mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
New PBQP solver, and updates to the PBQP graph.
The previous PBQP solver was very robust but consumed a lot of memory, performed a lot of redundant computation, and contained some unnecessarily tight coupling that prevented experimentation with novel solution techniques. This new solver is an attempt to address these shortcomings. Important/interesting changes: 1) The domain-independent PBQP solver class, HeuristicSolverImpl, is gone. It is replaced by a register allocation specific solver, PBQP::RegAlloc::Solver (see RegAllocSolver.h). The optimal reduction rules and the backpropagation algorithm have been extracted into stand-alone functions (see ReductionRules.h), which can be used to build domain specific PBQP solvers. This provides many more opportunities for domain-specific knowledge to inform the PBQP solvers' decisions. In theory this should allow us to generate better solutions. In practice, we can at least test out ideas now. As a side benefit, I believe the new solver is more readable than the old one. 2) The solver type is now a template parameter of the PBQP graph. This allows the graph to notify the solver of any modifications made (e.g. by domain independent rules) without the overhead of a virtual call. It also allows the solver to supply policy information to the graph (see below). 3) Significantly reduced memory overhead. Memory management policy is now an explicit property of the PBQP graph (via the CostAllocator typedef on the graph's solver template argument). Because PBQP graphs for register allocation tend to contain many redundant instances of single values (E.g. the value representing an interference constraint between GPRs), the new RASolver class uses a uniquing scheme. This massively reduces memory consumption for large register allocation problems. For example, looking at the largest interference graph in each of the SPEC2006 benchmarks (the largest graph will always set the memory consumption high-water mark for PBQP), the average memory reduction for the PBQP costs was 400x. That's times, not percent. The highest was 1400x. Yikes. So - this is fixed. "PBQP: No longer feasting upon every last byte of your RAM". Minor details: - Fully C++11'd. Never copy-construct another vector/matrix! - Cute tricks with cost metadata: Metadata that is derived solely from cost matrices/vectors is attached directly to the cost instances themselves. That way if you unique the costs you never have to recompute the metadata. 400x less memory means 400x less cost metadata (re)computation. Special thanks to Arnaud de Grandmaison, who has been the source of much encouragement, and of many very useful test cases. This new solver forms the basis for future work, of which there's plenty to do. I will be adding TODO notes shortly. - Lang. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202551 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
e6a2102aa2
commit
d54d4f6b2e
147
include/llvm/CodeGen/PBQP/CostAllocator.h
Normal file
147
include/llvm/CodeGen/PBQP/CostAllocator.h
Normal file
@ -0,0 +1,147 @@
|
||||
//===---------- CostAllocator.h - PBQP Cost Allocator -----------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Defines classes conforming to the PBQP cost value manager concept.
|
||||
//
|
||||
// Cost value managers are memory managers for PBQP cost values (vectors and
|
||||
// matrices). Since PBQP graphs can grow very large (E.g. hundreds of thousands
|
||||
// of edges on the largest function in SPEC2006).
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_COSTALLOCATOR_H
|
||||
#define LLVM_COSTALLOCATOR_H
|
||||
|
||||
#include <set>
|
||||
#include <type_traits>
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
template <typename CostT,
|
||||
typename CostKeyTComparator>
|
||||
class CostPool {
|
||||
public:
|
||||
|
||||
class PoolEntry {
|
||||
public:
|
||||
template <typename CostKeyT>
|
||||
PoolEntry(CostPool &pool, CostKeyT cost)
|
||||
: pool(pool), cost(std::move(cost)), refCount(0) {}
|
||||
~PoolEntry() { pool.removeEntry(this); }
|
||||
void incRef() { ++refCount; }
|
||||
bool decRef() { --refCount; return (refCount == 0); }
|
||||
CostT& getCost() { return cost; }
|
||||
const CostT& getCost() const { return cost; }
|
||||
private:
|
||||
CostPool &pool;
|
||||
CostT cost;
|
||||
std::size_t refCount;
|
||||
};
|
||||
|
||||
class PoolRef {
|
||||
public:
|
||||
PoolRef(PoolEntry *entry) : entry(entry) {
|
||||
this->entry->incRef();
|
||||
}
|
||||
PoolRef(const PoolRef &r) {
|
||||
entry = r.entry;
|
||||
entry->incRef();
|
||||
}
|
||||
PoolRef& operator=(const PoolRef &r) {
|
||||
assert(entry != 0 && "entry should not be null.");
|
||||
PoolEntry *temp = r.entry;
|
||||
temp->incRef();
|
||||
entry->decRef();
|
||||
entry = temp;
|
||||
return *this;
|
||||
}
|
||||
|
||||
~PoolRef() {
|
||||
if (entry->decRef())
|
||||
delete entry;
|
||||
}
|
||||
void reset(PoolEntry *entry) {
|
||||
entry->incRef();
|
||||
this->entry->decRef();
|
||||
this->entry = entry;
|
||||
}
|
||||
CostT& operator*() { return entry->getCost(); }
|
||||
const CostT& operator*() const { return entry->getCost(); }
|
||||
CostT* operator->() { return &entry->getCost(); }
|
||||
const CostT* operator->() const { return &entry->getCost(); }
|
||||
private:
|
||||
PoolEntry *entry;
|
||||
};
|
||||
|
||||
private:
|
||||
class EntryComparator {
|
||||
public:
|
||||
template <typename CostKeyT>
|
||||
typename std::enable_if<
|
||||
!std::is_same<PoolEntry*,
|
||||
typename std::remove_const<CostKeyT>::type>::value,
|
||||
bool>::type
|
||||
operator()(const PoolEntry* a, const CostKeyT &b) {
|
||||
return compare(a->getCost(), b);
|
||||
}
|
||||
bool operator()(const PoolEntry* a, const PoolEntry* b) {
|
||||
return compare(a->getCost(), b->getCost());
|
||||
}
|
||||
private:
|
||||
CostKeyTComparator compare;
|
||||
};
|
||||
|
||||
typedef std::set<PoolEntry*, EntryComparator> EntrySet;
|
||||
|
||||
EntrySet entrySet;
|
||||
|
||||
void removeEntry(PoolEntry *p) { entrySet.erase(p); }
|
||||
|
||||
public:
|
||||
|
||||
template <typename CostKeyT>
|
||||
PoolRef getCost(CostKeyT costKey) {
|
||||
typename EntrySet::iterator itr =
|
||||
std::lower_bound(entrySet.begin(), entrySet.end(), costKey,
|
||||
EntryComparator());
|
||||
|
||||
if (itr != entrySet.end() && costKey == (*itr)->getCost())
|
||||
return PoolRef(*itr);
|
||||
|
||||
PoolEntry *p = new PoolEntry(*this, std::move(costKey));
|
||||
entrySet.insert(itr, p);
|
||||
return PoolRef(p);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename VectorT, typename VectorTComparator,
|
||||
typename MatrixT, typename MatrixTComparator>
|
||||
class PoolCostAllocator {
|
||||
private:
|
||||
typedef CostPool<VectorT, VectorTComparator> VectorCostPool;
|
||||
typedef CostPool<MatrixT, MatrixTComparator> MatrixCostPool;
|
||||
public:
|
||||
typedef VectorT Vector;
|
||||
typedef MatrixT Matrix;
|
||||
typedef typename VectorCostPool::PoolRef VectorPtr;
|
||||
typedef typename MatrixCostPool::PoolRef MatrixPtr;
|
||||
|
||||
template <typename VectorKeyT>
|
||||
VectorPtr getVector(VectorKeyT v) { return vectorPool.getCost(std::move(v)); }
|
||||
|
||||
template <typename MatrixKeyT>
|
||||
MatrixPtr getMatrix(MatrixKeyT m) { return matrixPool.getCost(std::move(m)); }
|
||||
private:
|
||||
VectorCostPool vectorPool;
|
||||
MatrixCostPool matrixPool;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_COSTALLOCATOR_H
|
@ -15,414 +15,526 @@
|
||||
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
|
||||
#define LLVM_CODEGEN_PBQP_GRAPH_H
|
||||
|
||||
#include "Math.h"
|
||||
#include "llvm/ADT/ilist.h"
|
||||
#include "llvm/ADT/ilist_node.h"
|
||||
#include "llvm/Support/Compiler.h"
|
||||
#include <list>
|
||||
#include <map>
|
||||
#include <set>
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
/// PBQP Graph class.
|
||||
/// Instances of this class describe PBQP problems.
|
||||
class Graph {
|
||||
class GraphBase {
|
||||
public:
|
||||
|
||||
typedef unsigned NodeId;
|
||||
typedef unsigned EdgeId;
|
||||
};
|
||||
|
||||
/// PBQP Graph class.
|
||||
/// Instances of this class describe PBQP problems.
|
||||
///
|
||||
template <typename SolverT>
|
||||
class Graph : public GraphBase {
|
||||
private:
|
||||
|
||||
typedef std::set<NodeId> AdjEdgeList;
|
||||
|
||||
typedef typename SolverT::CostAllocator CostAllocator;
|
||||
public:
|
||||
|
||||
typedef AdjEdgeList::iterator AdjEdgeItr;
|
||||
typedef typename SolverT::RawVector RawVector;
|
||||
typedef typename SolverT::RawMatrix RawMatrix;
|
||||
typedef typename SolverT::Vector Vector;
|
||||
typedef typename SolverT::Matrix Matrix;
|
||||
typedef typename CostAllocator::VectorPtr VectorPtr;
|
||||
typedef typename CostAllocator::MatrixPtr MatrixPtr;
|
||||
typedef typename SolverT::NodeMetadata NodeMetadata;
|
||||
typedef typename SolverT::EdgeMetadata EdgeMetadata;
|
||||
|
||||
private:
|
||||
|
||||
class NodeEntry {
|
||||
private:
|
||||
Vector costs;
|
||||
AdjEdgeList adjEdges;
|
||||
void *data;
|
||||
NodeEntry() : costs(0, 0) {}
|
||||
public:
|
||||
NodeEntry(const Vector &costs) : costs(costs), data(0) {}
|
||||
Vector& getCosts() { return costs; }
|
||||
const Vector& getCosts() const { return costs; }
|
||||
unsigned getDegree() const { return adjEdges.size(); }
|
||||
AdjEdgeItr edgesBegin() { return adjEdges.begin(); }
|
||||
AdjEdgeItr edgesEnd() { return adjEdges.end(); }
|
||||
AdjEdgeItr addEdge(EdgeId e) {
|
||||
return adjEdges.insert(adjEdges.end(), e);
|
||||
}
|
||||
void removeEdge(AdjEdgeItr ae) {
|
||||
adjEdges.erase(ae);
|
||||
}
|
||||
void setData(void *data) { this->data = data; }
|
||||
void* getData() { return data; }
|
||||
typedef std::set<NodeId> AdjEdgeList;
|
||||
typedef AdjEdgeList::const_iterator AdjEdgeItr;
|
||||
NodeEntry(VectorPtr Costs) : Costs(Costs) {}
|
||||
|
||||
VectorPtr Costs;
|
||||
NodeMetadata Metadata;
|
||||
AdjEdgeList AdjEdgeIds;
|
||||
};
|
||||
|
||||
class EdgeEntry {
|
||||
private:
|
||||
NodeId node1, node2;
|
||||
Matrix costs;
|
||||
AdjEdgeItr node1AEItr, node2AEItr;
|
||||
void *data;
|
||||
EdgeEntry() : costs(0, 0, 0), data(0) {}
|
||||
public:
|
||||
EdgeEntry(NodeId node1, NodeId node2, const Matrix &costs)
|
||||
: node1(node1), node2(node2), costs(costs) {}
|
||||
NodeId getNode1() const { return node1; }
|
||||
NodeId getNode2() const { return node2; }
|
||||
Matrix& getCosts() { return costs; }
|
||||
const Matrix& getCosts() const { return costs; }
|
||||
void setNode1AEItr(AdjEdgeItr ae) { node1AEItr = ae; }
|
||||
AdjEdgeItr getNode1AEItr() { return node1AEItr; }
|
||||
void setNode2AEItr(AdjEdgeItr ae) { node2AEItr = ae; }
|
||||
AdjEdgeItr getNode2AEItr() { return node2AEItr; }
|
||||
void setData(void *data) { this->data = data; }
|
||||
void *getData() { return data; }
|
||||
EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
|
||||
: Costs(Costs), N1Id(N1Id), N2Id(N2Id) {}
|
||||
void invalidate() {
|
||||
N1Id = N2Id = Graph::invalidNodeId();
|
||||
Costs = nullptr;
|
||||
}
|
||||
NodeId getN1Id() const { return N1Id; }
|
||||
NodeId getN2Id() const { return N2Id; }
|
||||
MatrixPtr Costs;
|
||||
EdgeMetadata Metadata;
|
||||
private:
|
||||
NodeId N1Id, N2Id;
|
||||
};
|
||||
|
||||
// ----- MEMBERS -----
|
||||
|
||||
CostAllocator CostAlloc;
|
||||
SolverT *Solver;
|
||||
|
||||
typedef std::vector<NodeEntry> NodeVector;
|
||||
typedef std::vector<NodeId> FreeNodeVector;
|
||||
NodeVector nodes;
|
||||
FreeNodeVector freeNodes;
|
||||
NodeVector Nodes;
|
||||
FreeNodeVector FreeNodeIds;
|
||||
|
||||
typedef std::vector<EdgeEntry> EdgeVector;
|
||||
typedef std::vector<EdgeId> FreeEdgeVector;
|
||||
EdgeVector edges;
|
||||
FreeEdgeVector freeEdges;
|
||||
EdgeVector Edges;
|
||||
FreeEdgeVector FreeEdgeIds;
|
||||
|
||||
// ----- INTERNAL METHODS -----
|
||||
|
||||
NodeEntry& getNode(NodeId nId) { return nodes[nId]; }
|
||||
const NodeEntry& getNode(NodeId nId) const { return nodes[nId]; }
|
||||
NodeEntry& getNode(NodeId NId) { return Nodes[NId]; }
|
||||
const NodeEntry& getNode(NodeId NId) const { return Nodes[NId]; }
|
||||
|
||||
EdgeEntry& getEdge(EdgeId eId) { return edges[eId]; }
|
||||
const EdgeEntry& getEdge(EdgeId eId) const { return edges[eId]; }
|
||||
EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
|
||||
const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
|
||||
|
||||
NodeId addConstructedNode(const NodeEntry &n) {
|
||||
NodeId nodeId = 0;
|
||||
if (!freeNodes.empty()) {
|
||||
nodeId = freeNodes.back();
|
||||
freeNodes.pop_back();
|
||||
nodes[nodeId] = n;
|
||||
NodeId addConstructedNode(const NodeEntry &N) {
|
||||
NodeId NId = 0;
|
||||
if (!FreeNodeIds.empty()) {
|
||||
NId = FreeNodeIds.back();
|
||||
FreeNodeIds.pop_back();
|
||||
Nodes[NId] = std::move(N);
|
||||
} else {
|
||||
nodeId = nodes.size();
|
||||
nodes.push_back(n);
|
||||
NId = Nodes.size();
|
||||
Nodes.push_back(std::move(N));
|
||||
}
|
||||
return nodeId;
|
||||
return NId;
|
||||
}
|
||||
|
||||
EdgeId addConstructedEdge(const EdgeEntry &e) {
|
||||
assert(findEdge(e.getNode1(), e.getNode2()) == invalidEdgeId() &&
|
||||
EdgeId addConstructedEdge(const EdgeEntry &E) {
|
||||
assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
|
||||
"Attempt to add duplicate edge.");
|
||||
EdgeId edgeId = 0;
|
||||
if (!freeEdges.empty()) {
|
||||
edgeId = freeEdges.back();
|
||||
freeEdges.pop_back();
|
||||
edges[edgeId] = e;
|
||||
EdgeId EId = 0;
|
||||
if (!FreeEdgeIds.empty()) {
|
||||
EId = FreeEdgeIds.back();
|
||||
FreeEdgeIds.pop_back();
|
||||
Edges[EId] = std::move(E);
|
||||
} else {
|
||||
edgeId = edges.size();
|
||||
edges.push_back(e);
|
||||
EId = Edges.size();
|
||||
Edges.push_back(std::move(E));
|
||||
}
|
||||
|
||||
EdgeEntry &ne = getEdge(edgeId);
|
||||
NodeEntry &n1 = getNode(ne.getNode1());
|
||||
NodeEntry &n2 = getNode(ne.getNode2());
|
||||
EdgeEntry &NE = getEdge(EId);
|
||||
NodeEntry &N1 = getNode(NE.getN1Id());
|
||||
NodeEntry &N2 = getNode(NE.getN2Id());
|
||||
|
||||
// Sanity check on matrix dimensions:
|
||||
assert((n1.getCosts().getLength() == ne.getCosts().getRows()) &&
|
||||
(n2.getCosts().getLength() == ne.getCosts().getCols()) &&
|
||||
assert((N1.Costs->getLength() == NE.Costs->getRows()) &&
|
||||
(N2.Costs->getLength() == NE.Costs->getCols()) &&
|
||||
"Edge cost dimensions do not match node costs dimensions.");
|
||||
|
||||
ne.setNode1AEItr(n1.addEdge(edgeId));
|
||||
ne.setNode2AEItr(n2.addEdge(edgeId));
|
||||
return edgeId;
|
||||
N1.AdjEdgeIds.insert(EId);
|
||||
N2.AdjEdgeIds.insert(EId);
|
||||
return EId;
|
||||
}
|
||||
|
||||
Graph(const Graph &other) {}
|
||||
void operator=(const Graph &other) {}
|
||||
Graph(const Graph &Other) {}
|
||||
void operator=(const Graph &Other) {}
|
||||
|
||||
public:
|
||||
|
||||
typedef typename NodeEntry::AdjEdgeItr AdjEdgeItr;
|
||||
|
||||
class NodeItr {
|
||||
public:
|
||||
NodeItr(NodeId nodeId, const Graph &g)
|
||||
: nodeId(nodeId), endNodeId(g.nodes.size()), freeNodes(g.freeNodes) {
|
||||
this->nodeId = findNextInUse(nodeId); // Move to the first in-use nodeId
|
||||
NodeItr(NodeId CurNId, const Graph &G)
|
||||
: CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
|
||||
this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
|
||||
}
|
||||
|
||||
bool operator==(const NodeItr& n) const { return nodeId == n.nodeId; }
|
||||
bool operator!=(const NodeItr& n) const { return !(*this == n); }
|
||||
NodeItr& operator++() { nodeId = findNextInUse(++nodeId); return *this; }
|
||||
NodeId operator*() const { return nodeId; }
|
||||
bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
|
||||
bool operator!=(const NodeItr &O) const { return !(*this == O); }
|
||||
NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
|
||||
NodeId operator*() const { return CurNId; }
|
||||
|
||||
private:
|
||||
NodeId findNextInUse(NodeId n) const {
|
||||
while (n < endNodeId &&
|
||||
std::find(freeNodes.begin(), freeNodes.end(), n) !=
|
||||
freeNodes.end()) {
|
||||
++n;
|
||||
NodeId findNextInUse(NodeId NId) const {
|
||||
while (NId < EndNId &&
|
||||
std::find(FreeNodeIds.begin(), FreeNodeIds.end(), NId) !=
|
||||
FreeNodeIds.end()) {
|
||||
++NId;
|
||||
}
|
||||
return n;
|
||||
return NId;
|
||||
}
|
||||
|
||||
NodeId nodeId, endNodeId;
|
||||
const FreeNodeVector& freeNodes;
|
||||
NodeId CurNId, EndNId;
|
||||
const FreeNodeVector &FreeNodeIds;
|
||||
};
|
||||
|
||||
class EdgeItr {
|
||||
public:
|
||||
EdgeItr(EdgeId edgeId, const Graph &g)
|
||||
: edgeId(edgeId), endEdgeId(g.edges.size()), freeEdges(g.freeEdges) {
|
||||
this->edgeId = findNextInUse(edgeId); // Move to the first in-use edgeId
|
||||
EdgeItr(EdgeId CurEId, const Graph &G)
|
||||
: CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
|
||||
this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
|
||||
}
|
||||
|
||||
bool operator==(const EdgeItr& n) const { return edgeId == n.edgeId; }
|
||||
bool operator!=(const EdgeItr& n) const { return !(*this == n); }
|
||||
EdgeItr& operator++() { edgeId = findNextInUse(++edgeId); return *this; }
|
||||
EdgeId operator*() const { return edgeId; }
|
||||
bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
|
||||
bool operator!=(const EdgeItr &O) const { return !(*this == O); }
|
||||
EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
|
||||
EdgeId operator*() const { return CurEId; }
|
||||
|
||||
private:
|
||||
EdgeId findNextInUse(EdgeId n) const {
|
||||
while (n < endEdgeId &&
|
||||
std::find(freeEdges.begin(), freeEdges.end(), n) !=
|
||||
freeEdges.end()) {
|
||||
++n;
|
||||
EdgeId findNextInUse(EdgeId EId) const {
|
||||
while (EId < EndEId &&
|
||||
std::find(FreeEdgeIds.begin(), FreeEdgeIds.end(), EId) !=
|
||||
FreeEdgeIds.end()) {
|
||||
++EId;
|
||||
}
|
||||
return n;
|
||||
return EId;
|
||||
}
|
||||
|
||||
EdgeId edgeId, endEdgeId;
|
||||
const FreeEdgeVector& freeEdges;
|
||||
EdgeId CurEId, EndEId;
|
||||
const FreeEdgeVector &FreeEdgeIds;
|
||||
};
|
||||
|
||||
class NodeIdSet {
|
||||
public:
|
||||
NodeIdSet(const Graph &G) : G(G) { }
|
||||
NodeItr begin() const { return NodeItr(0, G); }
|
||||
NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
|
||||
bool empty() const { return G.Nodes.empty(); }
|
||||
typename NodeVector::size_type size() const {
|
||||
return G.Nodes.size() - G.FreeNodeIds.size();
|
||||
}
|
||||
private:
|
||||
const Graph& G;
|
||||
};
|
||||
|
||||
class EdgeIdSet {
|
||||
public:
|
||||
EdgeIdSet(const Graph &G) : G(G) { }
|
||||
EdgeItr begin() const { return EdgeItr(0, G); }
|
||||
EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
|
||||
bool empty() const { return G.Edges.empty(); }
|
||||
typename NodeVector::size_type size() const {
|
||||
return G.Edges.size() - G.FreeEdgeIds.size();
|
||||
}
|
||||
private:
|
||||
const Graph& G;
|
||||
};
|
||||
|
||||
class AdjEdgeIdSet {
|
||||
public:
|
||||
AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) { }
|
||||
typename NodeEntry::AdjEdgeItr begin() const {
|
||||
return NE.AdjEdgeIds.begin();
|
||||
}
|
||||
typename NodeEntry::AdjEdgeItr end() const {
|
||||
return NE.AdjEdgeIds.end();
|
||||
}
|
||||
bool empty() const { return NE.AdjEdges.empty(); }
|
||||
typename NodeEntry::AdjEdgeList::size_type size() const {
|
||||
return NE.AdjEdgeIds.size();
|
||||
}
|
||||
private:
|
||||
const NodeEntry &NE;
|
||||
};
|
||||
|
||||
/// \brief Construct an empty PBQP graph.
