mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-22 13:29:44 +00:00
[SLSR] handle candidate form (B + i * S)
Summary: With this patch, SLSR may rewrite S1: X = B + i * S S2: Y = B + i' * S to S2: Y = X + (i' - i) * S A secondary improvement: if (i' - i) is a power of 2, emit Y as X + (S << log(i' - i)). (S << log(i' -i)) is in a canonical form and thus more likely GVN'ed than (i' - i) * S. Test Plan: slsr-add.ll Reviewers: hfinkel, sanjoy, meheff, broune, eliben Reviewed By: eliben Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D8983 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235019 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
6d9fd9bc70
commit
d4ceea3837
@ -15,42 +15,46 @@
|
||||
//
|
||||
// There are many optimizations we can perform in the domain of SLSR. This file
|
||||
// for now contains only an initial step. Specifically, we look for strength
|
||||
// reduction candidates in two forms:
|
||||
// reduction candidates in the following forms:
|
||||
//
|
||||
// Form 1: (B + i) * S
|
||||
// Form 2: &B[i * S]
|
||||
// Form 1: B + i * S
|
||||
// Form 2: (B + i) * S
|
||||
// Form 3: &B[i * S]
|
||||
//
|
||||
// where S is an integer variable, and i is a constant integer. If we found two
|
||||
// candidates
|
||||
// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
|
||||
// in a simpler way with respect to S1. For example,
|
||||
//
|
||||
// S1: X = B + i * S
|
||||
// S2: Y = B + i' * S => X + (i' - i) * S
|
||||
//
|
||||
// S1: X = (B + i) * S
|
||||
// S2: Y = (B + i') * S
|
||||
//
|
||||
// or
|
||||
// S2: Y = (B + i') * S => X + (i' - i) * S
|
||||
//
|
||||
// S1: X = &B[i * S]
|
||||
// S2: Y = &B[i' * S]
|
||||
// S2: Y = &B[i' * S] => &X[(i' - i) * S]
|
||||
//
|
||||
// and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with
|
||||
// Note: (i' - i) * S is folded to the extent possible.
|
||||
//
|
||||
// Y = X + (i' - i) * S
|
||||
// This rewriting is in general a good idea. The code patterns we focus on
|
||||
// usually come from loop unrolling, so (i' - i) * S is likely the same
|
||||
// across iterations and can be reused. When that happens, the optimized form
|
||||
// takes only one add starting from the second iteration.
|
||||
//
|
||||
// or
|
||||
//
|
||||
// Y = &X[(i' - i) * S]
|
||||
//
|
||||
// where (i' - i) * S is folded to the extent possible. When S2 has multiple
|
||||
// bases, we pick the one that is closest to S2, or S2's "immediate" basis.
|
||||
// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
|
||||
// multiple bases, we choose to rewrite S2 with respect to its "immediate"
|
||||
// basis, the basis that is the closest ancestor in the dominator tree.
|
||||
//
|
||||
// TODO:
|
||||
//
|
||||
// - Handle candidates in the form of B + i * S
|
||||
//
|
||||
// - Floating point arithmetics when fast math is enabled.
|
||||
//
|
||||
// - SLSR may decrease ILP at the architecture level. Targets that are very
|
||||
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
|
||||
// left as future work.
|
||||
//
|
||||
// - When (i' - i) is constant but i and i' are not, we could still perform
|
||||
// SLSR.
|
||||
#include <vector>
|
||||
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
@ -72,13 +76,12 @@ namespace {
|
||||
|
||||
class StraightLineStrengthReduce : public FunctionPass {
|
||||
public:
|
||||
// SLSR candidate. Such a candidate must be in the form of
|
||||
// (Base + Index) * Stride
|
||||
// or
|
||||
// Base[..][Index * Stride][..]
|
||||
// SLSR candidate. Such a candidate must be in one of the forms described in
|
||||
// the header comments.
|
||||
struct Candidate : public ilist_node<Candidate> {
|
||||
enum Kind {
|
||||
Invalid, // reserved for the default constructor
|
||||
Add, // B + i * S
|
||||
Mul, // (B + i) * S
|
||||
GEP, // &B[..][i * S][..]
