and places the result
/// into dest.
/// into dest.
/// @returns the carry out of the multiplication.
/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
@ -299,19 +299,19 @@ static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
// Determine if the add above introduces carry.
hasCarry = (dest[i] < carry) ? 1 : 0;
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
// (2^32 - 1) + 2^32 = 2^64.
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
}
return carry;
}
/// Multiplies integer array x by integer array y and stores the result into
/// Multiplies integer array x by integer array y and stores the result into
/// the integer array dest. Note that dest's size must be >= xlen + ylen.
/// @brief Generalized multiplicate of integer arrays.
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
@ -337,7 +337,7 @@ static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
resul = (carry << 32) | (resul & 0xffffffffULL);
dest[i+j] += resul;
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
((lx * hy) >> 32) + hx * hy;
}
dest[i+xlen] = carry;
@ -355,7 +355,7 @@ APInt& APInt::operator*=(const APInt& RHS) {
// Get some bit facts about LHS and check for zero
unsigned lhsBits = getActiveBits();
unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
if (!lhsWords)
if (!lhsWords)
// 0 * X ===> 0
return *this;
@ -415,7 +415,7 @@ APInt& APInt::operator^=(const APInt& RHS) {
VAL ^= RHS.VAL;
this->clearUnusedBits();
return *this;
}
}
unsigned numWords = getNumWords();
for (unsigned i = 0; i < numWords; ++i)
pVal[i] ^= RHS.pVal[i];
@ -453,7 +453,7 @@ bool APInt::operator !() const {
return !VAL;
for (unsigned i = 0; i < getNumWords(); ++i)
if (pVal[i])
if (pVal[i])
return false;
return true;
}
@ -486,7 +486,7 @@ APInt APInt::operator-(const APInt& RHS) const {
}
bool APInt::operator[](unsigned bitPosition) const {
return (maskBit(bitPosition) &
return (maskBit(bitPosition) &
(isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
}
@ -496,7 +496,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const {
unsigned n2 = RHS.getActiveBits();
// If the number of bits isn't the same, they aren't equal
if (n1 != n2)
if (n1 != n2)
return false;
// If the number of bits fits in a word, we only need to compare the low word.
@ -505,7 +505,7 @@ bool APInt::EqualSlowCase(const APInt& RHS) const {
// Otherwise, compare everything
for (int i = whichWord(n1 - 1); i >= 0; --i)
if (pVal[i] != RHS.pVal[i])
if (pVal[i] != RHS.pVal[i])
return false;
return true;
}
@ -542,9 +542,9 @@ bool APInt::ult(const APInt& RHS) const {
// Otherwise, compare all words
unsigned topWord = whichWord(std::max(n1,n2)-1);
for (int i = topWord; i >= 0; --i) {
if (pVal[i] > RHS.pVal[i])
if (pVal[i] > RHS.pVal[i])
return false;
if (pVal[i] < RHS.pVal[i])
if (pVal[i] < RHS.pVal[i])
return true;
}
return false;
@ -582,14 +582,14 @@ bool APInt::slt(const APInt& RHS) const {
return true;
else if (rhsNeg)
return false;
else
else
return lhs.ult(rhs);
}
APInt& APInt::set(unsigned bitPosition) {
if (isSingleWord())
if (isSingleWord())
VAL |= maskBit(bitPosition);
else
else
pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
}
@ -597,16 +597,16 @@ APInt& APInt::set(unsigned bitPosition) {
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(unsigned bitPosition) {
if (isSingleWord())
if (isSingleWord())
VAL &= ~maskBit(bitPosition);
else
else
pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
return *this;
}
/// @brief Toggle every bit to its opposite value.