|
||||
Graph() {}
|
||||
Graph() : Solver(nullptr) { }
|
||||
|
||||
/// \brief Lock this graph to the given solver instance in preparation
|
||||
/// for running the solver. This method will call solver.handleAddNode for
|
||||
/// each node in the graph, and handleAddEdge for each edge, to give the
|
||||
/// solver an opportunity to set up any requried metadata.
|
||||
void setSolver(SolverT &S) {
|
||||
assert(Solver == nullptr && "Solver already set. Call unsetSolver().");
|
||||
Solver = &S;
|
||||
for (auto NId : nodeIds())
|
||||
Solver->handleAddNode(NId);
|
||||
for (auto EId : edgeIds())
|
||||
Solver->handleAddEdge(EId);
|
||||
}
|
||||
|
||||
/// \brief Release from solver instance.
|
||||
void unsetSolver() {
|
||||
assert(Solver != nullptr && "Solver not set.");
|
||||
Solver = nullptr;
|
||||
}
|
||||
|
||||
/// \brief Add a node with the given costs.
|
||||
/// @param costs Cost vector for the new node.
|
||||
/// @param Costs Cost vector for the new node.
|
||||
/// @return Node iterator for the added node.
|
||||
NodeId addNode(const Vector &costs) {
|
||||
return addConstructedNode(NodeEntry(costs));
|
||||
template <typename OtherVectorT>
|
||||
NodeId addNode(OtherVectorT Costs) {
|
||||
// Get cost vector from the problem domain
|
||||
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
|
||||
NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
|
||||
if (Solver)
|
||||
Solver->handleAddNode(NId);
|
||||
return NId;
|
||||
}
|
||||
|
||||
/// \brief Add an edge between the given nodes with the given costs.
|
||||
/// @param n1Id First node.
|
||||
/// @param n2Id Second node.
|
||||
/// @param N1Id First node.
|
||||
/// @param N2Id Second node.
|
||||
/// @return Edge iterator for the added edge.
|
||||
EdgeId addEdge(NodeId n1Id, NodeId n2Id, const Matrix &costs) {
|
||||
assert(getNodeCosts(n1Id).getLength() == costs.getRows() &&
|
||||
getNodeCosts(n2Id).getLength() == costs.getCols() &&
|
||||
template <typename OtherVectorT>
|
||||
EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
|
||||
assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
|
||||
getNodeCosts(N2Id).getLength() == Costs.getCols() &&
|
||||
"Matrix dimensions mismatch.");
|
||||
return addConstructedEdge(EdgeEntry(n1Id, n2Id, costs));
|
||||
// Get cost matrix from the problem domain.
|
||||
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
|
||||
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
|
||||
if (Solver)
|
||||
Solver->handleAddEdge(EId);
|
||||
return EId;
|
||||
}
|
||||
|
||||
/// \brief Returns true if the graph is empty.
|
||||
bool empty() const { return NodeIdSet(*this).empty(); }
|
||||
|
||||
NodeIdSet nodeIds() const { return NodeIdSet(*this); }
|
||||
EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
|
||||
|
||||
AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
|
||||
|
||||
/// \brief Get the number of nodes in the graph.
|
||||
/// @return Number of nodes in the graph.
|
||||
unsigned getNumNodes() const { return nodes.size() - freeNodes.size(); }
|
||||
unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
|
||||
|
||||
/// \brief Get the number of edges in the graph.
|
||||
/// @return Number of edges in the graph.
|
||||
unsigned getNumEdges() const { return edges.size() - freeEdges.size(); }
|
||||
unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
|
||||
|
||||
/// \brief Get a node's cost vector.
|
||||
/// @param nId Node id.
|
||||
/// \brief Set a node's cost vector.
|
||||
/// @param NId Node to update.
|
||||
/// @param Costs New costs to set.
|
||||
/// @return Node cost vector.
|
||||
Vector& getNodeCosts(NodeId nId) { return getNode(nId).getCosts(); }
|
||||
template <typename OtherVectorT>
|
||||
void setNodeCosts(NodeId NId, OtherVectorT Costs) {
|
||||
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
|
||||
if (Solver)
|
||||
Solver->handleSetNodeCosts(NId, *AllocatedCosts);
|
||||
getNode(NId).Costs = AllocatedCosts;
|
||||
}
|
||||
|
||||
/// \brief Get a node's cost vector (const version).
|
||||
/// @param nId Node id.
|
||||
/// @param NId Node id.
|
||||
/// @return Node cost vector.
|
||||
const Vector& getNodeCosts(NodeId nId) const {
|
||||
return getNode(nId).getCosts();
|
||||
const Vector& getNodeCosts(NodeId NId) const {
|
||||
return *getNode(NId).Costs;
|
||||
}
|
||||
|
||||
/// \brief Set a node's data pointer.
|
||||
/// @param nId Node id.
|
||||
/// @param data Pointer to node data.
|
||||
///
|
||||
/// Typically used by a PBQP solver to attach data to aid in solution.
|
||||
void setNodeData(NodeId nId, void *data) { getNode(nId).setData(data); }
|
||||
NodeMetadata& getNodeMetadata(NodeId NId) {
|
||||
return getNode(NId).Metadata;
|
||||
}
|
||||
|
||||
/// \brief Get the node's data pointer.
|
||||
/// @param nId Node id.
|
||||
/// @return Pointer to node data.
|
||||
void* getNodeData(NodeId nId) { return getNode(nId).getData(); }
|
||||
const NodeMetadata& getNodeMetadata(NodeId NId) const {
|
||||
return getNode(NId).Metadata;
|
||||
}
|
||||
|
||||
/// \brief Get an edge's cost matrix.
|
||||
/// @param eId Edge id.
|
||||
/// @return Edge cost matrix.
|
||||
Matrix& getEdgeCosts(EdgeId eId) { return getEdge(eId).getCosts(); }
|
||||
typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
|
||||
return getNode(NId).AdjEdgeIds.size();
|
||||
}
|
||||
|
||||
/// \brief Set an edge's cost matrix.
|
||||
/// @param EId Edge id.
|
||||
/// @param Costs New cost matrix.
|
||||
template <typename OtherMatrixT>
|
||||
void setEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
|
||||
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
|
||||
if (Solver)
|
||||
Solver->handleSetEdgeCosts(EId, *AllocatedCosts);
|
||||
getEdge(EId).Costs = AllocatedCosts;
|
||||
}
|
||||
|
||||
/// \brief Get an edge's cost matrix (const version).
|
||||
/// @param eId Edge id.
|
||||
/// @param EId Edge id.
|
||||
/// @return Edge cost matrix.
|
||||
const Matrix& getEdgeCosts(EdgeId eId) const {
|
||||
return getEdge(eId).getCosts();
|
||||
const Matrix& getEdgeCosts(EdgeId EId) const { return *getEdge(EId).Costs; }
|
||||
|
||||
EdgeMetadata& getEdgeMetadata(EdgeId NId) {
|
||||
return getEdge(NId).Metadata;
|
||||
}
|
||||
|
||||
/// \brief Set an edge's data pointer.
|
||||
/// @param eId Edge id.
|
||||
/// @param data Pointer to edge data.
|
||||
///
|
||||
/// Typically used by a PBQP solver to attach data to aid in solution.
|
||||
void setEdgeData(EdgeId eId, void *data) { getEdge(eId).setData(data); }
|
||||
|
||||
/// \brief Get an edge's data pointer.
|
||||
/// @param eId Edge id.
|
||||
/// @return Pointer to edge data.
|
||||
void* getEdgeData(EdgeId eId) { return getEdge(eId).getData(); }
|
||||
|
||||
/// \brief Get a node's degree.
|
||||
/// @param nId Node id.
|
||||
/// @return The degree of the node.
|
||||
unsigned getNodeDegree(NodeId nId) const {
|
||||
return getNode(nId).getDegree();
|
||||
}
|
||||
|
||||
/// \brief Begin iterator for node set.
|
||||
NodeItr nodesBegin() const { return NodeItr(0, *this); }
|
||||
|
||||
/// \brief End iterator for node set.
|
||||
NodeItr nodesEnd() const { return NodeItr(nodes.size(), *this); }
|
||||
|
||||
/// \brief Begin iterator for edge set.
|
||||
EdgeItr edgesBegin() const { return EdgeItr(0, *this); }
|
||||
|
||||
/// \brief End iterator for edge set.
|
||||
EdgeItr edgesEnd() const { return EdgeItr(edges.size(), *this); }
|
||||
|
||||
/// \brief Get begin iterator for adjacent edge set.
|
||||
/// @param nId Node id.
|
||||
/// @return Begin iterator for the set of edges connected to the given node.
|
||||
AdjEdgeItr adjEdgesBegin(NodeId nId) {
|
||||
return getNode(nId).edgesBegin();
|
||||
}
|
||||
|
||||
/// \brief Get end iterator for adjacent edge set.
|
||||
/// @param nId Node id.
|
||||
/// @return End iterator for the set of edges connected to the given node.
|
||||
AdjEdgeItr adjEdgesEnd(NodeId nId) {
|
||||
return getNode(nId).edgesEnd();
|
||||
const EdgeMetadata& getEdgeMetadata(EdgeId NId) const {
|
||||
return getEdge(NId).Metadata;
|
||||
}
|
||||
|
||||
/// \brief Get the first node connected to this edge.
|
||||
/// @param eId Edge id.
|
||||
/// @param EId Edge id.
|
||||
/// @return The first node connected to the given edge.
|
||||
NodeId getEdgeNode1(EdgeId eId) {
|
||||
return getEdge(eId).getNode1();
|
||||
NodeId getEdgeNode1Id(EdgeId EId) {
|
||||
return getEdge(EId).getN1Id();
|
||||
}
|
||||
|
||||
/// \brief Get the second node connected to this edge.
|
||||
/// @param eId Edge id.
|
||||
/// @param EId Edge id.
|
||||
/// @return The second node connected to the given edge.
|
||||
NodeId getEdgeNode2(EdgeId eId) {
|
||||
return getEdge(eId).getNode2();
|
||||
NodeId getEdgeNode2Id(EdgeId EId) {
|
||||
return getEdge(EId).getN2Id();
|
||||
}
|
||||
|
||||
/// \brief Get the "other" node connected to this edge.
|
||||
/// @param eId Edge id.
|
||||
/// @param nId Node id for the "given" node.
|
||||
/// @param EId Edge id.
|
||||
/// @param NId Node id for the "given" node.
|
||||
/// @return The iterator for the "other" node connected to this edge.
|
||||
NodeId getEdgeOtherNode(EdgeId eId, NodeId nId) {
|
||||
EdgeEntry &e = getEdge(eId);
|
||||
if (e.getNode1() == nId) {
|
||||
return e.getNode2();
|
||||
NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
|
||||
EdgeEntry &E = getEdge(EId);
|
||||
if (E.getN1Id() == NId) {
|
||||
return E.getN2Id();
|
||||
} // else
|
||||
return e.getNode1();
|
||||
return E.getN1Id();
|
||||
}
|
||||
|
||||
EdgeId invalidEdgeId() const {
|
||||
/// \brief Returns a value representing an invalid (non-existant) node.
|
||||
static NodeId invalidNodeId() {
|
||||
return std::numeric_limits<NodeId>::max();
|
||||
}
|
||||
|
||||
/// \brief Returns a value representing an invalid (non-existant) edge.
|
||||
static EdgeId invalidEdgeId() {
|
||||
return std::numeric_limits<EdgeId>::max();
|
||||
}
|
||||
|
||||
/// \brief Get the edge connecting two nodes.
|
||||
/// @param n1Id First node id.
|
||||
/// @param n2Id Second node id.
|
||||
/// @return An id for edge (n1Id, n2Id) if such an edge exists,
|
||||
/// @param N1Id First node id.
|
||||
/// @param N2Id Second node id.
|
||||
/// @return An id for edge (N1Id, N2Id) if such an edge exists,
|
||||
/// otherwise returns an invalid edge id.
|
||||
EdgeId findEdge(NodeId n1Id, NodeId n2Id) {
|
||||
for (AdjEdgeItr aeItr = adjEdgesBegin(n1Id), aeEnd = adjEdgesEnd(n1Id);
|
||||
aeItr != aeEnd; ++aeItr) {
|
||||
if ((getEdgeNode1(*aeItr) == n2Id) ||
|
||||
(getEdgeNode2(*aeItr) == n2Id)) {
|
||||
return *aeItr;
|
||||
EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
|
||||
for (auto AEId : adjEdgeIds(N1Id)) {
|
||||
if ((getEdgeNode1Id(AEId) == N2Id) ||
|
||||
(getEdgeNode2Id(AEId) == N2Id)) {
|
||||
return AEId;
|
||||
}
|
||||
}
|
||||
return invalidEdgeId();
|
||||
}
|
||||
|
||||
/// \brief Remove a node from the graph.
|
||||
/// @param nId Node id.
|
||||
void removeNode(NodeId nId) {
|
||||
NodeEntry &n = getNode(nId);
|
||||
for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end; ++itr) {
|
||||
EdgeId eId = *itr;
|
||||
removeEdge(eId);
|
||||
/// @param NId Node id.
|
||||
void removeNode(NodeId NId) {
|
||||
if (Solver)
|
||||
Solver->handleRemoveNode(NId);
|
||||
NodeEntry &N = getNode(NId);
|
||||
// TODO: Can this be for-each'd?
|
||||
for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
|
||||
AEEnd = N.adjEdgesEnd();
|
||||
AEItr != AEEnd;) {
|
||||
EdgeId EId = *AEItr;
|
||||
++AEItr;
|
||||
removeEdge(EId);
|
||||
}
|
||||
freeNodes.push_back(nId);
|
||||
FreeNodeIds.push_back(NId);
|
||||
}
|
||||
|
||||
/// \brief Disconnect an edge from the given node.
|
||||
///
|
||||
/// Removes the given edge from the adjacency list of the given node.
|
||||
/// This operation leaves the edge in an 'asymmetric' state: It will no
|
||||
/// longer appear in an iteration over the given node's (NId's) edges, but
|
||||
/// will appear in an iteration over the 'other', unnamed node's edges.
|
||||
///
|
||||
/// This does not correspond to any normal graph operation, but exists to
|
||||
/// support efficient PBQP graph-reduction based solvers. It is used to
|
||||
/// 'effectively' remove the unnamed node from the graph while the solver
|
||||
/// is performing the reduction. The solver will later call reconnectNode
|
||||
/// to restore the edge in the named node's adjacency list.
|
||||
///
|
||||
/// Since the degree of a node is the number of connected edges,
|
||||
/// disconnecting an edge from a node 'u' will cause the degree of 'u' to
|
||||
/// drop by 1.
|
||||
///
|
||||
/// A disconnected edge WILL still appear in an iteration over the graph
|
||||
/// edges.
|
||||
///
|
||||
/// A disconnected edge should not be removed from the graph, it should be
|
||||
/// reconnected first.
|
||||
///
|
||||
/// A disconnected edge can be reconnected by calling the reconnectEdge
|
||||
/// method.
|
||||
void disconnectEdge(EdgeId EId, NodeId NId) {
|
||||
if (Solver)
|
||||
Solver->handleDisconnectEdge(EId, NId);
|
||||
NodeEntry &N = getNode(NId);
|
||||
N.AdjEdgeIds.erase(EId);
|
||||
}
|
||||
|
||||
/// \brief Convenience method to disconnect all neighbours from the given
|
||||
/// node.
|
||||
void disconnectAllNeighborsFromNode(NodeId NId) {
|
||||
for (auto AEId : adjEdgeIds(NId))
|
||||
disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
|
||||
}
|
||||
|
||||
/// \brief Re-attach an edge to its nodes.
|
||||
///
|
||||
/// Adds an edge that had been previously disconnected back into the
|
||||
/// adjacency set of the nodes that the edge connects.
|
||||
void reconnectEdge(EdgeId EId, NodeId NId) {
|
||||
NodeEntry &N = getNode(NId);
|
||||
N.addAdjEdge(EId);
|
||||
if (Solver)
|
||||
Solver->handleReconnectEdge(EId, NId);
|
||||
}
|
||||
|
||||
/// \brief Remove an edge from the graph.
|
||||
/// @param eId Edge id.