|
||||
};
|
||||
@ -92,14 +95,14 @@ public:
|
||||
Basis(nullptr) {}
|
||||
Kind CandidateKind;
|
||||
const SCEV *Base;
|
||||
// Note that Index and Stride of a GEP candidate may not have the same
|
||||
// integer type. In that case, during rewriting, Stride will be
|
||||
// Note that Index and Stride of a GEP candidate do not necessarily have the
|
||||
// same integer type. In that case, during rewriting, Stride will be
|
||||
// sign-extended or truncated to Index's type.
|
||||
ConstantInt *Index;
|
||||
Value *Stride;
|
||||
// The instruction this candidate corresponds to. It helps us to rewrite a
|
||||
// candidate with respect to its immediate basis. Note that one instruction
|
||||
// can corresponds to multiple candidates depending on how you associate the
|
||||
// can correspond to multiple candidates depending on how you associate the
|
||||
// expression. For instance,
|
||||
//
|
||||
// (a + 1) * (b + 2)
|
||||
@ -143,31 +146,43 @@ private:
|
||||
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
|
||||
// share the same base and stride.
|
||||
bool isBasisFor(const Candidate &Basis, const Candidate &C);
|
||||
// Returns whether the candidate can be folded into an addressing mode.
|
||||
bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
|
||||
const DataLayout *DL);
|
||||
// Returns true if C is already in a simplest form and not worth being
|
||||
// rewritten.
|
||||
bool isSimplestForm(const Candidate &C);
|
||||
// Checks whether I is in a candidate form. If so, adds all the matching forms
|
||||
// to Candidates, and tries to find the immediate basis for each of them.
|
||||
void allocateCandidateAndFindBasis(Instruction *I);
|
||||
void allocateCandidatesAndFindBasis(Instruction *I);
|
||||
// Allocate candidates and find bases for Add instructions.
|
||||
void allocateCandidatesAndFindBasisForAdd(Instruction *I);
|
||||
// Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
|
||||
// candidate.
|
||||
void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
|
||||
Instruction *I);
|
||||
// Allocate candidates and find bases for Mul instructions.
|
||||
void allocateCandidateAndFindBasisForMul(Instruction *I);
|
||||
void allocateCandidatesAndFindBasisForMul(Instruction *I);
|
||||
// Splits LHS into Base + Index and, if succeeds, calls
|
||||
// allocateCandidateAndFindBasis.
|
||||
void allocateCandidateAndFindBasisForMul(Value *LHS, Value *RHS,
|
||||
// allocateCandidatesAndFindBasis.
|
||||
void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
|
||||
Instruction *I);
|
||||
// Allocate candidates and find bases for GetElementPtr instructions.
|
||||
void allocateCandidateAndFindBasisForGEP(GetElementPtrInst *GEP);
|
||||
void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
|
||||
// A helper function that scales Idx with ElementSize before invoking
|
||||
// allocateCandidateAndFindBasis.
|
||||
void allocateCandidateAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
|
||||
// allocateCandidatesAndFindBasis.
|
||||
void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
|
||||
Value *S, uint64_t ElementSize,
|
||||
Instruction *I);
|
||||
// Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
|
||||
// basis.
|
||||
void allocateCandidateAndFindBasis(Candidate::Kind CT, const SCEV *B,
|
||||
void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
|
||||
ConstantInt *Idx, Value *S,
|
||||
Instruction *I);
|
||||
// Rewrites candidate C with respect to Basis.
|
||||
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
|
||||
// A helper function that factors ArrayIdx to a product of a stride and a
|
||||
// constant index, and invokes allocateCandidateAndFindBasis with the
|
||||
// constant index, and invokes allocateCandidatesAndFindBasis with the
|
||||
// factorings.
|
||||
void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
|
||||
GetElementPtrInst *GEP);
|
||||
@ -187,7 +202,7 @@ private:
|
||||
// Temporarily holds all instructions that are unlinked (but not deleted) by
|
||||
// rewriteCandidateWithBasis. These instructions will be actually removed
|
||||
// after all rewriting finishes.