/// Toggle a given bit to its opposite value whose position is given
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(unsigned bitPosition) {
@ -760,7 +760,7 @@ APInt APInt::getHiBits(unsigned numBits) const {
/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(unsigned numBits) const {
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
}
@ -877,7 +877,7 @@ APInt APInt::byteSwap() const {
}
}
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
const APInt& API2) {
APInt A = API1, B = API2;
while (!!B) {
@ -910,7 +910,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
// If the exponent doesn't shift all bits out of the mantissa
if (exp < 52)
return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
APInt(width, mantissa >> (52 - exp));
// If the client didn't provide enough bits for us to shift the mantissa into
@ -930,7 +930,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
/// | Sign Exponent Fraction Bias |
/// |-------------------------------------- |
/// | 1[63] 11[62-52] 52[51-00] 1023 |
/// --------------------------------------
/// --------------------------------------
double APInt::roundToDouble(bool isSigned) const {
// Handle the simple case where the value is contained in one uint64_t.
@ -961,7 +961,7 @@ double APInt::roundToDouble(bool isSigned) const {
if (exp > 1023) {
if (!isSigned || !isNeg)
return std::numeric_limits<double>::infinity();
else
else
return -std::numeric_limits<double>::infinity();
}
exp += 1023; // Increment for 1023 bias
@ -1071,7 +1071,7 @@ APInt &APInt::zext(unsigned width) {
uint64_t *newVal = getClearedMemory(wordsAfter);
if (wordsBefore == 1)
newVal[0] = VAL;
else
else
for (unsigned i = 0; i < wordsBefore; ++i)
newVal[i] = pVal[i];
if (wordsBefore != 1)
@ -1117,7 +1117,7 @@ APInt APInt::ashr(unsigned shiftAmt) const {
return APInt(BitWidth, 0); // undefined
else {
unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
return APInt(BitWidth,
return APInt(BitWidth,
(((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
}
}
@ -1154,11 +1154,11 @@ APInt APInt::ashr(unsigned shiftAmt) const {
if (bitsInWord < APINT_BITS_PER_WORD)
val[breakWord] |= ~0ULL << bitsInWord; // set high bits
} else {
// Shift the low order words
// Shift the low order words
for (unsigned i = 0; i < breakWord; ++i) {
// This combines the shifted corresponding word with the low bits from
// the next word (shifted into this word's high bits).
val[i] = (pVal[i+offset] >> wordShift) |
val[i] = (pVal[i+offset] >> wordShift) |
(pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
}
@ -1171,10 +1171,10 @@ APInt APInt::ashr(unsigned shiftAmt) const {
if (isNegative()) {
if (wordShift > bitsInWord) {
if (breakWord > 0)
val[breakWord-1] |=
val[breakWord-1] |=
~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
val[breakWord] |= ~0ULL;
} else
} else
val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
}
}
@ -1198,7 +1198,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
if (isSingleWord()) {
if (shiftAmt == BitWidth)
return APInt(BitWidth, 0);
else
else
return APInt(BitWidth, this->VAL >> shiftAmt);
}
@ -1209,7 +1209,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
return APInt(BitWidth, 0);
// If none of the bits are shifted out, the result is *this. This avoids
// issues with shifting by the size of the integer type, which produces
// issues with shifting by the size of the integer type, which produces
// undefined results in the code below. This is also an optimization.
if (shiftAmt == 0)
return *this;
@ -1240,7 +1240,7 @@ APInt APInt::lshr(unsigned shiftAmt) const {
return APInt(val,BitWidth).clearUnusedBits();
}
// Shift the low order words
// Shift the low order words
unsigned breakWord = getNumWords() - offset -1;
for (unsigned i = 0; i < breakWord; ++i)
val[i] = (pVal[i+offset] >> wordShift) |
@ -1347,7 +1347,7 @@ APInt APInt::rotr(unsigned rotateAmt) const {
// values using less than 52 bits, the value is converted to double and then
// the libc sqrt function is called. The result is rounded and then converted
// back to a uint64_t which is then used to construct the result. Finally,
// the Babylonian method for computing square roots is used.
// the Babylonian method for computing square roots is used.
APInt APInt::sqrt() const {
// Determine the magnitude of the value.