|
||||
void removeEdge(EdgeId eId) {
|
||||
EdgeEntry &e = getEdge(eId);
|
||||
NodeEntry &n1 = getNode(e.getNode1());
|
||||
NodeEntry &n2 = getNode(e.getNode2());
|
||||
n1.removeEdge(e.getNode1AEItr());
|
||||
n2.removeEdge(e.getNode2AEItr());
|
||||
freeEdges.push_back(eId);
|
||||
/// @param EId Edge id.
|
||||
void removeEdge(EdgeId EId) {
|
||||
if (Solver)
|
||||
Solver->handleRemoveEdge(EId);
|
||||
EdgeEntry &E = getEdge(EId);
|
||||
NodeEntry &N1 = getNode(E.getNode1());
|
||||
NodeEntry &N2 = getNode(E.getNode2());
|
||||
N1.removeEdge(EId);
|
||||
N2.removeEdge(EId);
|
||||
FreeEdgeIds.push_back(EId);
|
||||
Edges[EId].invalidate();
|
||||
}
|
||||
|
||||
/// \brief Remove all nodes and edges from the graph.
|
||||
void clear() {
|
||||
nodes.clear();
|
||||
freeNodes.clear();
|
||||
edges.clear();
|
||||
freeEdges.clear();
|
||||
Nodes.clear();
|
||||
FreeNodeIds.clear();
|
||||
Edges.clear();
|
||||
FreeEdgeIds.clear();
|
||||
}
|
||||
|
||||
/// \brief Dump a graph to an output stream.
|
||||
template <typename OStream>
|
||||
void dump(OStream &os) {
|
||||
os << getNumNodes() << " " << getNumEdges() << "\n";
|
||||
void dump(OStream &OS) {
|
||||
OS << nodeIds().size() << " " << edgeIds().size() << "\n";
|
||||
|
||||
for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
const Vector& v = getNodeCosts(*nodeItr);
|
||||
os << "\n" << v.getLength() << "\n";
|
||||
assert(v.getLength() != 0 && "Empty vector in graph.");
|
||||
os << v[0];
|
||||
for (unsigned i = 1; i < v.getLength(); ++i) {
|
||||
os << " " << v[i];
|
||||
for (auto NId : nodeIds()) {
|
||||
const Vector& V = getNodeCosts(NId);
|
||||
OS << "\n" << V.getLength() << "\n";
|
||||
assert(V.getLength() != 0 && "Empty vector in graph.");
|
||||
OS << V[0];
|
||||
for (unsigned i = 1; i < V.getLength(); ++i) {
|
||||
OS << " " << V[i];
|
||||
}
|
||||
os << "\n";
|
||||
OS << "\n";
|
||||
}
|
||||
|
||||
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
NodeId n1 = getEdgeNode1(*edgeItr);
|
||||
NodeId n2 = getEdgeNode2(*edgeItr);
|
||||
assert(n1 != n2 && "PBQP graphs shound not have self-edges.");
|
||||
const Matrix& m = getEdgeCosts(*edgeItr);
|
||||
os << "\n" << n1 << " " << n2 << "\n"
|
||||
<< m.getRows() << " " << m.getCols() << "\n";
|
||||
assert(m.getRows() != 0 && "No rows in matrix.");
|
||||
assert(m.getCols() != 0 && "No cols in matrix.");
|
||||
for (unsigned i = 0; i < m.getRows(); ++i) {
|
||||
os << m[i][0];
|
||||
for (unsigned j = 1; j < m.getCols(); ++j) {
|
||||
os << " " << m[i][j];
|
||||
for (auto EId : edgeIds()) {
|
||||
NodeId N1Id = getEdgeNode1Id(EId);
|
||||
NodeId N2Id = getEdgeNode2Id(EId);
|
||||
assert(N1Id != N2Id && "PBQP graphs shound not have self-edges.");
|
||||
const Matrix& M = getEdgeCosts(EId);
|
||||
OS << "\n" << N1Id << " " << N2Id << "\n"
|
||||
<< M.getRows() << " " << M.getCols() << "\n";
|
||||
assert(M.getRows() != 0 && "No rows in matrix.");
|
||||
assert(M.getCols() != 0 && "No cols in matrix.");
|
||||
for (unsigned i = 0; i < M.getRows(); ++i) {
|
||||
OS << M[i][0];
|
||||
for (unsigned j = 1; j < M.getCols(); ++j) {
|
||||
OS << " " << M[i][j];
|
||||
}
|
||||
os << "\n";
|
||||
OS << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -430,49 +542,27 @@ namespace PBQP {
|
||||
/// \brief Print a representation of this graph in DOT format.
|
||||
/// @param os Output stream to print on.
|
||||
template <typename OStream>
|
||||
void printDot(OStream &os) {
|
||||
|
||||
os << "graph {\n";
|
||||
|
||||
for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
|
||||
os << " node" << *nodeItr << " [ label=\""
|
||||
<< *nodeItr << ": " << getNodeCosts(*nodeItr) << "\" ]\n";
|
||||
void printDot(OStream &OS) {
|
||||
OS << "graph {\n";
|
||||
for (auto NId : nodeIds()) {
|
||||
OS << " node" << NId << " [ label=\""
|
||||
<< NId << ": " << getNodeCosts(NId) << "\" ]\n";
|
||||
}
|
||||
|
||||
os << " edge [ len=" << getNumNodes() << " ]\n";
|
||||
|
||||
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
|
||||
edgeItr != edgeEnd; ++edgeItr) {
|
||||
|
||||
os << " node" << getEdgeNode1(*edgeItr)
|
||||
<< " -- node" << getEdgeNode2(*edgeItr)
|
||||
OS << " edge [ len=" << nodeIds().size() << " ]\n";
|
||||
for (auto EId : edgeIds()) {
|
||||
OS << " node" << getEdgeNode1Id(EId)
|
||||
<< " -- node" << getEdgeNode2Id(EId)
|
||||
<< " [ label=\"";
|
||||
|
||||
const Matrix &edgeCosts = getEdgeCosts(*edgeItr);
|
||||
|
||||
for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
|
||||
os << edgeCosts.getRowAsVector(i) << "\\n";
|
||||
const Matrix &EdgeCosts = getEdgeCosts(EId);
|
||||
for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
|
||||
OS << EdgeCosts.getRowAsVector(i) << "\\n";
|
||||
}
|
||||
os << "\" ]\n";
|
||||
OS << "\" ]\n";
|
||||
}
|
||||
os << "}\n";
|
||||
OS << "}\n";
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// void Graph::copyFrom(const Graph &other) {
|
||||
// std::map<Graph::ConstNodeItr, Graph::NodeItr,
|
||||
// NodeItrComparator> nodeMap;
|
||||
|
||||
// for (Graph::ConstNodeItr nItr = other.nodesBegin(),
|
||||
// nEnd = other.nodesEnd();
|
||||
// nItr != nEnd; ++nItr) {
|
||||
// nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
|
||||
// }
|
||||
// }
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
|
||||
|
@ -1,247 +0,0 @@
|
||||
//===-- HeuristcBase.h --- Heuristic base class for PBQP --------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_HEURISTICBASE_H
|
||||
#define LLVM_CODEGEN_PBQP_HEURISTICBASE_H
|
||||
|
||||
#include "HeuristicSolver.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
/// \brief Abstract base class for heuristic implementations.
|
||||
///
|
||||
/// This class provides a handy base for heuristic implementations with common
|
||||
/// solver behaviour implemented for a number of methods.
|
||||
///
|
||||
/// To implement your own heuristic using this class as a base you'll have to
|
||||
/// implement, as a minimum, the following methods:
|
||||
/// <ul>
|
||||
/// <li> void addToHeuristicList(Graph::NodeItr) : Add a node to the
|
||||
/// heuristic reduction list.
|
||||
/// <li> void heuristicReduce() : Perform a single heuristic reduction.
|
||||
/// <li> void preUpdateEdgeCosts(Graph::EdgeItr) : Handle the (imminent)
|
||||
/// change to the cost matrix on the given edge (by R2).
|
||||
/// <li> void postUpdateEdgeCostts(Graph::EdgeItr) : Handle the new
|
||||
/// costs on the given edge.
|
||||
/// <li> void handleAddEdge(Graph::EdgeItr) : Handle the addition of a new
|
||||
/// edge into the PBQP graph (by R2).
|
||||
/// <li> void handleRemoveEdge(Graph::EdgeItr, Graph::NodeItr) : Handle the
|
||||
/// disconnection of the given edge from the given node.
|
||||
/// <li> A constructor for your derived class : to pass back a reference to
|
||||
/// the solver which is using this heuristic.
|
||||
/// </ul>
|
||||
///
|
||||
/// These methods are implemented in this class for documentation purposes,
|
||||
/// but will assert if called.
|
||||
///
|
||||
/// Note that this class uses the curiously recursive template idiom to
|
||||
/// forward calls to the derived class. These methods need not be made
|
||||
/// virtual, and indeed probably shouldn't for performance reasons.
|
||||
///
|
||||
/// You'll also need to provide NodeData and EdgeData structs in your class.
|
||||
/// These can be used to attach data relevant to your heuristic to each
|
||||
/// node/edge in the PBQP graph.
|
||||
|
||||
template <typename HImpl>
|
||||
class HeuristicBase {
|
||||
private:
|
||||
|
||||
typedef std::list<Graph::NodeId> OptimalList;
|
||||
|
||||
HeuristicSolverImpl<HImpl> &s;
|
||||
Graph &g;
|
||||
OptimalList optimalList;
|
||||
|
||||
// Return a reference to the derived heuristic.
|
||||
HImpl& impl() { return static_cast<HImpl&>(*this); }
|
||||
|
||||
// Add the given node to the optimal reductions list. Keep an iterator to
|
||||
// its location for fast removal.
|
||||
void addToOptimalReductionList(Graph::NodeId nId) {
|
||||
optimalList.insert(optimalList.end(), nId);
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// \brief Construct an instance with a reference to the given solver.
|
||||
/// @param solver The solver which is using this heuristic instance.
|
||||
HeuristicBase(HeuristicSolverImpl<HImpl> &solver)
|
||||
: s(solver), g(s.getGraph()) { }
|
||||
|
||||
/// \brief Get the solver which is using this heuristic instance.
|
||||
/// @return The solver which is using this heuristic instance.
|
||||
///
|
||||
/// You can use this method to get access to the solver in your derived
|
||||
/// heuristic implementation.
|
||||
HeuristicSolverImpl<HImpl>& getSolver() { return s; }
|
||||
|
||||
/// \brief Get the graph representing the problem to be solved.
|
||||
/// @return The graph representing the problem to be solved.
|
||||
Graph& getGraph() { return g; }
|
||||
|
||||
/// \brief Tell the solver to simplify the graph before the reduction phase.
|
||||
/// @return Whether or not the solver should run a simplification phase
|
||||
/// prior to the main setup and reduction.
|
||||
///
|
||||
/// HeuristicBase returns true from this method as it's a sensible default,
|
||||
/// however you can over-ride it in your derived class if you want different
|
||||
/// behaviour.
|
||||
bool solverRunSimplify() const { return true; }
|
||||
|
||||
/// \brief Decide whether a node should be optimally or heuristically
|
||||
/// reduced.
|
||||
/// @return Whether or not the given node should be listed for optimal
|
||||
/// reduction (via R0, R1 or R2).
|
||||
///
|
||||
/// HeuristicBase returns true for any node with degree less than 3. This is
|
||||
/// sane and sensible for many situations, but not all. You can over-ride
|
||||
/// this method in your derived class if you want a different selection
|
||||
/// criteria. Note however that your criteria for selecting optimal nodes
|
||||
/// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or
|
||||
/// higher should not be selected under any circumstances.
|
||||
bool shouldOptimallyReduce(Graph::NodeId nId) {
|
||||
if (g.getNodeDegree(nId) < 3)
|
||||
return true;
|
||||
// else
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Add the given node to the list of nodes to be optimally reduced.
|
||||
/// @param nId Node id to be added.
|
||||
///
|
||||
/// You probably don't want to over-ride this, except perhaps to record
|
||||
/// statistics before calling this implementation. HeuristicBase relies on
|
||||
/// its behaviour.
|
||||
void addToOptimalReduceList(Graph::NodeId nId) {
|
||||
optimalList.push_back(nId);
|
||||
}
|
||||
|
||||
/// \brief Initialise the heuristic.
|
||||
///
|
||||
/// HeuristicBase iterates over all nodes in the problem and adds them to
|
||||
/// the appropriate list using addToOptimalReduceList or
|
||||
/// addToHeuristicReduceList based on the result of shouldOptimallyReduce.
|
||||
///
|
||||
/// This behaviour should be fine for most situations.
|
||||
void setup() {
|
||||
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
|
||||
nItr != nEnd; ++nItr) {
|
||||
if (impl().shouldOptimallyReduce(*nItr)) {
|
||||
addToOptimalReduceList(*nItr);
|
||||
} else {
|
||||
impl().addToHeuristicReduceList(*nItr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Optimally reduce one of the nodes in the optimal reduce list.
|
||||
/// @return True if a reduction takes place, false if the optimal reduce
|
||||
/// list is empty.
|
||||
///
|
||||
/// Selects a node from the optimal reduce list and removes it, applying
|
||||
/// R0, R1 or R2 as appropriate based on the selected node's degree.
|
||||
bool optimalReduce() {
|
||||
if (optimalList.empty())
|
||||
return false;
|
||||
|
||||
Graph::NodeId nId = optimalList.front();
|
||||
optimalList.pop_front();
|
||||
|
||||
switch (s.getSolverDegree(nId)) {
|
||||
case 0: s.applyR0(nId); break;
|
||||
case 1: s.applyR1(nId); break;
|
||||
case 2: s.applyR2(nId); break;
|
||||
default: llvm_unreachable(
|
||||
"Optimal reductions of degree > 2 nodes is invalid.");
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief Perform the PBQP reduction process.
|
||||
///
|
||||
/// Reduces the problem to the empty graph by repeated application of the
|
||||
/// reduction rules R0, R1, R2 and RN.
|
||||
/// R0, R1 or R2 are always applied if possible before RN is used.
|
||||
void reduce() {
|
||||
bool finished = false;
|
||||
|
||||
while (!finished) {
|
||||
if (!optimalReduce()) {
|
||||
if (impl().heuristicReduce()) {
|
||||
getSolver().recordRN();
|
||||
} else {
|
||||
finished = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Add a node to the heuristic reduce list.
|
||||
/// @param nId Node id to add to the heuristic reduce list.
|
||||
void addToHeuristicList(Graph::NodeId nId) {
|
||||
llvm_unreachable("Must be implemented in derived class.");
|
||||
}
|
||||
|
||||
/// \brief Heuristically reduce one of the nodes in the heuristic
|
||||
/// reduce list.
|
||||
/// @return True if a reduction takes place, false if the heuristic reduce
|
||||
/// list is empty.
|
||||
bool heuristicReduce() {
|
||||
llvm_unreachable("Must be implemented in derived class.");
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Prepare a change in the costs on the given edge.
|
||||
/// @param eId Edge id.
|
||||
void preUpdateEdgeCosts(Graph::EdgeId eId) {
|
||||
llvm_unreachable("Must be implemented in derived class.");
|
||||
}
|
||||
|
||||
/// \brief Handle the change in the costs on the given edge.
|
||||
/// @param eId Edge id.
|
||||
void postUpdateEdgeCostts(Graph::EdgeId eId) {
|
||||
llvm_unreachable("Must be implemented in derived class.");
|
||||
}
|
||||
|
||||
/// \brief Handle the addition of a new edge into the PBQP graph.
|
||||
/// @param eId Edge id for the added edge.
|
||||
void handleAddEdge(Graph::EdgeId eId) {
|
||||
llvm_unreachable("Must be implemented in derived class.");
|
||||
}
|
||||
|
||||
/// \brief Handle disconnection of an edge from a node.
|
||||
/// @param eId Edge id for edge being disconnected.
|
||||
/// @param nId Node id for the node being disconnected from.
|
||||
///
|
||||
/// Edges are frequently removed due to the removal of a node. This
|
||||
/// method allows for the effect to be computed only for the remaining
|
||||
/// node in the graph.
|
||||
void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
|
||||
llvm_unreachable("Must be implemented in derived class.");
|
||||
}
|
||||
|
||||
/// \brief Clean up any structures used by HeuristicBase.
|
||||
///
|
||||
/// At present this just performs a sanity check: that the optimal reduce
|
||||
/// list is empty now that reduction has completed.
|
||||
///
|
||||
/// If your derived class has more complex structures which need tearing
|
||||
/// down you should over-ride this method but include a call back to this
|
||||
/// implementation.
|
||||
void cleanup() {
|
||||
assert(optimalList.empty() && "Nodes left over in optimal reduce list?");
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_HEURISTICBASE_H
|
@ -1,618 +0,0 @@
|
||||
//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Heuristic PBQP solver. This solver is able to perform optimal reductions for
|
||||
// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
|
||||
// used to select a node for reduction.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
|
||||
#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
|
||||
|
||||
#include "Graph.h"
|
||||
#include "Solution.h"
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
/// \brief Heuristic PBQP solver implementation.
|
||||
///
|
||||
/// This class should usually be created (and destroyed) indirectly via a call
|
||||
/// to HeuristicSolver<HImpl>::solve(Graph&).
|
||||
/// See the comments for HeuristicSolver.
|
||||
///
|
||||
/// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules,
|
||||
/// backpropagation phase, and maintains the internal copy of the graph on
|
||||
/// which the reduction is carried out (the original being kept to facilitate
|
||||
/// backpropagation).
|
||||
template <typename HImpl>
|
||||
class HeuristicSolverImpl {
|
||||
private:
|
||||
|
||||
typedef typename HImpl::NodeData HeuristicNodeData;
|
||||
typedef typename HImpl::EdgeData HeuristicEdgeData;
|
||||
|
||||
typedef std::list<Graph::EdgeId> SolverEdges;
|
||||
|
||||
public:
|
||||
|
||||
/// \brief Iterator type for edges in the solver graph.
|
||||
typedef SolverEdges::iterator SolverEdgeItr;
|
||||
|
||||
private:
|
||||
|
||||
class NodeData {
|
||||
public:
|
||||
NodeData() : solverDegree(0) {}
|
||||
|
||||
HeuristicNodeData& getHeuristicData() { return hData; }
|
||||
|
||||
SolverEdgeItr addSolverEdge(Graph::EdgeId eId) {
|
||||
++solverDegree;
|
||||
return solverEdges.insert(solverEdges.end(), eId);
|
||||
}
|
||||
|
||||
void removeSolverEdge(SolverEdgeItr seItr) {
|
||||
--solverDegree;
|
||||
solverEdges.erase(seItr);
|
||||
}
|
||||
|
||||
SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); }
|
||||
SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); }
|
||||
unsigned getSolverDegree() const { return solverDegree; }
|
||||
void clearSolverEdges() {
|
||||
solverDegree = 0;
|
||||
solverEdges.clear();
|
||||
}
|
||||
|
||||
private:
|
||||
HeuristicNodeData hData;
|
||||
unsigned solverDegree;
|
||||
SolverEdges solverEdges;
|
||||
};
|
||||
|
||||
class EdgeData {
|
||||
public:
|
||||
HeuristicEdgeData& getHeuristicData() { return hData; }
|
||||
|
||||
void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) {
|
||||
this->n1SolverEdgeItr = n1SolverEdgeItr;
|
||||
}
|
||||
|
||||
SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; }
|
||||
|
||||
void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){
|
||||
this->n2SolverEdgeItr = n2SolverEdgeItr;
|
||||
}
|
||||
|
||||
SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; }
|
||||
|
||||
private:
|
||||
|
||||
HeuristicEdgeData hData;
|
||||
SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr;
|
||||
};
|
||||
|
||||
Graph &g;
|
||||
HImpl h;
|
||||
Solution s;
|
||||
std::vector<Graph::NodeId> stack;
|
||||
|
||||
typedef std::list<NodeData> NodeDataList;
|
||||
NodeDataList nodeDataList;
|
||||
|
||||
typedef std::list<EdgeData> EdgeDataList;
|
||||
EdgeDataList edgeDataList;
|
||||
|
||||
public:
|
||||
|
||||
/// \brief Construct a heuristic solver implementation to solve the given
|
||||
/// graph.