|
||||
DenseSet<Instruction *> UnlinkedInstructions;
|
||||
std::vector<Instruction *> UnlinkedInstructions;
|
||||
};
|
||||
} // anonymous namespace
|
||||
|
||||
@ -215,7 +230,7 @@ bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
|
||||
Basis.CandidateKind == C.CandidateKind);
|
||||
}
|
||||
|
||||
static bool isCompletelyFoldable(GetElementPtrInst *GEP,
|
||||
static bool isGEPFoldable(GetElementPtrInst *GEP,
|
||||
const TargetTransformInfo *TTI,
|
||||
const DataLayout *DL) {
|
||||
GlobalVariable *BaseGV = nullptr;
|
||||
@ -252,27 +267,79 @@ static bool isCompletelyFoldable(GetElementPtrInst *GEP,
|
||||
BaseOffset, HasBaseReg, Scale);
|
||||
}
|
||||
|
||||
// TODO: We currently implement an algorithm whose time complexity is linear to
|
||||
// the number of existing candidates. However, a better algorithm exists. We
|
||||
// could depth-first search the dominator tree, and maintain a hash table that
|
||||
// contains all candidates that dominate the node being traversed. This hash
|
||||
// table is indexed by the base and the stride of a candidate. Therefore,
|
||||
// finding the immediate basis of a candidate boils down to one hash-table look
|
||||
// up.
|
||||
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(
|
||||
// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
|
||||
static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
|
||||
TargetTransformInfo *TTI) {
|
||||
return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
|
||||
Index->getSExtValue());
|
||||
}
|
||||
|
||||
bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
|
||||
TargetTransformInfo *TTI,
|
||||
const DataLayout *DL) {
|
||||
if (C.CandidateKind == Candidate::Add)
|
||||
return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
|
||||
if (C.CandidateKind == Candidate::GEP)
|
||||
return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns true if GEP has zero or one non-zero index.
|
||||
static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
|
||||
unsigned NumNonZeroIndices = 0;
|
||||
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
|
||||
ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
|
||||
if (ConstIdx == nullptr || !ConstIdx->isZero())
|
||||
++NumNonZeroIndices;
|
||||
}
|
||||
return NumNonZeroIndices <= 1;
|
||||
}
|
||||
|
||||
bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
|
||||
if (C.CandidateKind == Candidate::Add) {
|
||||
// B + 1 * S or B + (-1) * S
|
||||
return C.Index->isOne() || C.Index->isMinusOne();
|
||||
}
|
||||
if (C.CandidateKind == Candidate::Mul) {
|
||||
// (B + 0) * S
|
||||
return C.Index->isZero();
|
||||
}
|
||||
if (C.CandidateKind == Candidate::GEP) {
|
||||
// (char*)B + S or (char*)B - S
|
||||
return ((C.Index->isOne() || C.Index->isMinusOne()) &&
|
||||
hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// TODO: We currently implement an algorithm whose time complexity is linear in
|
||||
// the number of existing candidates. However, we could do better by using
|
||||
// ScopedHashTable. Specifically, while traversing the dominator tree, we could
|
||||
// maintain all the candidates that dominate the basic block being traversed in
|
||||
// a ScopedHashTable. This hash table is indexed by the base and the stride of
|
||||
// a candidate. Therefore, finding the immediate basis of a candidate boils down
|
||||
// to one hash-table look up.
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
|
||||
Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
|
||||
Instruction *I) {
|
||||
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
||||
// If &B[Idx * S] fits into an addressing mode, do not turn it into
|
||||
// non-free computation.
|
||||
if (isCompletelyFoldable(GEP, TTI, DL))
|
||||
return;
|
||||
}
|
||||
|
||||
Candidate C(CT, B, Idx, S, I);
|
||||
// SLSR can complicate an instruction in two cases:
|
||||
//
|
||||
// 1. If we can fold I into an addressing mode, computing I is likely free or
|
||||
// takes only one instruction.
|
||||
//
|
||||
// 2. I is already in a simplest form. For example, when
|
||||
// X = B + 8 * S
|
||||
// Y = B + S,
|
||||
// rewriting Y to X - 7 * S is probably a bad idea.