@ -1359,7 +1359,7 @@ APInt APInt::sqrt() const {
static const uint8_t results[32] = {
/* 0 */ 0,
/* 1- 2 */ 1, 1,
/* 3- 6 */ 2, 2, 2, 2,
/* 3- 6 */ 2, 2, 2, 2,
/* 7-12 */ 3, 3, 3, 3, 3, 3,
/* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
/* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
@ -1375,10 +1375,10 @@ APInt APInt::sqrt() const {
if (magnitude < 52) {
#ifdef _MSC_VER
// Amazingly, VC++ doesn't have round().
return APInt(BitWidth,
return APInt(BitWidth,
uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
#else
return APInt(BitWidth,
return APInt(BitWidth,
uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
#endif
}
@ -1387,7 +1387,7 @@ APInt APInt::sqrt() const {
// is a classical Babylonian method for computing the square root. This code
// was adapted to APINt from a wikipedia article on such computations.
// See http://www.wikipedia.org/ and go to the page named
// Calculate_an_integer_square_root.
// Calculate_an_integer_square_root.
unsigned nbits = BitWidth, i = 4;
APInt testy(BitWidth, 16);
APInt x_old(BitWidth, 1);
@ -1395,13 +1395,13 @@ APInt APInt::sqrt() const {
APInt two(BitWidth, 2);
// Select a good starting value using binary logarithms.
for (;; i += 2, testy = testy.shl(2))
for (;; i += 2, testy = testy.shl(2))
if (i >= nbits || this->ule(testy)) {
x_old = x_old.shl(i / 2);
break;
}
// Use the Babylonian method to arrive at the integer square root:
// Use the Babylonian method to arrive at the integer square root:
for (;;) {
x_new = (this->udiv(x_old) + x_old).udiv(two);
if (x_old.ule(x_new))
@ -1410,9 +1410,9 @@ APInt APInt::sqrt() const {
}
// Make sure we return the closest approximation
// NOTE: The rounding calculation below is correct. It will produce an
// NOTE: The rounding calculation below is correct. It will produce an
// off-by-one discrepancy with results from pari/gp. That discrepancy has been
// determined to be a rounding issue with pari/gp as it begins to use a
// determined to be a rounding issue with pari/gp as it begins to use a
// floating point representation after 192 bits. There are no discrepancies
// between this algorithm and pari/gp for bit widths < 192 bits.
APInt square(x_old * x_old);
@ -1450,7 +1450,7 @@ APInt APInt::multiplicativeInverse(const APInt& modulo) const {
APInt r[2] = { modulo, *this };
APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
APInt q(BitWidth, 0);
unsigned i;
for (i = 0; r[i^1] != 0; i ^= 1) {
// An overview of the math without the confusing bit-flipping:
@ -1487,7 +1487,7 @@ APInt::ms APInt::magic() const {
APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
struct ms mag;
ad = d.abs();
t = signedMin + (d.lshr(d.getBitWidth() - 1));
anc = t - 1 - t.urem(ad); // absolute value of nc
@ -1512,7 +1512,7 @@ APInt::ms APInt::magic() const {
}
delta = ad - r2;
} while (q1.ule(delta) || (q1 == delta && r1 == 0));
mag.m = q2 + 1;
if (d.isNegative()) mag.m = -mag.m; // resulting magic number
mag.s = p - d.getBitWidth(); // resulting shift
@ -1591,10 +1591,10 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
DEBUG(errs() << '\n');
#endif
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
// u and v by d. Note that we have taken Knuth's advice here to use a power
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
// 2 allows us to shift instead of multiply and it is easy to determine the
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
// u and v by d. Note that we have taken Knuth's advice here to use a power
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
// 2 allows us to shift instead of multiply and it is easy to determine the
// shift amount from the leading zeros. We are basically normalizing the u
// and v so that its high bits are shifted to the top of v's range without
// overflow. Note that this can require an extra word in u so that u must
@ -1627,14 +1627,14 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
int j = m;
do {
DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
// D3. [Calculate q'.].
// D3. [Calculate q'.].
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
// Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
// qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
// on v[n-2] determines at high speed most of the cases in which the trial
// value qp is one too large, and it eliminates all cases where qp is two
// too large.