|
||||
/// @param g The graph representing the problem instance to be solved.
|
||||
HeuristicSolverImpl(Graph &g) : g(g), h(*this) {}
|
||||
|
||||
/// \brief Get the graph being solved by this solver.
|
||||
/// @return The graph representing the problem instance being solved by this
|
||||
/// solver.
|
||||
Graph& getGraph() { return g; }
|
||||
|
||||
/// \brief Get the heuristic data attached to the given node.
|
||||
/// @param nId Node id.
|
||||
/// @return The heuristic data attached to the given node.
|
||||
HeuristicNodeData& getHeuristicNodeData(Graph::NodeId nId) {
|
||||
return getSolverNodeData(nId).getHeuristicData();
|
||||
}
|
||||
|
||||
/// \brief Get the heuristic data attached to the given edge.
|
||||
/// @param eId Edge id.
|
||||
/// @return The heuristic data attached to the given node.
|
||||
HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
|
||||
return getSolverEdgeData(eId).getHeuristicData();
|
||||
}
|
||||
|
||||
/// \brief Begin iterator for the set of edges adjacent to the given node in
|
||||
/// the solver graph.
|
||||
/// @param nId Node id.
|
||||
/// @return Begin iterator for the set of edges adjacent to the given node
|
||||
/// in the solver graph.
|
||||
SolverEdgeItr solverEdgesBegin(Graph::NodeId nId) {
|
||||
return getSolverNodeData(nId).solverEdgesBegin();
|
||||
}
|
||||
|
||||
/// \brief End iterator for the set of edges adjacent to the given node in
|
||||
/// the solver graph.
|
||||
/// @param nId Node id.
|
||||
/// @return End iterator for the set of edges adjacent to the given node in
|
||||
/// the solver graph.
|
||||
SolverEdgeItr solverEdgesEnd(Graph::NodeId nId) {
|
||||
return getSolverNodeData(nId).solverEdgesEnd();
|
||||
}
|
||||
|
||||
/// \brief Remove a node from the solver graph.
|
||||
/// @param eId Edge id for edge to be removed.
|
||||
///
|
||||
/// Does <i>not</i> notify the heuristic of the removal. That should be
|
||||
/// done manually if necessary.
|
||||
void removeSolverEdge(Graph::EdgeId eId) {
|
||||
EdgeData &eData = getSolverEdgeData(eId);
|
||||
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
|
||||
&n2Data = getSolverNodeData(g.getEdgeNode2(eId));
|
||||
|
||||
n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
|
||||
n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
|
||||
}
|
||||
|
||||
/// \brief Compute a solution to the PBQP problem instance with which this
|
||||
/// heuristic solver was constructed.
|
||||
/// @return A solution to the PBQP problem.
|
||||
///
|
||||
/// Performs the full PBQP heuristic solver algorithm, including setup,
|
||||
/// calls to the heuristic (which will call back to the reduction rules in
|
||||
/// this class), and cleanup.
|
||||
Solution computeSolution() {
|
||||
setup();
|
||||
h.setup();
|
||||
h.reduce();
|
||||
backpropagate();
|
||||
h.cleanup();
|
||||
cleanup();
|
||||
return s;
|
||||
}
|
||||
|
||||
/// \brief Add to the end of the stack.
|
||||
/// @param nId Node id to add to the reduction stack.
|
||||
void pushToStack(Graph::NodeId nId) {
|
||||
getSolverNodeData(nId).clearSolverEdges();
|
||||
stack.push_back(nId);
|
||||
}
|
||||
|
||||
/// \brief Returns the solver degree of the given node.
|
||||
/// @param nId Node id for which degree is requested.
|
||||
/// @return Node degree in the <i>solver</i> graph (not the original graph).
|
||||
unsigned getSolverDegree(Graph::NodeId nId) {
|
||||
return getSolverNodeData(nId).getSolverDegree();
|
||||
}
|
||||
|
||||
/// \brief Set the solution of the given node.
|
||||
/// @param nId Node id to set solution for.
|
||||
/// @param selection Selection for node.
|
||||
void setSolution(const Graph::NodeId &nId, unsigned selection) {
|
||||
s.setSelection(nId, selection);
|
||||
|
||||
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
|
||||
aeEnd = g.adjEdgesEnd(nId);
|
||||
aeItr != aeEnd; ++aeItr) {
|
||||
Graph::EdgeId eId(*aeItr);
|
||||
Graph::NodeId anId(g.getEdgeOtherNode(eId, nId));
|
||||
getSolverNodeData(anId).addSolverEdge(eId);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Apply rule R0.
|
||||
/// @param nId Node id for node to apply R0 to.
|
||||
///
|
||||
/// Node will be automatically pushed to the solver stack.
|
||||
void applyR0(Graph::NodeId nId) {
|
||||
assert(getSolverNodeData(nId).getSolverDegree() == 0 &&
|
||||
"R0 applied to node with degree != 0.");
|
||||
|
||||
// Nothing to do. Just push the node onto the reduction stack.
|
||||
pushToStack(nId);
|
||||
|
||||
s.recordR0();
|
||||
}
|
||||
|
||||
/// \brief Apply rule R1.
|
||||
/// @param xnId Node id for node to apply R1 to.
|
||||
///
|
||||
/// Node will be automatically pushed to the solver stack.
|
||||
void applyR1(Graph::NodeId xnId) {
|
||||
NodeData &nd = getSolverNodeData(xnId);
|
||||
assert(nd.getSolverDegree() == 1 &&
|
||||
"R1 applied to node with degree != 1.");
|
||||
|
||||
Graph::EdgeId eId = *nd.solverEdgesBegin();
|
||||
|
||||
const Matrix &eCosts = g.getEdgeCosts(eId);
|
||||
const Vector &xCosts = g.getNodeCosts(xnId);
|
||||
|
||||
// Duplicate a little to avoid transposing matrices.
|
||||
if (xnId == g.getEdgeNode1(eId)) {
|
||||
Graph::NodeId ynId = g.getEdgeNode2(eId);
|
||||
Vector &yCosts = g.getNodeCosts(ynId);
|
||||
for (unsigned j = 0; j < yCosts.getLength(); ++j) {
|
||||
PBQPNum min = eCosts[0][j] + xCosts[0];
|
||||
for (unsigned i = 1; i < xCosts.getLength(); ++i) {
|
||||
PBQPNum c = eCosts[i][j] + xCosts[i];
|
||||
if (c < min)
|
||||
min = c;
|
||||
}
|
||||
yCosts[j] += min;
|
||||
}
|
||||
h.handleRemoveEdge(eId, ynId);
|
||||
} else {
|
||||
Graph::NodeId ynId = g.getEdgeNode1(eId);
|
||||
Vector &yCosts = g.getNodeCosts(ynId);
|
||||
for (unsigned i = 0; i < yCosts.getLength(); ++i) {
|
||||
PBQPNum min = eCosts[i][0] + xCosts[0];
|
||||
for (unsigned j = 1; j < xCosts.getLength(); ++j) {
|
||||
PBQPNum c = eCosts[i][j] + xCosts[j];
|
||||
if (c < min)
|
||||
min = c;
|
||||
}
|
||||
yCosts[i] += min;
|
||||
}
|
||||
h.handleRemoveEdge(eId, ynId);
|
||||
}
|
||||
removeSolverEdge(eId);
|
||||
assert(nd.getSolverDegree() == 0 &&
|
||||
"Degree 1 with edge removed should be 0.");
|
||||
pushToStack(xnId);
|
||||
s.recordR1();
|
||||
}
|
||||
|
||||
/// \brief Apply rule R2.
|
||||
/// @param xnId Node id for node to apply R2 to.
|
||||
///
|
||||
/// Node will be automatically pushed to the solver stack.
|
||||
void applyR2(Graph::NodeId xnId) {
|
||||
assert(getSolverNodeData(xnId).getSolverDegree() == 2 &&
|
||||
"R2 applied to node with degree != 2.");
|
||||
|
||||
NodeData &nd = getSolverNodeData(xnId);
|
||||
const Vector &xCosts = g.getNodeCosts(xnId);
|
||||
|
||||
SolverEdgeItr aeItr = nd.solverEdgesBegin();
|
||||
Graph::EdgeId yxeId = *aeItr,
|
||||
zxeId = *(++aeItr);
|
||||
|
||||
Graph::NodeId ynId = g.getEdgeOtherNode(yxeId, xnId),
|
||||
znId = g.getEdgeOtherNode(zxeId, xnId);
|
||||
|
||||
bool flipEdge1 = (g.getEdgeNode1(yxeId) == xnId),
|
||||
flipEdge2 = (g.getEdgeNode1(zxeId) == xnId);
|
||||
|
||||
const Matrix *yxeCosts = flipEdge1 ?
|
||||
new Matrix(g.getEdgeCosts(yxeId).transpose()) :
|
||||
&g.getEdgeCosts(yxeId);
|
||||
|
||||
const Matrix *zxeCosts = flipEdge2 ?
|
||||
new Matrix(g.getEdgeCosts(zxeId).transpose()) :
|
||||
&g.getEdgeCosts(zxeId);
|
||||
|
||||
unsigned xLen = xCosts.getLength(),
|
||||
yLen = yxeCosts->getRows(),
|
||||
zLen = zxeCosts->getRows();
|
||||
|
||||
Matrix delta(yLen, zLen);
|
||||
|
||||
for (unsigned i = 0; i < yLen; ++i) {
|
||||
for (unsigned j = 0; j < zLen; ++j) {
|
||||
PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0];
|
||||
for (unsigned k = 1; k < xLen; ++k) {
|
||||
PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k];
|
||||
if (c < min) {
|
||||
min = c;
|
||||
}
|
||||
}
|
||||
delta[i][j] = min;
|
||||
}
|
||||
}
|
||||
|
||||
if (flipEdge1)
|
||||
delete yxeCosts;
|
||||
|
||||
if (flipEdge2)
|
||||
delete zxeCosts;
|
||||
|
||||
Graph::EdgeId yzeId = g.findEdge(ynId, znId);
|
||||
bool addedEdge = false;
|
||||
|
||||
if (yzeId == g.invalidEdgeId()) {
|
||||
yzeId = g.addEdge(ynId, znId, delta);
|
||||
addedEdge = true;
|
||||
} else {
|
||||
Matrix &yzeCosts = g.getEdgeCosts(yzeId);
|
||||
h.preUpdateEdgeCosts(yzeId);
|
||||
if (ynId == g.getEdgeNode1(yzeId)) {
|
||||
yzeCosts += delta;
|
||||
} else {
|
||||
yzeCosts += delta.transpose();
|
||||
}
|
||||
}
|
||||
|
||||
bool nullCostEdge = tryNormaliseEdgeMatrix(yzeId);
|
||||
|
||||
if (!addedEdge) {
|
||||
// If we modified the edge costs let the heuristic know.
|
||||
h.postUpdateEdgeCosts(yzeId);
|
||||
}
|
||||
|
||||
if (nullCostEdge) {
|
||||
// If this edge ended up null remove it.
|
||||
if (!addedEdge) {
|
||||
// We didn't just add it, so we need to notify the heuristic
|
||||
// and remove it from the solver.
|
||||
h.handleRemoveEdge(yzeId, ynId);
|
||||
h.handleRemoveEdge(yzeId, znId);
|
||||
removeSolverEdge(yzeId);
|
||||
}
|
||||
g.removeEdge(yzeId);
|
||||
} else if (addedEdge) {
|
||||
// If the edge was added, and non-null, finish setting it up, add it to
|
||||
// the solver & notify heuristic.
|
||||
edgeDataList.push_back(EdgeData());
|
||||
g.setEdgeData(yzeId, &edgeDataList.back());
|
||||
addSolverEdge(yzeId);
|
||||
h.handleAddEdge(yzeId);
|
||||
}
|
||||
|
||||
h.handleRemoveEdge(yxeId, ynId);
|
||||
removeSolverEdge(yxeId);
|
||||
h.handleRemoveEdge(zxeId, znId);
|
||||
removeSolverEdge(zxeId);
|
||||
|
||||
pushToStack(xnId);
|
||||
s.recordR2();
|
||||
}
|
||||
|
||||
/// \brief Record an application of the RN rule.
|
||||
///
|
||||
/// For use by the HeuristicBase.
|
||||
void recordRN() { s.recordRN(); }
|
||||
|
||||
private:
|
||||
|
||||
NodeData& getSolverNodeData(Graph::NodeId nId) {
|
||||
return *static_cast<NodeData*>(g.getNodeData(nId));
|
||||
}
|
||||
|
||||
EdgeData& getSolverEdgeData(Graph::EdgeId eId) {
|
||||
return *static_cast<EdgeData*>(g.getEdgeData(eId));
|
||||
}
|
||||
|
||||
void addSolverEdge(Graph::EdgeId eId) {
|
||||
EdgeData &eData = getSolverEdgeData(eId);
|
||||
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
|
||||
&n2Data = getSolverNodeData(g.getEdgeNode2(eId));
|
||||
|
||||
eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eId));
|
||||
eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eId));
|
||||
}
|
||||
|
||||
void setup() {
|
||||
if (h.solverRunSimplify()) {
|
||||
simplify();
|
||||
}
|
||||
|
||||
// Create node data objects.
|
||||
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
|
||||
nItr != nEnd; ++nItr) {
|
||||
nodeDataList.push_back(NodeData());
|
||||
g.setNodeData(*nItr, &nodeDataList.back());
|
||||
}
|
||||
|
||||
// Create edge data objects.
|
||||
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
|
||||
eItr != eEnd; ++eItr) {
|
||||
edgeDataList.push_back(EdgeData());
|
||||
g.setEdgeData(*eItr, &edgeDataList.back());
|
||||
addSolverEdge(*eItr);
|
||||
}
|
||||
}
|
||||
|
||||
void simplify() {
|
||||
disconnectTrivialNodes();
|
||||
eliminateIndependentEdges();
|
||||
}
|
||||
|
||||
// Eliminate trivial nodes.
|
||||
void disconnectTrivialNodes() {
|
||||
unsigned numDisconnected = 0;
|
||||
|
||||
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
|
||||
nItr != nEnd; ++nItr) {
|
||||
|
||||
Graph::NodeId nId = *nItr;
|
||||
|
||||
if (g.getNodeCosts(nId).getLength() == 1) {
|
||||
|
||||
std::vector<Graph::EdgeId> edgesToRemove;
|
||||
|
||||
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
|
||||
aeEnd = g.adjEdgesEnd(nId);
|
||||
aeItr != aeEnd; ++aeItr) {
|
||||
|
||||
Graph::EdgeId eId = *aeItr;
|
||||
|
||||
if (g.getEdgeNode1(eId) == nId) {
|
||||
Graph::NodeId otherNodeId = g.getEdgeNode2(eId);
|
||||
g.getNodeCosts(otherNodeId) +=
|
||||
g.getEdgeCosts(eId).getRowAsVector(0);
|
||||
}
|
||||
else {
|
||||
Graph::NodeId otherNodeId = g.getEdgeNode1(eId);
|
||||
g.getNodeCosts(otherNodeId) +=
|
||||
g.getEdgeCosts(eId).getColAsVector(0);
|
||||
}
|
||||
|
||||
edgesToRemove.push_back(eId);
|
||||
}
|
||||
|
||||
if (!edgesToRemove.empty())
|
||||
++numDisconnected;
|
||||
|
||||
while (!edgesToRemove.empty()) {
|
||||
g.removeEdge(edgesToRemove.back());
|
||||
edgesToRemove.pop_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void eliminateIndependentEdges() {
|
||||
std::vector<Graph::EdgeId> edgesToProcess;
|
||||
unsigned numEliminated = 0;
|
||||
|
||||
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
|
||||
eItr != eEnd; ++eItr) {
|
||||
edgesToProcess.push_back(*eItr);
|
||||
}
|
||||
|
||||
while (!edgesToProcess.empty()) {
|
||||
if (tryToEliminateEdge(edgesToProcess.back()))
|
||||
++numEliminated;
|
||||
edgesToProcess.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
bool tryToEliminateEdge(Graph::EdgeId eId) {
|
||||
if (tryNormaliseEdgeMatrix(eId)) {
|
||||
g.removeEdge(eId);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool tryNormaliseEdgeMatrix(Graph::EdgeId &eId) {
|
||||
|
||||
const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
|
||||
|
||||
Matrix &edgeCosts = g.getEdgeCosts(eId);
|
||||
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eId)),
|
||||
&vCosts = g.getNodeCosts(g.getEdgeNode2(eId));
|
||||
|
||||
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
|
||||
PBQPNum rowMin = infinity;
|
||||
|
||||
for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
|
||||
if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin)
|
||||
rowMin = edgeCosts[r][c];
|
||||
}
|
||||
|
||||
uCosts[r] += rowMin;
|
||||
|
||||
if (rowMin != infinity) {
|
||||
edgeCosts.subFromRow(r, rowMin);
|
||||
}
|
||||
else {
|
||||
edgeCosts.setRow(r, 0);
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
|
||||
PBQPNum colMin = infinity;
|
||||
|
||||
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
|
||||
if (uCosts[r] != infinity && edgeCosts[r][c] < colMin)
|
||||
colMin = edgeCosts[r][c];
|
||||
}
|
||||
|
||||
vCosts[c] += colMin;
|
||||
|
||||
if (colMin != infinity) {
|
||||
edgeCosts.subFromCol(c, colMin);
|
||||
}
|
||||
else {
|
||||
edgeCosts.setCol(c, 0);
|
||||
}
|
||||
}
|
||||
|
||||
return edgeCosts.isZero();
|
||||
}
|
||||
|
||||
void backpropagate() {
|
||||
while (!stack.empty()) {
|
||||
computeSolution(stack.back());
|
||||
stack.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
void computeSolution(Graph::NodeId nId) {
|
||||
|
||||
NodeData &nodeData = getSolverNodeData(nId);
|
||||
|
||||
Vector v(g.getNodeCosts(nId));
|
||||
|
||||
// Solve based on existing solved edges.
|
||||
for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
|
||||
solvedEdgeEnd = nodeData.solverEdgesEnd();
|
||||
solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
|
||||
|
||||
Graph::EdgeId eId(*solvedEdgeItr);
|
||||
Matrix &edgeCosts = g.getEdgeCosts(eId);
|
||||
|
||||
if (nId == g.getEdgeNode1(eId)) {
|
||||
Graph::NodeId adjNode(g.getEdgeNode2(eId));
|
||||
unsigned adjSolution = s.getSelection(adjNode);
|
||||
v += edgeCosts.getColAsVector(adjSolution);
|
||||
}
|
||||
else {
|
||||
Graph::NodeId adjNode(g.getEdgeNode1(eId));
|
||||
unsigned adjSolution = s.getSelection(adjNode);
|
||||
v += edgeCosts.getRowAsVector(adjSolution);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
setSolution(nId, v.minIndex());
|
||||
}
|
||||
|
||||
void cleanup() {
|
||||
h.cleanup();
|
||||
nodeDataList.clear();
|
||||
edgeDataList.clear();
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief PBQP heuristic solver class.
|
||||
///
|
||||
/// Given a PBQP Graph g representing a PBQP problem, you can find a solution
|
||||
/// by calling
|
||||
/// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt>
|
||||
///
|
||||
/// The choice of heuristic for the H parameter will affect both the solver
|
||||
/// speed and solution quality. The heuristic should be chosen based on the
|
||||
/// nature of the problem being solved.
|
||||
/// Currently the only solver included with LLVM is the Briggs heuristic for
|
||||
/// register allocation.