|
||||
//
|
||||
// In the above cases, we still add I to the candidate list so that I can be
|
||||
// the basis of other candidates, but we leave I's basis blank so that I
|
||||
// won't be rewritten.
|
||||
if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
|
||||
// Try to compute the immediate basis of C.
|
||||
unsigned NumIterations = 0;
|
||||
// Limit the scan radius to avoid running forever.
|
||||
// Limit the scan radius to avoid running in quadratice time.
|
||||
static const unsigned MaxNumIterations = 50;
|
||||
for (auto Basis = Candidates.rbegin();
|
||||
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
|
||||
@ -282,23 +349,61 @@ void StraightLineStrengthReduce::allocateCandidateAndFindBasis(
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Regardless of whether we find a basis for C, we need to push C to the
|
||||
// candidate list.
|
||||
// candidate list so that it can be the basis of other candidates.
|
||||
Candidates.push_back(C);
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) {
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
|
||||
Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::Add:
|
||||
allocateCandidatesAndFindBasisForAdd(I);
|
||||
break;
|
||||
case Instruction::Mul:
|
||||
allocateCandidateAndFindBasisForMul(I);
|
||||
allocateCandidatesAndFindBasisForMul(I);
|
||||
break;
|
||||
case Instruction::GetElementPtr:
|
||||
allocateCandidateAndFindBasisForGEP(cast<GetElementPtrInst>(I));
|
||||
allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
|
||||
Instruction *I) {
|
||||
// Try matching B + i * S.
|
||||
if (!isa<IntegerType>(I->getType()))
|
||||
return;
|
||||
|
||||
assert(I->getNumOperands() == 2 && "isn't I an add?");
|
||||
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
||||
allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
|
||||
if (LHS != RHS)
|
||||
allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
|
||||
Value *LHS, Value *RHS, Instruction *I) {
|
||||
Value *S = nullptr;
|
||||
ConstantInt *Idx = nullptr;
|
||||
if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
|
||||
// I = LHS + RHS = LHS + Idx * S
|
||||
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
|
||||
} else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
|
||||
// I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
|
||||
APInt One(Idx->getBitWidth(), 1);
|
||||
Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
|
||||
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
|
||||
} else {
|
||||
// At least, I = LHS + 1 * RHS
|
||||
ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
|
||||
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
|
||||
I);
|
||||
}
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
|
||||
Value *LHS, Value *RHS, Instruction *I) {
|
||||
Value *B = nullptr;
|
||||
ConstantInt *Idx = nullptr;
|
||||
@ -306,31 +411,32 @@ void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
|
||||
if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
|
||||
// If LHS is in the form of "Base + Index", then I is in the form of
|
||||
// "(Base + Index) * RHS".
|
||||
allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
|
||||
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
|
||||
} else {
|
||||
// Otherwise, at least try the form (LHS + 0) * RHS.
|
||||
ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
|
||||
allocateCandidateAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
|
||||
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
|
||||
I);
|
||||
}
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForMul(
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
|
||||
Instruction *I) {
|
||||
// Try matching (B + i) * S.
|
||||
// TODO: we could extend SLSR to float and vector types.
|
||||
if (!isa<IntegerType>(I->getType()))
|
||||
return;
|
||||
|
||||
assert(I->getNumOperands() == 2 && "isn't I a mul?");
|
||||
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
||||
allocateCandidateAndFindBasisForMul(LHS, RHS, I);
|
||||
allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
|
||||
if (LHS != RHS) {
|
||||
// Symmetrically, try to split RHS to Base + Index.
|
||||
allocateCandidateAndFindBasisForMul(RHS, LHS, I);
|
||||
allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
|
||||
}
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
|
||||
const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
|
||||
Instruction *I) {
|
||||
// I = B + sext(Idx *nsw S) * ElementSize
|
||||
@ -340,15 +446,15 @@ void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
|
||||
IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
|
||||
ConstantInt *ScaledIdx = ConstantInt::get(
|
||||
IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
|
||||
allocateCandidateAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
|
||||
allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
|
||||
const SCEV *Base,
|
||||
uint64_t ElementSize,
|
||||
GetElementPtrInst *GEP) {
|
||||
// At least, ArrayIdx = ArrayIdx *s 1.