// value qp is one too large, and it eliminates all cases where qp is two
// too large.
uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
uint64_t qp = dividend / v[n-1];
@ -1650,13 +1650,13 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
// D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
// consists of a simple multiplication by a one-place number, combined with
// a subtraction.
// a subtraction.
bool isNeg = false;
for (unsigned i = 0; i < n; ++i) {
uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
bool borrow = subtrahend > u_tmp;
DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
<< ", subtrahend == " << subtrahend
<< ", borrow = " << borrow << '\n');
@ -1670,14 +1670,14 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
k++;
}
isNeg |= borrow;
DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
u[j+i+1] << '\n');
DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
u[j+i+1] << '\n');
}
DEBUG(errs() << "KnuthDiv: after subtraction:");
DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
DEBUG(errs() << '\n');
// The digits (u[j+n]...u[j]) should be kept positive; if the result of
// this step is actually negative, (u[j+n]...u[j]) should be left as the
// The digits (u[j+n]...u[j]) should be kept positive; if the result of
// this step is actually negative, (u[j+n]...u[j]) should be left as the
// true value plus b**(n+1), namely as the b's complement of
// the true value, and a "borrow" to the left should be remembered.
//
@ -1692,16 +1692,16 @@ static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
DEBUG(errs() << '\n');
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
q[j] = (unsigned)qp;
if (isNeg) {
// D6. [Add back]. The probability that this step is necessary is very
// D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
// this possibility. Decrease q[j] by 1
// this possibility. Decrease q[j] by 1
q[j]--;
// and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
// A carry will occur to the left of u[j+n], and it should be ignored
// and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
// A carry will occur to the left of u[j+n], and it should be ignored
// since it cancels with the borrow that occurred in D4.
bool carry = false;
for (unsigned i = 0; i < n; i++) {
@ -1756,12 +1756,12 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
{
assert(lhsWords >= rhsWords && "Fractional result");
// First, compose the values into an array of 32-bit words instead of
// First, compose the values into an array of 32-bit words instead of
// 64-bit words. This is a necessity of both the "short division" algorithm
// and the the Knuth "classical algorithm" which requires there to be native
// operations for +, -, and * on an m bit value with an m*2 bit result. We
// can't use 64-bit operands here because we don't have native results of
// 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
// and the the Knuth "classical algorithm" which requires there to be native
// operations for +, -, and * on an m bit value with an m*2 bit result. We
// can't use 64-bit operands here because we don't have native results of
// 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
// work on large-endian machines.
uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
unsigned n = rhsWords * 2;
@ -1810,9 +1810,9 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
if (Remainder)
memset(R, 0, n * sizeof(unsigned));
// Now, adjust m and n for the Knuth division. n is the number of words in
// Now, adjust m and n for the Knuth division. n is the number of words in
// the divisor. m is the number of words by which the dividend exceeds the
// divisor (i.e. m+n is the length of the dividend). These sizes must not
// divisor (i.e. m+n is the length of the dividend). These sizes must not
// contain any zero words or the Knuth algorithm fails.
for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
n--;
@ -1869,10 +1869,10 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else
Quotient->clear();
// The quotient is in Q. Reconstitute the quotient into Quotient's low
// The quotient is in Q. Reconstitute the quotient into Quotient's low
// order words.
if (lhsWords == 1) {
uint64_t tmp =
uint64_t tmp =
uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
if (Quotient->isSingleWord())
Quotient->VAL = tmp;
@ -1881,7 +1881,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else {
assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
for (unsigned i = 0; i < lhsWords; ++i)
Quotient->pVal[i] =
Quotient->pVal[i] =
uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
@ -1903,7 +1903,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
// The remainder is in R. Reconstitute the remainder into Remainder's low
// order words.