|
||||
template <typename HImpl>
|
||||
class HeuristicSolver {
|
||||
public:
|
||||
static Solution solve(Graph &g) {
|
||||
HeuristicSolverImpl<HImpl> hs(g);
|
||||
return hs.computeSolution();
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
|
@ -1,468 +0,0 @@
|
||||
//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This class implements the Briggs test for "allocability" of nodes in a
|
||||
// PBQP graph representing a register allocation problem. Nodes which can be
|
||||
// proven allocable (by a safe and relatively accurate test) are removed from
|
||||
// the PBQP graph first. If no provably allocable node is present in the graph
|
||||
// then the node with the minimal spill-cost to degree ratio is removed.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
|
||||
#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
|
||||
|
||||
#include "../HeuristicBase.h"
|
||||
#include "../HeuristicSolver.h"
|
||||
#include <limits>
|
||||
|
||||
namespace PBQP {
|
||||
namespace Heuristics {
|
||||
|
||||
/// \brief PBQP Heuristic which applies an allocability test based on
|
||||
/// Briggs.
|
||||
///
|
||||
/// This heuristic assumes that the elements of cost vectors in the PBQP
|
||||
/// problem represent storage options, with the first being the spill
|
||||
/// option and subsequent elements representing legal registers for the
|
||||
/// corresponding node. Edge cost matrices are likewise assumed to represent
|
||||
/// register constraints.
|
||||
/// If one or more nodes can be proven allocable by this heuristic (by
|
||||
/// inspection of their constraint matrices) then the allocable node of
|
||||
/// highest degree is selected for the next reduction and pushed to the
|
||||
/// solver stack. If no nodes can be proven allocable then the node with
|
||||
/// the lowest estimated spill cost is selected and push to the solver stack
|
||||
/// instead.
|
||||
///
|
||||
/// This implementation is built on top of HeuristicBase.
|
||||
class Briggs : public HeuristicBase<Briggs> {
|
||||
private:
|
||||
|
||||
class LinkDegreeComparator {
|
||||
public:
|
||||
LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
|
||||
bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
|
||||
if (s->getSolverDegree(n1Id) > s->getSolverDegree(n2Id))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
HeuristicSolverImpl<Briggs> *s;
|
||||
};
|
||||
|
||||
class SpillCostComparator {
|
||||
public:
|
||||
SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
|
||||
: s(&s), g(&s.getGraph()) {}
|
||||
bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
|
||||
const PBQP::Vector &cv1 = g->getNodeCosts(n1Id);
|
||||
const PBQP::Vector &cv2 = g->getNodeCosts(n2Id);
|
||||
|
||||
PBQPNum cost1 = cv1[0] / s->getSolverDegree(n1Id);
|
||||
PBQPNum cost2 = cv2[0] / s->getSolverDegree(n2Id);
|
||||
|
||||
if (cost1 < cost2)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
HeuristicSolverImpl<Briggs> *s;
|
||||
Graph *g;
|
||||
};
|
||||
|
||||
typedef std::list<Graph::NodeId> RNAllocableList;
|
||||
typedef RNAllocableList::iterator RNAllocableListItr;
|
||||
|
||||
typedef std::list<Graph::NodeId> RNUnallocableList;
|
||||
typedef RNUnallocableList::iterator RNUnallocableListItr;
|
||||
|
||||
public:
|
||||
|
||||
struct NodeData {
|
||||
typedef std::vector<unsigned> UnsafeDegreesArray;
|
||||
bool isHeuristic, isAllocable, isInitialized;
|
||||
unsigned numDenied, numSafe;
|
||||
UnsafeDegreesArray unsafeDegrees;
|
||||
RNAllocableListItr rnaItr;
|
||||
RNUnallocableListItr rnuItr;
|
||||
|
||||
NodeData()
|
||||
: isHeuristic(false), isAllocable(false), isInitialized(false),
|
||||
numDenied(0), numSafe(0) { }
|
||||
};
|
||||
|
||||
struct EdgeData {
|
||||
typedef std::vector<unsigned> UnsafeArray;
|
||||
unsigned worst, reverseWorst;
|
||||
UnsafeArray unsafe, reverseUnsafe;
|
||||
bool isUpToDate;
|
||||
|
||||
EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {}
|
||||
};
|
||||
|
||||
/// \brief Construct an instance of the Briggs heuristic.
|
||||
/// @param solver A reference to the solver which is using this heuristic.
|
||||
Briggs(HeuristicSolverImpl<Briggs> &solver) :
|
||||
HeuristicBase<Briggs>(solver) {}
|
||||
|
||||
/// \brief Determine whether a node should be reduced using optimal
|
||||
/// reduction.
|
||||
/// @param nId Node id to be considered.
|
||||
/// @return True if the given node should be optimally reduced, false
|
||||
/// otherwise.
|
||||
///
|
||||
/// Selects nodes of degree 0, 1 or 2 for optimal reduction, with one
|
||||
/// exception. Nodes whose spill cost (element 0 of their cost vector) is
|
||||
/// infinite are checked for allocability first. Allocable nodes may be
|
||||
/// optimally reduced, but nodes whose allocability cannot be proven are
|
||||
/// selected for heuristic reduction instead.
|
||||
bool shouldOptimallyReduce(Graph::NodeId nId) {
|
||||
if (getSolver().getSolverDegree(nId) < 3) {
|
||||
return true;
|
||||
}
|
||||
// else
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Add a node to the heuristic reduce list.
|
||||
/// @param nId Node id to add to the heuristic reduce list.
|
||||
void addToHeuristicReduceList(Graph::NodeId nId) {
|
||||
NodeData &nd = getHeuristicNodeData(nId);
|
||||
initializeNode(nId);
|
||||
nd.isHeuristic = true;
|
||||
if (nd.isAllocable) {
|
||||
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
|
||||
} else {
|
||||
nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nId);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Heuristically reduce one of the nodes in the heuristic
|
||||
/// reduce list.
|
||||
/// @return True if a reduction takes place, false if the heuristic reduce
|
||||
/// list is empty.
|
||||
///
|
||||
/// If the list of allocable nodes is non-empty a node is selected
|
||||
/// from it and pushed to the stack. Otherwise if the non-allocable list
|
||||
/// is non-empty a node is selected from it and pushed to the stack.
|
||||
/// If both lists are empty the method simply returns false with no action
|
||||
/// taken.
|
||||
bool heuristicReduce() {
|
||||
if (!rnAllocableList.empty()) {
|
||||
RNAllocableListItr rnaItr =
|
||||
min_element(rnAllocableList.begin(), rnAllocableList.end(),
|
||||
LinkDegreeComparator(getSolver()));
|
||||
Graph::NodeId nId = *rnaItr;
|
||||
rnAllocableList.erase(rnaItr);
|
||||
handleRemoveNode(nId);
|
||||
getSolver().pushToStack(nId);
|
||||
return true;
|
||||
} else if (!rnUnallocableList.empty()) {
|
||||
RNUnallocableListItr rnuItr =
|
||||
min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
|
||||
SpillCostComparator(getSolver()));
|
||||
Graph::NodeId nId = *rnuItr;
|
||||
rnUnallocableList.erase(rnuItr);
|
||||
handleRemoveNode(nId);
|
||||
getSolver().pushToStack(nId);
|
||||
return true;
|
||||
}
|
||||
// else
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Prepare a change in the costs on the given edge.
|
||||
/// @param eId Edge id.
|
||||
void preUpdateEdgeCosts(Graph::EdgeId eId) {
|
||||
Graph &g = getGraph();
|
||||
Graph::NodeId n1Id = g.getEdgeNode1(eId),
|
||||
n2Id = g.getEdgeNode2(eId);
|
||||
NodeData &n1 = getHeuristicNodeData(n1Id),
|
||||
&n2 = getHeuristicNodeData(n2Id);
|
||||
|
||||
if (n1.isHeuristic)
|
||||
subtractEdgeContributions(eId, getGraph().getEdgeNode1(eId));
|
||||
if (n2.isHeuristic)
|
||||
subtractEdgeContributions(eId, getGraph().getEdgeNode2(eId));
|
||||
|
||||
EdgeData &ed = getHeuristicEdgeData(eId);
|
||||
ed.isUpToDate = false;
|
||||
}
|
||||
|
||||
/// \brief Handle the change in the costs on the given edge.
|
||||
/// @param eId Edge id.
|
||||
void postUpdateEdgeCosts(Graph::EdgeId eId) {
|
||||
// This is effectively the same as adding a new edge now, since
|
||||
// we've factored out the costs of the old one.
|
||||
handleAddEdge(eId);
|
||||
}
|
||||
|
||||
/// \brief Handle the addition of a new edge into the PBQP graph.
|
||||
/// @param eId Edge id for the added edge.
|
||||
///
|
||||
/// Updates allocability of any nodes connected by this edge which are
|
||||
/// being managed by the heuristic. If allocability changes they are
|
||||
/// moved to the appropriate list.
|
||||
void handleAddEdge(Graph::EdgeId eId) {
|
||||
Graph &g = getGraph();
|
||||
Graph::NodeId n1Id = g.getEdgeNode1(eId),
|
||||
n2Id = g.getEdgeNode2(eId);
|
||||
NodeData &n1 = getHeuristicNodeData(n1Id),
|
||||
&n2 = getHeuristicNodeData(n2Id);
|
||||
|
||||
// If neither node is managed by the heuristic there's nothing to be
|
||||
// done.
|
||||
if (!n1.isHeuristic && !n2.isHeuristic)
|
||||
return;
|
||||
|
||||
// Ok - we need to update at least one node.
|
||||
computeEdgeContributions(eId);
|
||||
|
||||
// Update node 1 if it's managed by the heuristic.
|
||||
if (n1.isHeuristic) {
|
||||
bool n1WasAllocable = n1.isAllocable;
|
||||
addEdgeContributions(eId, n1Id);
|
||||
updateAllocability(n1Id);
|
||||
if (n1WasAllocable && !n1.isAllocable) {
|
||||
rnAllocableList.erase(n1.rnaItr);
|
||||
n1.rnuItr =
|
||||
rnUnallocableList.insert(rnUnallocableList.end(), n1Id);
|
||||
}
|
||||
}
|
||||
|
||||
// Likewise for node 2.
|
||||
if (n2.isHeuristic) {
|
||||
bool n2WasAllocable = n2.isAllocable;
|
||||
addEdgeContributions(eId, n2Id);
|
||||
updateAllocability(n2Id);
|
||||
if (n2WasAllocable && !n2.isAllocable) {
|
||||
rnAllocableList.erase(n2.rnaItr);
|
||||
n2.rnuItr =
|
||||
rnUnallocableList.insert(rnUnallocableList.end(), n2Id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Handle disconnection of an edge from a node.
|
||||
/// @param eId Edge id for edge being disconnected.
|
||||
/// @param nId Node id for the node being disconnected from.
|
||||
///
|
||||
/// Updates allocability of the given node and, if appropriate, moves the
|
||||
/// node to a new list.
|
||||
void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
|
||||
NodeData &nd =getHeuristicNodeData(nId);
|
||||
|
||||
// If the node is not managed by the heuristic there's nothing to be
|
||||
// done.
|
||||
if (!nd.isHeuristic)
|
||||
return;
|
||||
|
||||
EdgeData &ed = getHeuristicEdgeData(eId);
|
||||
(void)ed;
|
||||
assert(ed.isUpToDate && "Edge data is not up to date.");
|
||||
|
||||
// Update node.
|
||||
bool ndWasAllocable = nd.isAllocable;
|
||||
subtractEdgeContributions(eId, nId);
|
||||
updateAllocability(nId);
|
||||
|
||||
// If the node has gone optimal...
|
||||
if (shouldOptimallyReduce(nId)) {
|
||||
nd.isHeuristic = false;
|
||||
addToOptimalReduceList(nId);
|
||||
if (ndWasAllocable) {
|
||||
rnAllocableList.erase(nd.rnaItr);
|
||||
} else {
|
||||
rnUnallocableList.erase(nd.rnuItr);
|
||||
}
|
||||
} else {
|
||||
// Node didn't go optimal, but we might have to move it
|
||||
// from "unallocable" to "allocable".
|
||||
if (!ndWasAllocable && nd.isAllocable) {
|
||||
rnUnallocableList.erase(nd.rnuItr);
|
||||
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
NodeData& getHeuristicNodeData(Graph::NodeId nId) {
|
||||
return getSolver().getHeuristicNodeData(nId);
|
||||
}
|
||||
|
||||
EdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
|
||||
return getSolver().getHeuristicEdgeData(eId);
|
||||
}
|
||||
|
||||
// Work out what this edge will contribute to the allocability of the
|
||||
// nodes connected to it.
|
||||
void computeEdgeContributions(Graph::EdgeId eId) {
|
||||
EdgeData &ed = getHeuristicEdgeData(eId);
|
||||
|
||||
if (ed.isUpToDate)
|
||||
return; // Edge data is already up to date.
|
||||
|
||||
Matrix &eCosts = getGraph().getEdgeCosts(eId);
|
||||
|
||||
unsigned numRegs = eCosts.getRows() - 1,
|
||||
numReverseRegs = eCosts.getCols() - 1;
|
||||
|
||||
std::vector<unsigned> rowInfCounts(numRegs, 0),
|
||||
colInfCounts(numReverseRegs, 0);
|
||||
|
||||
ed.worst = 0;
|
||||
ed.reverseWorst = 0;
|
||||
ed.unsafe.clear();
|
||||
ed.unsafe.resize(numRegs, 0);
|
||||
ed.reverseUnsafe.clear();
|
||||
ed.reverseUnsafe.resize(numReverseRegs, 0);
|
||||
|
||||
for (unsigned i = 0; i < numRegs; ++i) {
|
||||
for (unsigned j = 0; j < numReverseRegs; ++j) {
|
||||
if (eCosts[i + 1][j + 1] ==
|
||||
std::numeric_limits<PBQPNum>::infinity()) {
|
||||
ed.unsafe[i] = 1;
|
||||
ed.reverseUnsafe[j] = 1;
|
||||
++rowInfCounts[i];
|
||||
++colInfCounts[j];
|
||||
|
||||
if (colInfCounts[j] > ed.worst) {
|
||||
ed.worst = colInfCounts[j];
|
||||
}
|
||||
|
||||
if (rowInfCounts[i] > ed.reverseWorst) {
|
||||
ed.reverseWorst = rowInfCounts[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ed.isUpToDate = true;
|
||||
}
|
||||
|
||||
// Add the contributions of the given edge to the given node's
|
||||
// numDenied and safe members. No action is taken other than to update
|
||||
// these member values. Once updated these numbers can be used by clients
|
||||
// to update the node's allocability.
|
||||
void addEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
|
||||
EdgeData &ed = getHeuristicEdgeData(eId);
|
||||
|
||||
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
|
||||
|
||||
NodeData &nd = getHeuristicNodeData(nId);
|
||||
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
|
||||
|
||||
bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
|
||||
EdgeData::UnsafeArray &unsafe =
|
||||
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
|
||||
nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
|
||||
|
||||
for (unsigned r = 0; r < numRegs; ++r) {
|
||||
if (unsafe[r]) {
|
||||
if (nd.unsafeDegrees[r]==0) {
|
||||
--nd.numSafe;
|
||||
}
|
||||
++nd.unsafeDegrees[r];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Subtract the contributions of the given edge to the given node's
|
||||
// numDenied and safe members. No action is taken other than to update
|
||||
// these member values. Once updated these numbers can be used by clients
|
||||
// to update the node's allocability.
|
||||
void subtractEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
|
||||
EdgeData &ed = getHeuristicEdgeData(eId);
|
||||
|
||||
assert(ed.isUpToDate && "Using out-of-date edge numbers.");
|
||||
|
||||
NodeData &nd = getHeuristicNodeData(nId);
|
||||
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
|
||||
|
||||
bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
|
||||
EdgeData::UnsafeArray &unsafe =
|
||||
nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
|
||||
nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
|
||||
|
||||
for (unsigned r = 0; r < numRegs; ++r) {
|
||||
if (unsafe[r]) {
|
||||
if (nd.unsafeDegrees[r] == 1) {
|
||||
++nd.numSafe;
|
||||
}
|
||||
--nd.unsafeDegrees[r];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void updateAllocability(Graph::NodeId nId) {
|
||||
NodeData &nd = getHeuristicNodeData(nId);
|
||||
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
|
||||
nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
|
||||
}
|
||||
|
||||
void initializeNode(Graph::NodeId nId) {
|
||||
NodeData &nd = getHeuristicNodeData(nId);
|
||||
|
||||
if (nd.isInitialized)
|
||||
return; // Node data is already up to date.
|
||||
|
||||
unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
|
||||
|
||||
nd.numDenied = 0;
|
||||
const Vector& nCosts = getGraph().getNodeCosts(nId);
|
||||
for (unsigned i = 1; i < nCosts.getLength(); ++i) {
|
||||
if (nCosts[i] == std::numeric_limits<PBQPNum>::infinity())
|
||||
++nd.numDenied;
|
||||
}
|
||||
|
||||
nd.numSafe = numRegs;
|
||||
nd.unsafeDegrees.resize(numRegs, 0);
|
||||
|
||||
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
|
||||
|
||||
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nId),
|
||||
aeEnd = getSolver().solverEdgesEnd(nId);
|
||||
aeItr != aeEnd; ++aeItr) {
|
||||
|
||||
Graph::EdgeId eId = *aeItr;
|
||||
computeEdgeContributions(eId);
|
||||
addEdgeContributions(eId, nId);
|
||||
}
|
||||
|
||||
updateAllocability(nId);
|
||||
nd.isInitialized = true;
|
||||
}
|
||||
|
||||
void handleRemoveNode(Graph::NodeId xnId) {
|
||||
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
|
||||
std::vector<Graph::EdgeId> edgesToRemove;
|
||||
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnId),
|
||||
aeEnd = getSolver().solverEdgesEnd(xnId);
|
||||
aeItr != aeEnd; ++aeItr) {
|
||||
Graph::NodeId ynId = getGraph().getEdgeOtherNode(*aeItr, xnId);
|
||||
handleRemoveEdge(*aeItr, ynId);
|
||||
edgesToRemove.push_back(*aeItr);
|
||||
}
|
||||
while (!edgesToRemove.empty()) {
|
||||
getSolver().removeSolverEdge(edgesToRemove.back());
|
||||
edgesToRemove.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
RNAllocableList rnAllocableList;
|
||||
RNUnallocableList rnUnallocableList;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
|
@ -20,269 +20,419 @@ typedef float PBQPNum;
|
||||
|
||||
/// \brief PBQP Vector class.
|
||||
class Vector {
|
||||
public:
|
||||
friend class VectorComparator;
|
||||
public:
|
||||
|
||||
/// \brief Construct a PBQP vector of the given size.
|
||||
explicit Vector(unsigned length) :
|
||||
length(length), data(new PBQPNum[length]) {
|
||||
}
|
||||
/// \brief Construct a PBQP vector of the given size.
|
||||
explicit Vector(unsigned Length)
|
||||
: Length(Length), Data(new PBQPNum[Length]) {
|
||||
// llvm::dbgs() << "Constructing PBQP::Vector "
|
||||
// << this << " (length " << Length << ")\n";
|
||||
}
|
||||
|
||||
/// \brief Construct a PBQP vector with initializer.
|
||||
Vector(unsigned length, PBQPNum initVal) :
|
||||
length(length), data(new PBQPNum[length]) {
|
||||
std::fill(data, data + length, initVal);
|
||||
}
|
||||
/// \brief Construct a PBQP vector with initializer.
|
||||
Vector(unsigned Length, PBQPNum InitVal)
|
||||
: Length(Length), Data(new PBQPNum[Length]) {
|
||||
// llvm::dbgs() << "Constructing PBQP::Vector "
|
||||
// << this << " (length " << Length << ", fill "
|
||||
// << InitVal << ")\n";
|
||||
std::fill(Data, Data + Length, InitVal);
|
||||
}
|
||||
|
||||
/// \brief Copy construct a PBQP vector.