|
||||
allocateCandidateAndFindBasisForGEP(
|
||||
// At least, ArrayIdx = ArrayIdx *nsw 1.
|
||||
allocateCandidatesAndFindBasisForGEP(
|
||||
Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
|
||||
ArrayIdx, ElementSize, GEP);
|
||||
Value *LHS = nullptr;
|
||||
@ -367,18 +473,18 @@ void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
|
||||
if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
|
||||
// SLSR is currently unsafe if i * S may overflow.
|
||||
// GEP = Base + sext(LHS *nsw RHS) * ElementSize
|
||||
allocateCandidateAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
|
||||
allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
|
||||
} else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
|
||||
// GEP = Base + sext(LHS <<nsw RHS) * ElementSize
|
||||
// = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
|
||||
APInt One(RHS->getBitWidth(), 1);
|
||||
ConstantInt *PowerOf2 =
|
||||
ConstantInt::get(RHS->getContext(), One << RHS->getValue());
|
||||
allocateCandidateAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
|
||||
allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
|
||||
}
|
||||
}
|
||||
|
||||
void StraightLineStrengthReduce::allocateCandidateAndFindBasisForGEP(
|
||||
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
|
||||
GetElementPtrInst *GEP) {
|
||||
// TODO: handle vector GEPs
|
||||
if (GEP->getType()->isVectorTy())
|
||||
@ -442,6 +548,7 @@ Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
|
||||
else
|
||||
BumpWithUglyGEP = true;
|
||||
}
|
||||
|
||||
// Compute Bump = C - Basis = (i' - i) * S.
|
||||
// Common case 1: if (i' - i) is 1, Bump = S.
|
||||
if (IndexOffset.getSExtValue() == 1)
|
||||
@ -449,9 +556,24 @@ Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
|
||||
// Common case 2: if (i' - i) is -1, Bump = -S.
|
||||
if (IndexOffset.getSExtValue() == -1)
|
||||
return Builder.CreateNeg(C.Stride);
|
||||
// Otherwise, Bump = (i' - i) * sext/trunc(S).
|
||||
ConstantInt *Delta = ConstantInt::get(Basis.Ins->getContext(), IndexOffset);
|
||||
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, Delta->getType());
|
||||
|
||||
// Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
|
||||
// have different bit widths.
|
||||
IntegerType *DeltaType =
|
||||
IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
|
||||
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
|
||||
if (IndexOffset.isPowerOf2()) {
|
||||
// If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
|
||||
ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
|
||||
return Builder.CreateShl(ExtendedStride, Exponent);
|
||||
}
|
||||
if ((-IndexOffset).isPowerOf2()) {
|
||||
// If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
|
||||
ConstantInt *Exponent =
|
||||
ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
|
||||
return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
|
||||
}
|
||||
Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
|
||||
return Builder.CreateMul(ExtendedStride, Delta);
|
||||
}
|
||||
|
||||
@ -459,6 +581,9 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
|
||||
const Candidate &C, const Candidate &Basis) {
|
||||
assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
|
||||
C.Stride == Basis.Stride);
|
||||
// We run rewriteCandidateWithBasis on all candidates in a post-order, so the
|
||||
// basis of a candidate cannot be unlinked before the candidate.
|
||||
assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
|
||||
|
||||
// An instruction can correspond to multiple candidates. Therefore, instead of
|
||||
// simply deleting an instruction when we rewrite it, we mark its parent as
|
||||
@ -472,8 +597,14 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
|
||||
Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
|
||||
Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
|
||||
switch (C.CandidateKind) {
|
||||
case Candidate::Add:
|
||||
case Candidate::Mul:
|
||||
if (BinaryOperator::isNeg(Bump)) {
|
||||
Reduced =
|
||||
Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
|
||||
} else {
|
||||
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
|
||||
}
|
||||
break;
|
||||
case Candidate::GEP:
|
||||
{
|
||||
@ -510,7 +641,7 @@ void StraightLineStrengthReduce::rewriteCandidateWithBasis(
|
||||
// Unlink C.Ins so that we can skip other candidates also corresponding to
|
||||
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
|
||||
C.Ins->removeFromParent();
|
||||
UnlinkedInstructions.insert(C.Ins);
|
||||
UnlinkedInstructions.push_back(C.Ins);
|
||||
}
|
||||
|
||||
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
|
||||
@ -525,7 +656,7 @@ bool StraightLineStrengthReduce::runOnFunction(Function &F) {
|
||||
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
|
||||
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
|
||||
for (auto &I : *node->getBlock())
|
||||
allocateCandidateAndFindBasis(&I);
|
||||
allocateCandidatesAndFindBasis(&I);
|
||||
}
|
||||
|
||||
// Rewrite candidates in the reverse depth-first order. This order makes sure
|
||||
|
@ -5,8 +5,8 @@ target triple = "x86_64-unknown-linux-gnu"
|
||||
|
||||
; Do not perform SLSR on &input[s] and &input[s * 2] which fit into addressing
|
||||
; modes of X86.