if (rhsWords == 1) {
uint64_t tmp =
uint64_t tmp =
uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
if (Remainder->isSingleWord())
Remainder->VAL = tmp;
@ -1912,7 +1912,7 @@ void APInt::divide(const APInt LHS, unsigned lhsWords,
} else {
assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
for (unsigned i = 0; i < rhsWords; ++i)
Remainder->pVal[i] =
Remainder->pVal[i] =
uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
}
}
@ -1943,9 +1943,9 @@ APInt APInt::udiv(const APInt& RHS) const {
unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
// Deal with some degenerate cases
if (!lhsWords)
if (!lhsWords)
// 0 / X ===> 0
return APInt(BitWidth, 0);
return APInt(BitWidth, 0);
else if (lhsWords < rhsWords || this->ult(RHS)) {
// X / Y ===> 0, iff X < Y
return APInt(BitWidth, 0);
@ -2000,7 +2000,7 @@ APInt APInt::urem(const APInt& RHS) const {
return Remainder;
}
void APInt::udivrem(const APInt &LHS, const APInt &RHS,
void APInt::udivrem(const APInt &LHS, const APInt &RHS,
APInt &Quotient, APInt &Remainder) {
// Get some size facts about the dividend and divisor
unsigned lhsBits = LHS.getActiveBits();
@ -2009,24 +2009,24 @@ void APInt::udivrem(const APInt &LHS, const APInt &RHS,
unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
// Check the degenerate cases
if (lhsWords == 0) {
if (lhsWords == 0) {
Quotient = 0; // 0 / Y ===> 0
Remainder = 0; // 0 % Y ===> 0
return;
}
if (lhsWords < rhsWords || LHS.ult(RHS)) {
}
if (lhsWords < rhsWords || LHS.ult(RHS)) {
Quotient = 0; // X / Y ===> 0, iff X < Y
Remainder = LHS; // X % Y ===> X, iff X < Y
return;
}
}
if (LHS == RHS) {
Quotient = 1; // X / X ===> 1
Remainder = 0; // X % X ===> 0;
return;
}
}
if (lhsWords == 1 && rhsWords == 1) {
// There is only one word to consider so use the native versions.
uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
@ -2057,7 +2057,8 @@ void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
assert((slen <= numbits || radix != 2) && "Insufficient bit width");
assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
assert((((slen-1)*64)/22 <= numbits || radix != 10)
&& "Insufficient bit width");
// Allocate memory
if (!isSingleWord())
@ -2101,19 +2102,19 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
bool Signed) const {
assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
// First, check for a zero value and just short circuit the logic below.
if (*this == 0) {
Str.push_back('0');
return;
}
static const char Digits[] = "0123456789ABCDEF";
if (isSingleWord()) {
char Buffer[65];
char *BufPtr = Buffer+65;
uint64_t N;
if (Signed) {
int64_t I = getSExtValue();
@ -2125,7 +2126,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
} else {
N = getZExtValue();
}
while (N) {
*--BufPtr = Digits[N % Radix];
N /= Radix;
@ -2135,7 +2136,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
}
APInt Tmp(*this);
if (Signed && isNegative()) {
// They want to print the signed version and it is a negative value
// Flip the bits and add one to turn it into the equivalent positive
@ -2144,18 +2145,18 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Tmp++;
Str.push_back('-');
}
// We insert the digits backward, then reverse them to get the right order.
unsigned StartDig = Str.size();
// For the 2, 8 and 16 bit cases, we can just shift instead of divide
// because the number of bits per digit (1, 3 and 4 respectively) divides
// For the 2, 8 and 16 bit cases, we can just shift instead of divide
// because the number of bits per digit (1, 3 and 4 respectively) divides
// equaly. We just shift until the value is zero.
if (Radix != 10) {
// Just shift tmp right for each digit width until it becomes zero
unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
unsigned MaskAmt = Radix - 1;
while (Tmp != 0) {
unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
Str.push_back(Digits[Digit]);
@ -2166,7 +2167,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
while (Tmp != 0) {
APInt APdigit(1, 0);
APInt tmp2(Tmp.getBitWidth(), 0);
divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
&APdigit);
unsigned Digit = (unsigned)APdigit.getZExtValue();
assert(Digit < Radix && "divide failed");
@ -2174,7 +2175,7 @@ void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Tmp = tmp2;
}
}
// Reverse the digits before returning.
std::reverse(Str.begin()+StartDig, Str.end());
}