|
||||
Vector(const Vector &v) :
|
||||
length(v.length), data(new PBQPNum[length]) {
|
||||
std::copy(v.data, v.data + length, data);
|
||||
}
|
||||
/// \brief Copy construct a PBQP vector.
|
||||
Vector(const Vector &V)
|
||||
: Length(V.Length), Data(new PBQPNum[Length]) {
|
||||
// llvm::dbgs() << "Copy-constructing PBQP::Vector " << this
|
||||
// << " from PBQP::Vector " << &V << "\n";
|
||||
std::copy(V.Data, V.Data + Length, Data);
|
||||
}
|
||||
|
||||
/// \brief Destroy this vector, return its memory.
|
||||
~Vector() { delete[] data; }
|
||||
/// \brief Move construct a PBQP vector.
|
||||
Vector(Vector &&V)
|
||||
: Length(V.Length), Data(V.Data) {
|
||||
V.Length = 0;
|
||||
V.Data = nullptr;
|
||||
}
|
||||
|
||||
/// \brief Assignment operator.
|
||||
Vector& operator=(const Vector &v) {
|
||||
delete[] data;
|
||||
length = v.length;
|
||||
data = new PBQPNum[length];
|
||||
std::copy(v.data, v.data + length, data);
|
||||
return *this;
|
||||
}
|
||||
/// \brief Destroy this vector, return its memory.
|
||||
~Vector() {
|
||||
// llvm::dbgs() << "Deleting PBQP::Vector " << this << "\n";
|
||||
delete[] Data;
|
||||
}
|
||||
|
||||
/// \brief Return the length of the vector
|
||||
unsigned getLength() const {
|
||||
return length;
|
||||
}
|
||||
/// \brief Copy-assignment operator.
|
||||
Vector& operator=(const Vector &V) {
|
||||
// llvm::dbgs() << "Assigning to PBQP::Vector " << this
|
||||
// << " from PBQP::Vector " << &V << "\n";
|
||||
delete[] Data;
|
||||
Length = V.Length;
|
||||
Data = new PBQPNum[Length];
|
||||
std::copy(V.Data, V.Data + Length, Data);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Element access.
|
||||
PBQPNum& operator[](unsigned index) {
|
||||
assert(index < length && "Vector element access out of bounds.");
|
||||
return data[index];
|
||||
}
|
||||
/// \brief Move-assignment operator.
|
||||
Vector& operator=(Vector &&V) {
|
||||
delete[] Data;
|
||||
Length = V.Length;
|
||||
Data = V.Data;
|
||||
V.Length = 0;
|
||||
V.Data = nullptr;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Const element access.
|
||||
const PBQPNum& operator[](unsigned index) const {
|
||||
assert(index < length && "Vector element access out of bounds.");
|
||||
return data[index];
|
||||
}
|
||||
/// \brief Comparison operator.
|
||||
bool operator==(const Vector &V) const {
|
||||
assert(Length != 0 && Data != nullptr && "Invalid vector");
|
||||
if (Length != V.Length)
|
||||
return false;
|
||||
return std::equal(Data, Data + Length, V.Data);
|
||||
}
|
||||
|
||||
/// \brief Add another vector to this one.
|
||||
Vector& operator+=(const Vector &v) {
|
||||
assert(length == v.length && "Vector length mismatch.");
|
||||
std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
/// \brief Return the length of the vector
|
||||
unsigned getLength() const {
|
||||
assert(Length != 0 && Data != nullptr && "Invalid vector");
|
||||
return Length;
|
||||
}
|
||||
|
||||
/// \brief Subtract another vector from this one.
|
||||
Vector& operator-=(const Vector &v) {
|
||||
assert(length == v.length && "Vector length mismatch.");
|
||||
std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
/// \brief Element access.
|
||||
PBQPNum& operator[](unsigned Index) {
|
||||
assert(Length != 0 && Data != nullptr && "Invalid vector");
|
||||
assert(Index < Length && "Vector element access out of bounds.");
|
||||
return Data[Index];
|
||||
}
|
||||
|
||||
/// \brief Returns the index of the minimum value in this vector
|
||||
unsigned minIndex() const {
|
||||
return std::min_element(data, data + length) - data;
|
||||
}
|
||||
/// \brief Const element access.
|
||||
const PBQPNum& operator[](unsigned Index) const {
|
||||
assert(Length != 0 && Data != nullptr && "Invalid vector");
|
||||
assert(Index < Length && "Vector element access out of bounds.");
|
||||
return Data[Index];
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned length;
|
||||
PBQPNum *data;
|
||||
/// \brief Add another vector to this one.
|
||||
Vector& operator+=(const Vector &V) {
|
||||
assert(Length != 0 && Data != nullptr && "Invalid vector");
|
||||
assert(Length == V.Length && "Vector length mismatch.");
|
||||
std::transform(Data, Data + Length, V.Data, Data, std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Subtract another vector from this one.
|
||||
Vector& operator-=(const Vector &V) {
|
||||
assert(Length != 0 && Data != nullptr && "Invalid vector");
|
||||
assert(Length == V.Length && "Vector length mismatch.");
|
||||
std::transform(Data, Data + Length, V.Data, Data, std::minus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Returns the index of the minimum value in this vector
|
||||
unsigned minIndex() const {
|
||||
assert(Length != 0 && Data != nullptr && "Invalid vector");
|
||||
return std::min_element(Data, Data + Length) - Data;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned Length;
|
||||
PBQPNum *Data;
|
||||
};
|
||||
|
||||
class VectorComparator {
|
||||
public:
|
||||
bool operator()(const Vector &A, const Vector &B) {
|
||||
if (A.Length < B.Length)
|
||||
return true;
|
||||
if (B.Length < A.Length)
|
||||
return false;
|
||||
char *AData = reinterpret_cast<char*>(A.Data);
|
||||
char *BData = reinterpret_cast<char*>(B.Data);
|
||||
return std::lexicographical_compare(AData,
|
||||
AData + A.Length * sizeof(PBQPNum),
|
||||
BData,
|
||||
BData + A.Length * sizeof(PBQPNum));
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief Output a textual representation of the given vector on the given
|
||||
/// output stream.
|
||||
template <typename OStream>
|
||||
OStream& operator<<(OStream &os, const Vector &v) {
|
||||
assert((v.getLength() != 0) && "Zero-length vector badness.");
|
||||
OStream& operator<<(OStream &OS, const Vector &V) {
|
||||
assert((V.getLength() != 0) && "Zero-length vector badness.");
|
||||
|
||||
os << "[ " << v[0];
|
||||
for (unsigned i = 1; i < v.getLength(); ++i) {
|
||||
os << ", " << v[i];
|
||||
}
|
||||
os << " ]";
|
||||
OS << "[ " << V[0];
|
||||
for (unsigned i = 1; i < V.getLength(); ++i)
|
||||
OS << ", " << V[i];
|
||||
OS << " ]";
|
||||
|
||||
return os;
|
||||
}
|
||||
return OS;
|
||||
}
|
||||
|
||||
|
||||
/// \brief PBQP Matrix class
|
||||
class Matrix {
|
||||
public:
|
||||
private:
|
||||
friend class MatrixComparator;
|
||||
public:
|
||||
|
||||
/// \brief Construct a PBQP Matrix with the given dimensions.
|
||||
Matrix(unsigned rows, unsigned cols) :
|
||||
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
|
||||
}
|
||||
/// \brief Construct a PBQP Matrix with the given dimensions.
|
||||
Matrix(unsigned Rows, unsigned Cols) :
|
||||
Rows(Rows), Cols(Cols), Data(new PBQPNum[Rows * Cols]) {
|
||||
}
|
||||
|
||||
/// \brief Construct a PBQP Matrix with the given dimensions and initial
|
||||
/// value.
|
||||
Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
|
||||
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
|
||||
std::fill(data, data + (rows * cols), initVal);
|
||||
}
|
||||
/// \brief Construct a PBQP Matrix with the given dimensions and initial
|
||||
/// value.
|
||||
Matrix(unsigned Rows, unsigned Cols, PBQPNum InitVal)
|
||||
: Rows(Rows), Cols(Cols), Data(new PBQPNum[Rows * Cols]) {
|
||||
std::fill(Data, Data + (Rows * Cols), InitVal);
|
||||
}
|
||||
|
||||
/// \brief Copy construct a PBQP matrix.
|
||||
Matrix(const Matrix &m) :
|
||||
rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
|
||||
std::copy(m.data, m.data + (rows * cols), data);
|
||||
}
|
||||
/// \brief Copy construct a PBQP matrix.
|
||||
Matrix(const Matrix &M)
|
||||
: Rows(M.Rows), Cols(M.Cols), Data(new PBQPNum[Rows * Cols]) {
|
||||
std::copy(M.Data, M.Data + (Rows * Cols), Data);
|
||||
}
|
||||
|
||||
/// \brief Destroy this matrix, return its memory.
|
||||
~Matrix() { delete[] data; }
|
||||
/// \brief Move construct a PBQP matrix.
|
||||
Matrix(Matrix &&M)
|
||||
: Rows(M.Rows), Cols(M.Cols), Data(M.Data) {
|
||||
M.Rows = M.Cols = 0;
|
||||
M.Data = nullptr;
|
||||
}
|
||||
|
||||
/// \brief Assignment operator.
|
||||
Matrix& operator=(const Matrix &m) {
|
||||
delete[] data;
|
||||
rows = m.rows; cols = m.cols;
|
||||
data = new PBQPNum[rows * cols];
|
||||
std::copy(m.data, m.data + (rows * cols), data);
|
||||
return *this;
|
||||
}
|
||||
/// \brief Destroy this matrix, return its memory.
|
||||
~Matrix() { delete[] Data; }
|
||||
|
||||
/// \brief Return the number of rows in this matrix.
|
||||
unsigned getRows() const { return rows; }
|
||||
/// \brief Copy-assignment operator.
|
||||
Matrix& operator=(const Matrix &M) {
|
||||
delete[] Data;
|
||||
Rows = M.Rows; Cols = M.Cols;
|
||||
Data = new PBQPNum[Rows * Cols];
|
||||
std::copy(M.Data, M.Data + (Rows * Cols), Data);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Return the number of cols in this matrix.
|
||||
unsigned getCols() const { return cols; }
|
||||
/// \brief Move-assignment operator.
|
||||
Matrix& operator=(Matrix &&M) {
|
||||
delete[] Data;
|
||||
Rows = M.Rows;
|
||||
Cols = M.Cols;
|
||||
Data = M.Data;
|
||||
M.Rows = M.Cols = 0;
|
||||
M.Data = nullptr;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Matrix element access.
|
||||
PBQPNum* operator[](unsigned r) {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
return data + (r * cols);
|
||||
}
|
||||
/// \brief Comparison operator.
|
||||
bool operator==(const Matrix &M) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
if (Rows != M.Rows || Cols != M.Cols)
|
||||
return false;
|
||||
return std::equal(Data, Data + (Rows * Cols), M.Data);
|
||||
}
|
||||
|
||||
/// \brief Matrix element access.
|
||||
const PBQPNum* operator[](unsigned r) const {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
return data + (r * cols);
|
||||
}
|
||||
/// \brief Return the number of rows in this matrix.
|
||||
unsigned getRows() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
return Rows;
|
||||
}
|
||||
|
||||
/// \brief Returns the given row as a vector.
|
||||
Vector getRowAsVector(unsigned r) const {
|
||||
Vector v(cols);
|
||||
for (unsigned c = 0; c < cols; ++c)
|
||||
v[c] = (*this)[r][c];
|
||||
return v;
|
||||
}
|
||||
/// \brief Return the number of cols in this matrix.
|
||||
unsigned getCols() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
return Cols;
|
||||
}
|
||||
|
||||
/// \brief Returns the given column as a vector.
|
||||
Vector getColAsVector(unsigned c) const {
|
||||
Vector v(rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
v[r] = (*this)[r][c];
|
||||
return v;
|
||||
}
|
||||
/// \brief Matrix element access.
|
||||
PBQPNum* operator[](unsigned R) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(R < Rows && "Row out of bounds.");
|
||||
return Data + (R * Cols);
|
||||
}
|
||||
|
||||
/// \brief Reset the matrix to the given value.
|
||||
Matrix& reset(PBQPNum val = 0) {
|
||||
std::fill(data, data + (rows * cols), val);
|
||||
return *this;
|
||||
}
|
||||
/// \brief Matrix element access.
|
||||
const PBQPNum* operator[](unsigned R) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(R < Rows && "Row out of bounds.");
|
||||
return Data + (R * Cols);
|
||||
}
|
||||
|
||||
/// \brief Set a single row of this matrix to the given value.
|
||||
Matrix& setRow(unsigned r, PBQPNum val) {
|
||||
assert(r < rows && "Row out of bounds.");
|
||||
std::fill(data + (r * cols), data + ((r + 1) * cols), val);
|
||||
return *this;
|
||||
}
|
||||
/// \brief Returns the given row as a vector.
|
||||
Vector getRowAsVector(unsigned R) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
Vector V(Cols);
|
||||
for (unsigned C = 0; C < Cols; ++C)
|
||||
V[C] = (*this)[R][C];
|
||||
return V;
|
||||
}
|
||||
|
||||
/// \brief Set a single column of this matrix to the given value.
|
||||
Matrix& setCol(unsigned c, PBQPNum val) {
|
||||
assert(c < cols && "Column out of bounds.");
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
(*this)[r][c] = val;
|
||||
return *this;
|
||||
}
|
||||
/// \brief Returns the given column as a vector.
|
||||
Vector getColAsVector(unsigned C) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
Vector V(Rows);
|
||||
for (unsigned R = 0; R < Rows; ++R)
|
||||
V[R] = (*this)[R][C];
|
||||
return V;
|
||||
}
|
||||
|
||||
/// \brief Matrix transpose.
|
||||
Matrix transpose() const {
|
||||
Matrix m(cols, rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
for (unsigned c = 0; c < cols; ++c)
|
||||
m[c][r] = (*this)[r][c];
|
||||
return m;
|
||||
}
|
||||
/// \brief Reset the matrix to the given value.
|
||||
Matrix& reset(PBQPNum Val = 0) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
std::fill(Data, Data + (Rows * Cols), Val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Returns the diagonal of the matrix as a vector.
|
||||
///
|
||||
/// Matrix must be square.
|
||||
Vector diagonalize() const {
|
||||
assert(rows == cols && "Attempt to diagonalize non-square matrix.");
|
||||
/// \brief Set a single row of this matrix to the given value.
|
||||
Matrix& setRow(unsigned R, PBQPNum Val) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(R < Rows && "Row out of bounds.");
|
||||
std::fill(Data + (R * Cols), Data + ((R + 1) * Cols), Val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector v(rows);
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
v[r] = (*this)[r][r];
|
||||
return v;
|
||||
}
|
||||
/// \brief Set a single column of this matrix to the given value.
|
||||
Matrix& setCol(unsigned C, PBQPNum Val) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(C < Cols && "Column out of bounds.");
|
||||
for (unsigned R = 0; R < Rows; ++R)
|
||||
(*this)[R][C] = Val;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Add the given matrix to this one.
|
||||
Matrix& operator+=(const Matrix &m) {
|
||||
assert(rows == m.rows && cols == m.cols &&
|
||||
"Matrix dimensions mismatch.");
|
||||
std::transform(data, data + (rows * cols), m.data, data,
|
||||
std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
/// \brief Matrix transpose.
|
||||
Matrix transpose() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
Matrix M(Cols, Rows);
|
||||
for (unsigned r = 0; r < Rows; ++r)
|
||||
for (unsigned c = 0; c < Cols; ++c)
|
||||
M[c][r] = (*this)[r][c];
|
||||
return M;
|
||||
}
|
||||
|
||||
/// \brief Returns the minimum of the given row
|
||||
PBQPNum getRowMin(unsigned r) const {
|
||||
assert(r < rows && "Row out of bounds");
|
||||
return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
|
||||
}
|
||||
/// \brief Returns the diagonal of the matrix as a vector.
|
||||
///
|
||||
/// Matrix must be square.
|
||||
Vector diagonalize() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(Rows == Cols && "Attempt to diagonalize non-square matrix.");
|
||||
Vector V(Rows);
|
||||
for (unsigned r = 0; r < Rows; ++r)
|
||||
V[r] = (*this)[r][r];
|
||||
return V;
|
||||
}
|
||||
|
||||
/// \brief Returns the minimum of the given column
|
||||
PBQPNum getColMin(unsigned c) const {
|
||||
PBQPNum minElem = (*this)[0][c];
|
||||
for (unsigned r = 1; r < rows; ++r)
|
||||
if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
|
||||
return minElem;
|
||||
}
|
||||
/// \brief Add the given matrix to this one.
|
||||
Matrix& operator+=(const Matrix &M) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(Rows == M.Rows && Cols == M.Cols &&
|
||||
"Matrix dimensions mismatch.");
|
||||
std::transform(Data, Data + (Rows * Cols), M.Data, Data,
|
||||
std::plus<PBQPNum>());
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Subtracts the given scalar from the elements of the given row.
|
||||
Matrix& subFromRow(unsigned r, PBQPNum val) {
|
||||
assert(r < rows && "Row out of bounds");
|
||||
std::transform(data + (r * cols), data + ((r + 1) * cols),
|
||||
data + (r * cols),
|
||||
std::bind2nd(std::minus<PBQPNum>(), val));
|
||||
return *this;
|
||||
}
|
||||
Matrix operator+(const Matrix &M) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
Matrix Tmp(*this);
|
||||
Tmp += M;
|
||||
return Tmp;
|
||||
}
|
||||
|
||||
/// \brief Subtracts the given scalar from the elements of the given column.
|
||||
Matrix& subFromCol(unsigned c, PBQPNum val) {
|
||||
for (unsigned r = 0; r < rows; ++r)
|
||||
(*this)[r][c] -= val;
|
||||
return *this;
|
||||
}
|
||||
/// \brief Returns the minimum of the given row
|
||||
PBQPNum getRowMin(unsigned R) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(R < Rows && "Row out of bounds");
|
||||
return *std::min_element(Data + (R * Cols), Data + ((R + 1) * Cols));
|
||||
}
|
||||
|
||||
/// \brief Returns true if this is a zero matrix.
|
||||
bool isZero() const {
|
||||
return find_if(data, data + (rows * cols),
|
||||
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
|
||||
data + (rows * cols);
|
||||
}
|
||||
/// \brief Returns the minimum of the given column
|
||||
PBQPNum getColMin(unsigned C) const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
PBQPNum MinElem = (*this)[0][C];
|
||||
for (unsigned R = 1; R < Rows; ++R)
|
||||
if ((*this)[R][C] < MinElem)
|
||||
MinElem = (*this)[R][C];
|
||||
return MinElem;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned rows, cols;
|
||||
PBQPNum *data;
|
||||
/// \brief Subtracts the given scalar from the elements of the given row.
|
||||
Matrix& subFromRow(unsigned R, PBQPNum Val) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
assert(R < Rows && "Row out of bounds");
|
||||
std::transform(Data + (R * Cols), Data + ((R + 1) * Cols),
|
||||
Data + (R * Cols),
|
||||
std::bind2nd(std::minus<PBQPNum>(), Val));
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Subtracts the given scalar from the elements of the given column.
|
||||
Matrix& subFromCol(unsigned C, PBQPNum Val) {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
for (unsigned R = 0; R < Rows; ++R)
|
||||
(*this)[R][C] -= Val;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// \brief Returns true if this is a zero matrix.