|
||||
define i32 @slsr_gep(i32* %input, i64 %s) {
|
||||
; CHECK-LABEL: @slsr_gep(
|
||||
define i32 @no_slsr_gep(i32* %input, i64 %s) {
|
||||
; CHECK-LABEL: @no_slsr_gep(
|
||||
; v0 = input[0];
|
||||
%p0 = getelementptr inbounds i32, i32* %input, i64 0
|
||||
%v0 = load i32, i32* %p0
|
||||
@ -28,3 +28,17 @@ define i32 @slsr_gep(i32* %input, i64 %s) {
|
||||
ret i32 %2
|
||||
}
|
||||
|
||||
define void @no_slsr_add(i32 %b, i32 %s) {
|
||||
; CHECK-LABEL: @no_slsr_add(
|
||||
%1 = add i32 %b, %s
|
||||
; CHECK: add i32 %b, %s
|
||||
call void @foo(i32 %1)
|
||||
%s2 = mul i32 %s, 2
|
||||
; CHECK: %s2 = mul i32 %s, 2
|
||||
%2 = add i32 %b, %s2
|
||||
; CHECK: add i32 %b, %s2
|
||||
call void @foo(i32 %2)
|
||||
ret void
|
||||
}
|
||||
|
||||
declare void @foo(i32 %a)
|
||||
|
101
test/Transforms/StraightLineStrengthReduce/slsr-add.ll
Normal file
101
test/Transforms/StraightLineStrengthReduce/slsr-add.ll
Normal file
@ -0,0 +1,101 @@
|
||||
; RUN: opt < %s -slsr -gvn -dce -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
|
||||
|
||||
define void @shl(i32 %b, i32 %s) {
|
||||
; CHECK-LABEL: @shl(
|
||||
%1 = add i32 %b, %s
|
||||
; [[BASIS:%[a-zA-Z0-9]+]] = add i32 %b, %s
|
||||
call void @foo(i32 %1)
|
||||
%s2 = shl i32 %s, 1
|
||||
%2 = add i32 %b, %s2
|
||||
; add i32 [[BASIS]], %s
|
||||
call void @foo(i32 %2)
|
||||
ret void
|
||||
}
|
||||
|
||||
define void @stride_is_2s(i32 %b, i32 %s) {
|
||||
; CHECK-LABEL: @stride_is_2s(
|
||||
%s2 = shl i32 %s, 1
|
||||
; CHECK: %s2 = shl i32 %s, 1
|
||||
%1 = add i32 %b, %s2
|
||||
; CHECK: [[t1:%[a-zA-Z0-9]+]] = add i32 %b, %s2
|
||||
call void @foo(i32 %1)
|
||||
%s4 = shl i32 %s, 2
|
||||
%2 = add i32 %b, %s4
|
||||
; CHECK: [[t2:%[a-zA-Z0-9]+]] = add i32 [[t1]], %s2
|
||||
call void @foo(i32 %2)
|
||||
%s6 = mul i32 %s, 6
|
||||
%3 = add i32 %b, %s6
|
||||
; CHECK: add i32 [[t2]], %s2
|
||||
call void @foo(i32 %3)
|
||||
ret void
|
||||
}
|
||||
|
||||
define void @stride_is_3s(i32 %b, i32 %s) {
|
||||
; CHECK-LABEL: @stride_is_3s(
|
||||
%1 = add i32 %s, %b
|
||||
; CHECK: [[t1:%[a-zA-Z0-9]+]] = add i32 %s, %b
|
||||
call void @foo(i32 %1)
|
||||
%s4 = shl i32 %s, 2
|
||||
%2 = add i32 %s4, %b
|
||||