|
||||
bool isZero() const {
|
||||
assert(Rows != 0 && Cols != 0 && Data != nullptr && "Invalid matrix");
|
||||
return find_if(Data, Data + (Rows * Cols),
|
||||
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
|
||||
Data + (Rows * Cols);
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned Rows, Cols;
|
||||
PBQPNum *Data;
|
||||
};
|
||||
|
||||
class MatrixComparator {
|
||||
public:
|
||||
bool operator()(const Matrix &A, const Matrix &B) {
|
||||
if (A.Rows < B.Rows)
|
||||
return true;
|
||||
if (B.Rows < A.Rows)
|
||||
return false;
|
||||
if (A.Cols < B.Cols)
|
||||
return true;
|
||||
if (B.Cols < A.Cols)
|
||||
return false;
|
||||
char *AData = reinterpret_cast<char*>(A.Data);
|
||||
char *BData = reinterpret_cast<char*>(B.Data);
|
||||
return std::lexicographical_compare(
|
||||
AData, AData + (A.Rows * A.Cols * sizeof(PBQPNum)),
|
||||
BData, BData + (A.Rows * A.Cols * sizeof(PBQPNum)));
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief Output a textual representation of the given matrix on the given
|
||||
/// output stream.
|
||||
template <typename OStream>
|
||||
OStream& operator<<(OStream &os, const Matrix &m) {
|
||||
|
||||
assert((m.getRows() != 0) && "Zero-row matrix badness.");
|
||||
|
||||
for (unsigned i = 0; i < m.getRows(); ++i) {
|
||||
os << m.getRowAsVector(i);
|
||||
}
|
||||
|
||||
return os;
|
||||
OStream& operator<<(OStream &OS, const Matrix &M) {
|
||||
assert((M.getRows() != 0) && "Zero-row matrix badness.");
|
||||
for (unsigned i = 0; i < M.getRows(); ++i)
|
||||
OS << M.getRowAsVector(i);
|
||||
return OS;
|
||||
}
|
||||
|
||||
template <typename Metadata>
|
||||
class MDVector : public Vector {
|
||||
public:
|
||||
MDVector(const Vector &v) : Vector(v), md(*this) { }
|
||||
MDVector(Vector &&v) : Vector(std::move(v)), md(*this) { }
|
||||
const Metadata& getMetadata() const { return md; }
|
||||
private:
|
||||
Metadata md;
|
||||
};
|
||||
|
||||
template <typename Metadata>
|
||||
class MDMatrix : public Matrix {
|
||||
public:
|
||||
MDMatrix(const Matrix &m) : Matrix(m), md(*this) { }
|
||||
MDMatrix(Matrix &&m) : Matrix(std::move(m)), md(*this) { }
|
||||
const Metadata& getMetadata() const { return md; }
|
||||
private:
|
||||
Metadata md;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_MATH_H
|
||||
|
194
include/llvm/CodeGen/PBQP/ReductionRules.h
Normal file
194
include/llvm/CodeGen/PBQP/ReductionRules.h
Normal file
@ -0,0 +1,194 @@
|
||||
//===----------- ReductionRules.h - Reduction Rules -------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Reduction Rules.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_REDUCTIONRULES_H
|
||||
#define LLVM_REDUCTIONRULES_H
|
||||
|
||||
#include "Graph.h"
|
||||
#include "Math.h"
|
||||
#include "Solution.h"
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
/// \brief Reduce a node of degree one.
|
||||
///
|
||||
/// Propagate costs from the given node, which must be of degree one, to its
|
||||
/// neighbor. Notify the problem domain.
|
||||
template <typename GraphT>
|
||||
void applyR1(GraphT &G, typename GraphT::NodeId NId) {
|
||||
typedef typename GraphT::NodeId NodeId;
|
||||
typedef typename GraphT::EdgeId EdgeId;
|
||||
typedef typename GraphT::Vector Vector;
|
||||
typedef typename GraphT::Matrix Matrix;
|
||||
typedef typename GraphT::RawVector RawVector;
|
||||
|
||||
assert(G.getNodeDegree(NId) == 1 &&
|
||||
"R1 applied to node with degree != 1.");
|
||||
|
||||
EdgeId EId = *G.adjEdgeIds(NId).begin();
|
||||
NodeId MId = G.getEdgeOtherNodeId(EId, NId);
|
||||
|
||||
const Matrix &ECosts = G.getEdgeCosts(EId);
|
||||
const Vector &XCosts = G.getNodeCosts(NId);
|
||||
RawVector YCosts = G.getNodeCosts(MId);
|
||||
|
||||
// Duplicate a little to avoid transposing matrices.
|
||||
if (NId == G.getEdgeNode1Id(EId)) {
|
||||
for (unsigned j = 0; j < YCosts.getLength(); ++j) {
|
||||
PBQPNum Min = ECosts[0][j] + XCosts[0];
|
||||
for (unsigned i = 1; i < XCosts.getLength(); ++i) {
|
||||
PBQPNum C = ECosts[i][j] + XCosts[i];
|
||||
if (C < Min)
|
||||
Min = C;
|
||||
}
|
||||
YCosts[j] += Min;
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < YCosts.getLength(); ++i) {
|
||||
PBQPNum Min = ECosts[i][0] + XCosts[0];
|
||||
for (unsigned j = 1; j < XCosts.getLength(); ++j) {
|
||||
PBQPNum C = ECosts[i][j] + XCosts[j];
|
||||
if (C < Min)
|
||||
Min = C;
|
||||
}
|
||||
YCosts[i] += Min;
|
||||
}
|
||||
}
|
||||
G.setNodeCosts(MId, YCosts);
|
||||
G.disconnectEdge(EId, MId);
|
||||
}
|
||||
|
||||
template <typename GraphT>
|
||||
void applyR2(GraphT &G, typename GraphT::NodeId NId) {
|
||||
typedef typename GraphT::NodeId NodeId;
|
||||
typedef typename GraphT::EdgeId EdgeId;
|
||||
typedef typename GraphT::Vector Vector;
|
||||
typedef typename GraphT::Matrix Matrix;
|
||||
typedef typename GraphT::RawMatrix RawMatrix;
|
||||
|
||||
assert(G.getNodeDegree(NId) == 2 &&
|
||||
"R2 applied to node with degree != 2.");
|
||||
|
||||
const Vector &XCosts = G.getNodeCosts(NId);
|
||||
|
||||
typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
|
||||
EdgeId YXEId = *AEItr,
|
||||
ZXEId = *(++AEItr);
|
||||
|
||||
NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
|
||||
ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
|
||||
|
||||
bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
|
||||
FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
|
||||
|
||||
const Matrix *YXECosts = FlipEdge1 ?
|
||||
new Matrix(G.getEdgeCosts(YXEId).transpose()) :
|
||||
&G.getEdgeCosts(YXEId);
|
||||
|
||||
const Matrix *ZXECosts = FlipEdge2 ?
|
||||
new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
|
||||
&G.getEdgeCosts(ZXEId);
|
||||
|
||||
unsigned XLen = XCosts.getLength(),
|
||||
YLen = YXECosts->getRows(),
|
||||
ZLen = ZXECosts->getRows();
|
||||
|
||||
RawMatrix Delta(YLen, ZLen);
|
||||
|
||||
for (unsigned i = 0; i < YLen; ++i) {
|
||||
for (unsigned j = 0; j < ZLen; ++j) {
|
||||
PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
|
||||
for (unsigned k = 1; k < XLen; ++k) {
|
||||
PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
|
||||
if (C < Min) {
|
||||
Min = C;
|
||||
}
|
||||
}
|
||||
Delta[i][j] = Min;
|
||||
}
|
||||
}
|
||||
|
||||
if (FlipEdge1)
|
||||
delete YXECosts;
|
||||
|
||||
if (FlipEdge2)
|
||||
delete ZXECosts;
|
||||
|
||||
EdgeId YZEId = G.findEdge(YNId, ZNId);
|
||||
bool AddedEdge = false;
|
||||
|
||||
if (YZEId == G.invalidEdgeId()) {
|
||||
YZEId = G.addEdge(YNId, ZNId, Delta);
|
||||
AddedEdge = true;
|
||||
} else {
|
||||
const Matrix &YZECosts = G.getEdgeCosts(YZEId);
|
||||
if (YNId == G.getEdgeNode1Id(YZEId)) {
|
||||
G.setEdgeCosts(YZEId, Delta + YZECosts);
|
||||
} else {
|
||||
G.setEdgeCosts(YZEId, Delta.transpose() + YZECosts);
|
||||
}
|
||||
}
|
||||
|
||||
G.disconnectEdge(YXEId, YNId);
|
||||
G.disconnectEdge(ZXEId, ZNId);
|
||||
|
||||
// TODO: Try to normalize newly added/modified edge.
|
||||
}
|
||||
|
||||
|
||||
// \brief Find a solution to a fully reduced graph by backpropagation.
|
||||
//
|
||||
// Given a graph and a reduction order, pop each node from the reduction
|
||||
// order and greedily compute a minimum solution based on the node costs, and
|
||||
// the dependent costs due to previously solved nodes.
|
||||
//
|
||||
// Note - This does not return the graph to its original (pre-reduction)
|
||||
// state: the existing solvers destructively alter the node and edge
|
||||
// costs. Given that, the backpropagate function doesn't attempt to
|
||||
// replace the edges either, but leaves the graph in its reduced
|
||||
// state.
|
||||
template <typename GraphT, typename StackT>
|
||||
Solution backpropagate(GraphT& G, StackT stack) {
|
||||
typedef GraphBase::NodeId NodeId;
|
||||
typedef GraphBase::EdgeId EdgeId;
|
||||
typedef typename GraphT::Matrix Matrix;
|
||||
typedef typename GraphT::RawVector RawVector;
|
||||
|
||||
Solution s;
|
||||
|
||||
while (!stack.empty()) {
|
||||
NodeId NId = stack.back();
|
||||
stack.pop_back();
|
||||
|
||||
RawVector v = G.getNodeCosts(NId);
|
||||
|
||||
for (auto EId : G.adjEdgeIds(NId)) {
|
||||
const Matrix& edgeCosts = G.getEdgeCosts(EId);
|
||||
if (NId == G.getEdgeNode1Id(EId)) {
|
||||
NodeId mId = G.getEdgeNode2Id(EId);
|
||||
v += edgeCosts.getColAsVector(s.getSelection(mId));
|
||||
} else {
|
||||
NodeId mId = G.getEdgeNode1Id(EId);
|
||||
v += edgeCosts.getRowAsVector(s.getSelection(mId));
|
||||
}
|
||||
}
|
||||
|
||||
s.setSelection(NId, v.minIndex());
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // LLVM_REDUCTIONRULES_H
|
359
include/llvm/CodeGen/PBQP/RegAllocSolver.h
Normal file
359
include/llvm/CodeGen/PBQP/RegAllocSolver.h
Normal file
@ -0,0 +1,359 @@
|
||||
//===-- RegAllocSolver.h - Heuristic PBQP Solver for reg alloc --*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Heuristic PBQP solver for register allocation problems. This solver uses a
|
||||
// graph reduction approach. Nodes of degree 0, 1 and 2 are eliminated with
|
||||
// optimality-preserving rules (see ReductionRules.h). When no low-degree (<3)
|
||||
// nodes are present, a heuristic derived from Brigg's graph coloring approach
|
||||
// is used.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
|
||||
#define LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
|
||||
|
||||
#include "CostAllocator.h"
|
||||
#include "Graph.h"
|
||||
#include "ReductionRules.h"
|
||||
#include "Solution.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
namespace PBQP {
|
||||
|
||||
namespace RegAlloc {
|
||||
|
||||
/// \brief Metadata to speed allocatability test.
|
||||
///
|
||||
/// Keeps track of the number of infinities in each row and column.
|
||||
class MatrixMetadata {
|
||||
private:
|
||||
MatrixMetadata(const MatrixMetadata&);
|
||||
void operator=(const MatrixMetadata&);
|
||||
public:
|
||||
MatrixMetadata(const PBQP::Matrix& m)
|
||||
: worstRow(0), worstCol(0),
|
||||
unsafeRows(new bool[m.getRows() - 1]()),
|
||||
unsafeCols(new bool[m.getCols() - 1]()) {
|
||||
|
||||
unsigned* colCounts = new unsigned[m.getCols() - 1]();
|
||||
|
||||
for (unsigned i = 1; i < m.getRows(); ++i) {
|
||||
unsigned rowCount = 0;
|
||||
for (unsigned j = 1; j < m.getCols(); ++j) {
|
||||
if (m[i][j] == std::numeric_limits<PBQP::PBQPNum>::infinity()) {
|
||||
++rowCount;
|
||||
++colCounts[j - 1];
|
||||
unsafeRows[i - 1] = true;
|
||||
unsafeCols[j - 1] = true;
|
||||
}
|
||||
}
|
||||
worstRow = std::max(worstRow, rowCount);
|
||||
}
|
||||
unsigned worstColCountForCurRow =
|
||||
*std::max_element(colCounts, colCounts + m.getCols() - 1);
|
||||
worstCol = std::max(worstCol, worstColCountForCurRow);
|
||||
delete[] colCounts;
|
||||
}
|
||||
|
||||
~MatrixMetadata() {
|
||||
delete[] unsafeRows;
|
||||
delete[] unsafeCols;
|
||||
}
|
||||
|
||||
unsigned getWorstRow() const { return worstRow; }
|
||||
unsigned getWorstCol() const { return worstCol; }
|
||||
const bool* getUnsafeRows() const { return unsafeRows; }
|
||||
const bool* getUnsafeCols() const { return unsafeCols; }
|
||||
|
||||
private:
|
||||
unsigned worstRow, worstCol;
|
||||
bool* unsafeRows;
|
||||
bool* unsafeCols;
|
||||
};
|
||||
|
||||
class NodeMetadata {
|
||||
public:
|
||||
typedef enum { Unprocessed,
|
||||
OptimallyReducible,
|
||||
ConservativelyAllocatable,
|
||||
NotProvablyAllocatable } ReductionState;
|
||||
|
||||
NodeMetadata() : rs(Unprocessed), deniedOpts(0), optUnsafeEdges(0) {}
|
||||
~NodeMetadata() { delete[] optUnsafeEdges; }
|
||||
|
||||
void setup(const Vector& costs) {
|
||||
numOpts = costs.getLength() - 1;
|
||||
optUnsafeEdges = new unsigned[numOpts]();
|
||||
}
|
||||
|
||||
ReductionState getReductionState() const { return rs; }
|
||||
void setReductionState(ReductionState rs) { this->rs = rs; }
|
||||
|
||||
void handleAddEdge(const MatrixMetadata& md, bool transpose) {
|
||||
deniedOpts += transpose ? md.getWorstCol() : md.getWorstRow();
|
||||
const bool* unsafeOpts =
|
||||
transpose ? md.getUnsafeCols() : md.getUnsafeRows();
|
||||
for (unsigned i = 0; i < numOpts; ++i)
|
||||
optUnsafeEdges[i] += unsafeOpts[i];
|
||||
}
|
||||
|
||||
void handleRemoveEdge(const MatrixMetadata& md, bool transpose) {
|
||||
deniedOpts -= transpose ? md.getWorstCol() : md.getWorstRow();
|
||||
const bool* unsafeOpts =
|
||||
transpose ? md.getUnsafeCols() : md.getUnsafeRows();
|
||||
for (unsigned i = 0; i < numOpts; ++i)
|
||||
optUnsafeEdges[i] -= unsafeOpts[i];
|
||||
}
|
||||
|
||||
bool isConservativelyAllocatable() const {
|
||||
return (deniedOpts < numOpts) ||
|
||||
(std::find(optUnsafeEdges, optUnsafeEdges + numOpts, 0) !=
|
||||
optUnsafeEdges + numOpts);
|
||||
}
|
||||
|
||||
private:
|
||||
ReductionState rs;
|
||||
unsigned numOpts;
|
||||
unsigned deniedOpts;
|
||||
unsigned* optUnsafeEdges;
|
||||
};
|
||||
|
||||
class RegAllocSolverImpl {
|
||||
private:
|
||||
typedef PBQP::MDMatrix<MatrixMetadata> RAMatrix;
|
||||
public:
|
||||
typedef PBQP::Vector RawVector;
|
||||
typedef PBQP::Matrix RawMatrix;
|
||||
typedef PBQP::Vector Vector;
|
||||
typedef RAMatrix Matrix;
|
||||
typedef PBQP::PoolCostAllocator<
|
||||
Vector, PBQP::VectorComparator,
|
||||
Matrix, PBQP::MatrixComparator> CostAllocator;
|
||||
|
||||
typedef PBQP::GraphBase::NodeId NodeId;
|
||||
typedef PBQP::GraphBase::EdgeId EdgeId;
|
||||
|
||||
typedef RegAlloc::NodeMetadata NodeMetadata;
|
||||
|
||||
struct EdgeMetadata { };
|
||||
|
||||
typedef PBQP::Graph<RegAllocSolverImpl> Graph;
|
||||
|
||||
RegAllocSolverImpl(Graph &G) : G(G) {}
|
||||
|
||||
Solution solve() {
|
||||
G.setSolver(*this);
|
||||
Solution S;
|
||||
setup();
|
||||
S = backpropagate(G, reduce());
|
||||
G.unsetSolver();
|
||||
return S;
|
||||
}
|
||||
|
||||
void handleAddNode(NodeId NId) {
|
||||
G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
|
||||
}
|
||||
void handleRemoveNode(NodeId NId) {}
|
||||
void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
|
||||
|
||||
void handleAddEdge(EdgeId EId) {
|
||||
handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
|
||||
handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
|
||||
}
|
||||
|
||||
void handleRemoveEdge(EdgeId EId) {
|
||||
handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
|
||||
handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
|
||||
}
|
||||
|
||||
void handleDisconnectEdge(EdgeId EId, NodeId NId) {
|
||||
NodeMetadata& nMd = G.getNodeMetadata(NId);
|
||||
const MatrixMetadata& mMd = G.getEdgeCosts(EId).getMetadata();
|
||||
nMd.handleRemoveEdge(mMd, NId == G.getEdgeNode2Id(EId));
|
||||
if (G.getNodeDegree(NId) == 3) {
|
||||
// This node is becoming optimally reducible.
|
||||
moveToOptimallyReducibleNodes(NId);
|
||||
} else if (nMd.getReductionState() ==
|
||||
NodeMetadata::NotProvablyAllocatable &&
|
||||
nMd.isConservativelyAllocatable()) {
|
||||
// This node just became conservatively allocatable.
|
||||
moveToConservativelyAllocatableNodes(NId);
|
||||
}
|
||||
}
|
||||
|
||||
void handleReconnectEdge(EdgeId EId, NodeId NId) {
|
||||
NodeMetadata& nMd = G.getNodeMetadata(NId);
|
||||
const MatrixMetadata& mMd = G.getEdgeCosts(EId).getMetadata();
|
||||
nMd.handleAddEdge(mMd, NId == G.getEdgeNode2Id(EId));
|
||||
}
|
||||
|
||||
void handleSetEdgeCosts(EdgeId EId, const Matrix& NewCosts) {
|
||||
handleRemoveEdge(EId);
|
||||
|
||||
NodeId n1Id = G.getEdgeNode1Id(EId);
|
||||
NodeId n2Id = G.getEdgeNode2Id(EId);
|
||||
NodeMetadata& n1Md = G.getNodeMetadata(n1Id);
|
||||
NodeMetadata& n2Md = G.getNodeMetadata(n2Id);
|
||||
const MatrixMetadata& mMd = NewCosts.getMetadata();
|
||||
n1Md.handleAddEdge(mMd, n1Id != G.getEdgeNode1Id(EId));
|
||||
n2Md.handleAddEdge(mMd, n2Id != G.getEdgeNode1Id(EId));
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void removeFromCurrentSet(NodeId NId) {
|
||||
switch (G.getNodeMetadata(NId).getReductionState()) {
|
||||
case NodeMetadata::Unprocessed: break;
|
||||
case NodeMetadata::OptimallyReducible:
|
||||
assert(OptimallyReducibleNodes.find(NId) !=
|
||||
OptimallyReducibleNodes.end() &&
|
||||
"Node not in optimally reducible set.");
|
||||
OptimallyReducibleNodes.erase(NId);
|
||||
break;
|
||||
case NodeMetadata::ConservativelyAllocatable:
|
||||
assert(ConservativelyAllocatableNodes.find(NId) !=
|
||||
ConservativelyAllocatableNodes.end() &&
|
||||
"Node not in conservatively allocatable set.");
|
||||
ConservativelyAllocatableNodes.erase(NId);
|
||||
break;
|
||||
case NodeMetadata::NotProvablyAllocatable:
|
||||
assert(NotProvablyAllocatableNodes.find(NId) !=
|
||||
NotProvablyAllocatableNodes.end() &&
|
||||
"Node not in not-provably-allocatable set.");
|
||||
NotProvablyAllocatableNodes.erase(NId);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void moveToOptimallyReducibleNodes(NodeId NId) {
|
||||
removeFromCurrentSet(NId);
|
||||
OptimallyReducibleNodes.insert(NId);
|
||||
G.getNodeMetadata(NId).setReductionState(
|
||||
NodeMetadata::OptimallyReducible);
|
||||
}
|
||||
|
||||
void moveToConservativelyAllocatableNodes(NodeId NId) {
|
||||
removeFromCurrentSet(NId);
|
||||
ConservativelyAllocatableNodes.insert(NId);
|
||||
G.getNodeMetadata(NId).setReductionState(
|
||||
NodeMetadata::ConservativelyAllocatable);
|
||||
}
|
||||
|
||||
void moveToNotProvablyAllocatableNodes(NodeId NId) {
|
||||
removeFromCurrentSet(NId);
|
||||
NotProvablyAllocatableNodes.insert(NId);
|
||||
G.getNodeMetadata(NId).setReductionState(
|
||||
NodeMetadata::NotProvablyAllocatable);
|
||||
}
|
||||
|
||||
void setup() {
|
||||
// Set up worklists.
|
||||
for (auto NId : G.nodeIds()) {
|
||||
if (G.getNodeDegree(NId) < 3)
|
||||
moveToOptimallyReducibleNodes(NId);
|
||||
else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
|
||||
moveToConservativelyAllocatableNodes(NId);
|
||||
else
|
||||
moveToNotProvablyAllocatableNodes(NId);
|
||||
}
|
||||
}
|
||||
|
||||
// Compute a reduction order for the graph by iteratively applying PBQP
|
||||
// reduction rules. Locally optimal rules are applied whenever possible (R0,
|
||||
// R1, R2). If no locally-optimal rules apply then any conservatively
|
||||
// allocatable node is reduced. Finally, if no conservatively allocatable
|
||||
// node exists then the node with the lowest spill-cost:degree ratio is
|
||||
// selected.
|
||||
std::vector<GraphBase::NodeId> reduce() {
|
||||
assert(!G.empty() && "Cannot reduce empty graph.");
|
||||
|
||||
typedef GraphBase::NodeId NodeId;
|
||||
std::vector<NodeId> NodeStack;
|
||||
|
||||
// Consume worklists.
|
||||
while (true) {
|
||||
if (!OptimallyReducibleNodes.empty()) {
|
||||
NodeSet::iterator nItr = OptimallyReducibleNodes.begin();
|
||||
NodeId NId = *nItr;
|
||||
OptimallyReducibleNodes.erase(nItr);
|
||||
NodeStack.push_back(NId);
|
||||
switch (G.getNodeDegree(NId)) {
|
||||
case 0:
|
||||
break;
|
||||
case 1:
|
||||
applyR1(G, NId);
|
||||
break;
|
||||
case 2:
|
||||
applyR2(G, NId);
|
||||
break;
|
||||
default: llvm_unreachable("Not an optimally reducible node.");
|
||||
}
|
||||
} else if (!ConservativelyAllocatableNodes.empty()) {
|
||||
// Conservatively allocatable nodes will never spill. For now just
|
||||
// take the first node in the set and push it on the stack. When we
|
||||
// start optimizing more heavily for register preferencing, it may
|
||||
// would be better to push nodes with lower 'expected' or worst-case
|
||||
// register costs first (since early nodes are the most
|
||||
// constrained).
|
||||
NodeSet::iterator nItr = ConservativelyAllocatableNodes.begin();
|
||||
NodeId NId = *nItr;
|
||||
ConservativelyAllocatableNodes.erase(nItr);
|
||||
NodeStack.push_back(NId);
|
||||
G.disconnectAllNeighborsFromNode(NId);
|
||||
|
||||
} else if (!NotProvablyAllocatableNodes.empty()) {
|
||||
NodeSet::iterator nItr =
|
||||
std::min_element(NotProvablyAllocatableNodes.begin(),
|
||||
NotProvablyAllocatableNodes.end(),
|
||||
SpillCostComparator(G));
|
||||
NodeId NId = *nItr;
|
||||
NotProvablyAllocatableNodes.erase(nItr);
|
||||
NodeStack.push_back(NId);
|
||||
G.disconnectAllNeighborsFromNode(NId);
|
||||
} else
|
||||
break;
|
||||
}
|
||||
|
||||
return NodeStack;
|
||||
}
|
||||
|
||||
class SpillCostComparator {
|
||||
public:
|
||||
SpillCostComparator(const Graph& G) : G(G) {}
|
||||
bool operator()(NodeId N1Id, NodeId N2Id) {
|
||||
PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
|
||||
PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
|
||||
return N1SC < N2SC;
|
||||
}
|
||||
private:
|
||||
const Graph& G;
|
||||
};
|
||||
|
||||
Graph& G;
|
||||
typedef std::set<NodeId> NodeSet;
|
||||
NodeSet OptimallyReducibleNodes;
|
||||
NodeSet ConservativelyAllocatableNodes;
|
||||
NodeSet NotProvablyAllocatableNodes;
|
||||
};
|
||||
|
||||
typedef Graph<RegAllocSolverImpl> Graph;
|
||||
|
||||
Solution solve(Graph& G) {
|
||||
if (G.empty())
|
||||
return Solution();
|
||||
RegAllocSolverImpl RegAllocSolver(G);
|
||||
return RegAllocSolver.solve();
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif // LLVM_CODEGEN_PBQP_REGALLOCSOLVER_H
|
@ -26,7 +26,7 @@ namespace PBQP {
|
||||
class Solution {
|
||||
private:
|
||||
|
||||
typedef std::map<Graph::NodeId, unsigned> SelectionsMap;
|
||||
typedef std::map<GraphBase::NodeId, unsigned> SelectionsMap;
|
||||
SelectionsMap selections;
|
||||
|
||||
unsigned r0Reductions, r1Reductions, r2Reductions, rNReductions;
|
||||
@ -72,14 +72,14 @@ namespace PBQP {
|
||||
/// \brief Set the selection for a given node.
|
||||
/// @param nodeId Node id.
|
||||
/// @param selection Selection for nodeId.
|
||||
void setSelection(Graph::NodeId nodeId, unsigned selection) {
|
||||
void setSelection(GraphBase::NodeId nodeId, unsigned selection) {
|
||||
selections[nodeId] = selection;
|
||||
}
|
||||
|
||||
/// \brief Get a node's selection.
|
||||
/// @param nodeId Node id.
|
||||
/// @return The selection for nodeId;
|
||||
unsigned getSelection(Graph::NodeId nodeId) const {
|
||||
unsigned getSelection(GraphBase::NodeId nodeId) const {
|
||||
SelectionsMap::const_iterator sItr = selections.find(nodeId);
|
||||
assert(sItr != selections.end() && "No selection for node.");
|
||||
return sItr->second;
|
||||
|
@ -17,9 +17,9 @@
|
||||
#define LLVM_CODEGEN_REGALLOCPBQP_H
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/PBQP/Graph.h"
|
||||
#include "llvm/CodeGen/PBQP/Solution.h"
|
||||
#include "llvm/CodeGen/PBQP/RegAllocSolver.h"
|
||||
#include <map>
|
||||
#include <set>
|
||||
|
||||
@ -31,28 +31,29 @@ namespace llvm {
|
||||
class TargetRegisterInfo;
|
||||
template<class T> class OwningPtr;
|
||||
|
||||
typedef PBQP::RegAlloc::Graph PBQPRAGraph;
|
||||
|
||||
/// This class wraps up a PBQP instance representing a register allocation
|
||||
/// problem, plus the structures necessary to map back from the PBQP solution
|
||||
/// to a register allocation solution. (i.e. The PBQP-node <--> vreg map,
|
||||
/// and the PBQP option <--> storage location map).
|
||||
|
||||
class PBQPRAProblem {
|
||||
public:
|
||||
|
||||
typedef SmallVector<unsigned, 16> AllowedSet;
|
||||
|
||||
PBQP::Graph& getGraph() { return graph; }
|
||||
PBQPRAGraph& getGraph() { return graph; }
|
||||
|
||||
const PBQP::Graph& getGraph() const { return graph; }
|
||||
const PBQPRAGraph& getGraph() const { return graph; }
|
||||
|
||||
/// Record the mapping between the given virtual register and PBQP node,
|
||||
/// and the set of allowed pregs for the vreg.
|
||||
///
|
||||
/// If you are extending
|
||||
/// PBQPBuilder you are unlikely to need this: Nodes and options for all
|
||||
/// vregs will already have been set up for you by the base class.
|
||||
/// vregs will already have been set up for you by the base class.
|
||||
template <typename AllowedRegsItr>
|
||||
void recordVReg(unsigned vreg, PBQP::Graph::NodeId nodeId,
|
||||
void recordVReg(unsigned vreg, PBQPRAGraph::NodeId nodeId,
|
||||
AllowedRegsItr arBegin, AllowedRegsItr arEnd) {
|
||||
assert(node2VReg.find(nodeId) == node2VReg.end() && "Re-mapping node.");
|
||||
assert(vreg2Node.find(vreg) == vreg2Node.end() && "Re-mapping vreg.");
|
||||
@ -64,10 +65,10 @@ namespace llvm {
|
||||
}
|
||||
|
||||
/// Get the virtual register corresponding to the given PBQP node.
|
||||
unsigned getVRegForNode(PBQP::Graph::NodeId nodeId) const;
|
||||
unsigned getVRegForNode(PBQPRAGraph::NodeId nodeId) const;
|
||||
|
||||
/// Get the PBQP node corresponding to the given virtual register.
|
||||
PBQP::Graph::NodeId getNodeForVReg(unsigned vreg) const;
|
||||
PBQPRAGraph::NodeId getNodeForVReg(unsigned vreg) const;
|
||||
|
||||
/// Returns true if the given PBQP option represents a physical register,
|
||||
/// false otherwise.
|
||||
@ -92,16 +93,16 @@ namespace llvm {
|
||||
|
||||
private:
|
||||
|
||||
typedef std::map<PBQP::Graph::NodeId, unsigned> Node2VReg;
|
||||
typedef DenseMap<unsigned, PBQP::Graph::NodeId> VReg2Node;
|
||||
typedef std::map<PBQPRAGraph::NodeId, unsigned> Node2VReg;
|
||||
typedef DenseMap<unsigned, PBQPRAGraph::NodeId> VReg2Node;
|
||||
typedef DenseMap<unsigned, AllowedSet> AllowedSetMap;
|
||||
|
||||
PBQP::Graph graph;
|
||||
PBQPRAGraph graph;
|
||||
Node2VReg node2VReg;
|
||||
VReg2Node vreg2Node;
|
||||
|
||||
AllowedSetMap allowedSets;
|
||||
|
||||
|
||||
};
|
||||
|
||||
/// Builds PBQP instances to represent register allocation problems. Includes
|
||||
@ -114,7 +115,7 @@ namespace llvm {
|
||||
public:
|
||||
|
||||
typedef std::set<unsigned> RegSet;
|
||||
|
||||
|
||||
/// Default constructor.
|
||||
PBQPBuilder() {}
|
||||
|
||||
@ -139,12 +140,12 @@ namespace llvm {
|
||||
/// Extended builder which adds coalescing constraints to a problem.
|
||||
class PBQPBuilderWithCoalescing : public PBQPBuilder {
|
||||
public:
|
||||
|
||||
|
||||
/// Build a PBQP instance to represent the register allocation problem for
|
||||
/// the given MachineFunction.
|
||||
virtual PBQPRAProblem *build(MachineFunction *mf, const LiveIntervals *lis,
|
||||
const MachineBlockFrequencyInfo *mbfi,
|
||||
const RegSet &vregs);
|
||||
const RegSet &vregs);
|
||||
|
||||
private:
|
||||
|
||||
|
@ -45,9 +45,6 @@
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineLoopInfo.h"
|
||||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||||
#include "llvm/CodeGen/PBQP/Graph.h"
|
||||
#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
|
||||
#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
|
||||
#include "llvm/CodeGen/RegAllocRegistry.h"
|
||||
#include "llvm/CodeGen/VirtRegMap.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
@ -157,13 +154,13 @@ char RegAllocPBQP::ID = 0;
|
||||
|
||||
} // End anonymous namespace.
|
||||
|
||||
unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::NodeId node) const {
|
||||
unsigned PBQPRAProblem::getVRegForNode(PBQPRAGraph::NodeId node) const {
|
||||
Node2VReg::const_iterator vregItr = node2VReg.find(node);
|
||||
assert(vregItr != node2VReg.end() && "No vreg for node.");
|
||||
return vregItr->second;
|
||||
}
|
||||
|
||||
PBQP::Graph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
|
||||
PBQPRAGraph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
|
||||
VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
|
||||
assert(nodeItr != vreg2Node.end() && "No node for vreg.");
|
||||
return nodeItr->second;
|
||||
@ -195,7 +192,7 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
|
||||
const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
|
||||
|
||||
OwningPtr<PBQPRAProblem> p(new PBQPRAProblem());
|
||||
PBQP::Graph &g = p->getGraph();
|
||||
PBQPRAGraph &g = p->getGraph();
|
||||
RegSet pregs;
|
||||
|
||||
// Collect the set of preg intervals, record that they're used in the MF.
|
||||
@ -245,17 +242,19 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
|
||||
vrAllowed.push_back(preg);
|
||||
}
|
||||
|
||||
// Construct the node.
|
||||
PBQP::Graph::NodeId node =
|
||||
g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
|
||||
|
||||
// Record the mapping and allowed set in the problem.
|
||||
p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
|
||||
PBQP::Vector nodeCosts(vrAllowed.size() + 1, 0);
|
||||
|
||||
PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
|
||||
vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
|
||||
|
||||
addSpillCosts(g.getNodeCosts(node), spillCost);
|
||||
addSpillCosts(nodeCosts, spillCost);
|
||||
|
||||
// Construct the node.
|
||||
PBQPRAGraph::NodeId nId = g.addNode(std::move(nodeCosts));
|
||||
|
||||
// Record the mapping and allowed set in the problem.
|
||||
p->recordVReg(vreg, nId, vrAllowed.begin(), vrAllowed.end());
|
||||
|
||||
}
|
||||
|
||||
for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
|
||||
@ -272,11 +271,11 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
|
||||
|
||||
assert(!l2.empty() && "Empty interval in vreg set?");
|
||||
if (l1.overlaps(l2)) {
|
||||
PBQP::Graph::EdgeId edge =
|
||||
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
|
||||
PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
|
||||
PBQP::Matrix edgeCosts(vr1Allowed.size()+1, vr2Allowed.size()+1, 0);
|
||||
addInterferenceCosts(edgeCosts, vr1Allowed, vr2Allowed, tri);
|
||||
|
||||
addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
|
||||
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
|
||||
std::move(edgeCosts));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -316,7 +315,7 @@ PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
|
||||
const RegSet &vregs) {
|
||||
|
||||
OwningPtr<PBQPRAProblem> p(PBQPBuilder::build(mf, lis, mbfi, vregs));
|
||||
PBQP::Graph &g = p->getGraph();
|
||||
PBQPRAGraph &g = p->getGraph();
|
||||
|
||||
const TargetMachine &tm = mf->getTarget();
|
||||
CoalescerPair cp(*tm.getRegisterInfo());
|
||||
@ -362,28 +361,32 @@ PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
|
||||
}
|
||||
if (pregOpt < allowed.size()) {
|
||||
++pregOpt; // +1 to account for spill option.
|
||||
PBQP::Graph::NodeId node = p->getNodeForVReg(src);
|
||||
addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
|
||||
PBQPRAGraph::NodeId node = p->getNodeForVReg(src);
|
||||
llvm::dbgs() << "Reading node costs for node " << node << "\n";
|
||||
llvm::dbgs() << "Source node: " << &g.getNodeCosts(node) << "\n";
|
||||
PBQP::Vector newCosts(g.getNodeCosts(node));
|
||||
addPhysRegCoalesce(newCosts, pregOpt, cBenefit);
|
||||
g.setNodeCosts(node, newCosts);
|
||||
}
|
||||
} else {
|
||||
const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
|
||||
const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
|
||||
PBQP::Graph::NodeId node1 = p->getNodeForVReg(dst);
|
||||
PBQP::Graph::NodeId node2 = p->getNodeForVReg(src);
|
||||
PBQP::Graph::EdgeId edge = g.findEdge(node1, node2);
|
||||
PBQPRAGraph::NodeId node1 = p->getNodeForVReg(dst);
|
||||
PBQPRAGraph::NodeId node2 = p->getNodeForVReg(src);
|
||||
PBQPRAGraph::EdgeId edge = g.findEdge(node1, node2);
|
||||
if (edge == g.invalidEdgeId()) {
|
||||
edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
|
||||
allowed2->size() + 1,
|
||||
0));
|
||||
PBQP::Matrix costs(allowed1->size() + 1, allowed2->size() + 1, 0);
|
||||
addVirtRegCoalesce(costs, *allowed1, *allowed2, cBenefit);
|
||||
g.addEdge(node1, node2, costs);
|
||||
} else {
|
||||
if (g.getEdgeNode1(edge) == node2) {
|
||||
if (g.getEdgeNode1Id(edge) == node2) {
|
||||
std::swap(node1, node2);
|
||||
std::swap(allowed1, allowed2);
|
||||
}
|
||||
PBQP::Matrix costs(g.getEdgeCosts(edge));
|
||||
addVirtRegCoalesce(costs, *allowed1, *allowed2, cBenefit);
|
||||
g.setEdgeCosts(edge, costs);
|
||||
}
|
||||
|
||||
addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
|
||||
cBenefit);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -471,14 +474,12 @@ bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
|
||||
// Clear the existing allocation.
|
||||
vrm->clearAllVirt();
|
||||
|
||||
const PBQP::Graph &g = problem.getGraph();
|
||||
const PBQPRAGraph &g = problem.getGraph();
|
||||
// Iterate over the nodes mapping the PBQP solution to a register
|
||||
// assignment.
|
||||
for (PBQP::Graph::NodeItr nodeItr = g.nodesBegin(),
|
||||
nodeEnd = g.nodesEnd();
|
||||
nodeItr != nodeEnd; ++nodeItr) {
|
||||
unsigned vreg = problem.getVRegForNode(*nodeItr);
|
||||
unsigned alloc = solution.getSelection(*nodeItr);
|
||||
for (auto NId : g.nodeIds()) {
|
||||
unsigned vreg = problem.getVRegForNode(NId);
|
||||
unsigned alloc = solution.getSelection(NId);
|
||||
|
||||
if (problem.isPRegOption(vreg, alloc)) {
|
||||
unsigned preg = problem.getPRegForOption(vreg, alloc);
|
||||
@ -603,8 +604,7 @@ bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
|
||||
#endif
|
||||
|
||||
PBQP::Solution solution =
|
||||
PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
|
||||
problem->getGraph());
|
||||
PBQP::RegAlloc::solve(problem->getGraph());
|
||||
|
||||
pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user