; CHECK: [[bump:%[a-zA-Z0-9]+]] = mul i32 %s, 3
|
||||
; CHECK: [[t2:%[a-zA-Z0-9]+]] = add i32 [[t1]], [[bump]]
|
||||
call void @foo(i32 %2)
|
||||
%s7 = mul i32 %s, 7
|
||||
%3 = add i32 %s7, %b
|
||||
; CHECK: add i32 [[t2]], [[bump]]
|
||||
call void @foo(i32 %3)
|
||||
ret void
|
||||
}
|
||||
|
||||
; foo(b + 6 * s);
|
||||
; foo(b + 4 * s);
|
||||
; foo(b + 2 * s);
|
||||
; =>
|
||||
; t1 = b + 6 * s;
|
||||
; foo(t1);
|
||||
; s2 = 2 * s;
|
||||
; t2 = t1 - s2;
|
||||
; foo(t2);
|
||||
; t3 = t2 - s2;
|
||||
; foo(t3);
|
||||
define void @stride_is_minus_2s(i32 %b, i32 %s) {
|
||||
; CHECK-LABEL: @stride_is_minus_2s(
|
||||
%s6 = mul i32 %s, 6
|
||||
%1 = add i32 %b, %s6
|
||||
; CHECK: [[t1:%[a-zA-Z0-9]+]] = add i32 %b, %s6
|
||||
; CHECK: call void @foo(i32 [[t1]])
|
||||
call void @foo(i32 %1)
|
||||
%s4 = shl i32 %s, 2
|
||||
%2 = add i32 %b, %s4
|
||||
; CHECK: [[bump:%[a-zA-Z0-9]+]] = shl i32 %s, 1
|
||||
; CHECK: [[t2:%[a-zA-Z0-9]+]] = sub i32 [[t1]], [[bump]]
|
||||
call void @foo(i32 %2)
|
||||
; CHECK: call void @foo(i32 [[t2]])
|
||||
%s2 = shl i32 %s, 1
|
||||
%3 = add i32 %b, %s2
|
||||
; CHECK: [[t3:%[a-zA-Z0-9]+]] = sub i32 [[t2]], [[bump]]
|
||||
call void @foo(i32 %3)
|
||||
; CHECK: call void @foo(i32 [[t3]])
|
||||
ret void
|
||||
}
|
||||
|
||||
; t = b + (s << 3);
|
||||
; foo(t);
|
||||
; foo(b + s);
|
||||
;
|
||||
; do not rewrite b + s to t - 7 * s because the latter is more complicated.
|
||||
define void @simple_enough(i32 %b, i32 %s) {
|
||||
; CHECK-LABEL: @simple_enough(
|
||||
%s8 = shl i32 %s, 3
|
||||
%1 = add i32 %b, %s8
|
||||
call void @foo(i32 %1)
|
||||
%2 = add i32 %b, %s
|
||||
; CHECK: [[t:%[a-zA-Z0-9]+]] = add i32 %b, %s{{$}}
|
||||
call void @foo(i32 %2)
|
||||
; CHECK: call void @foo(i32 [[t]])
|
||||
ret void
|
||||
}
|
||||
|
||||
declare void @foo(i32 %a)
|
@ -79,7 +79,7 @@ define i32 @slsr3(i32 %b, i32 %s) {
|
||||
|
||||
%b1 = add i32 %b, 2
|
||||
%mul1 = mul i32 %b1, %s
|
||||
; CHECK: [[BUMP:%[a-zA-Z0-9]+]] = mul i32 %s, 2
|
||||
; CHECK: [[BUMP:%[a-zA-Z0-9]+]] = shl i32 %s, 1
|
||||
; CHECK: %mul1 = add i32 %mul0, [[BUMP]]
|
||||
%v1 = call i32 @foo(i32 %mul1)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user