mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-27 14:34:58 +00:00
switch from my nice hashtable based merging solution to a
gross little neighbor merging implementation. This one has the benefit of not violating the ordering of patterns, so it generates code that passes tests again. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97218 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
bb08d89298
commit
d6f0602564
@ -75,97 +75,53 @@ static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
|
||||
// inspect it more easily. While we're at it, bucket them up by the hash
|
||||
// code of their first predicate.
|
||||
SmallVector<Matcher*, 32> OptionsToMatch;
|
||||
typedef DenseMap<unsigned, std::vector<Matcher*> > HashTableTy;
|
||||
HashTableTy MatchersByHash;
|
||||
|
||||
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
||||
// Factor the subexpression.
|
||||
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
||||
FactorNodes(Child);
|
||||
|
||||
if (Matcher *N = Child.take()) {
|
||||
if (Matcher *N = Child.take())
|
||||
OptionsToMatch.push_back(N);
|
||||
MatchersByHash[N->getHash()].push_back(N);
|
||||
}
|
||||
}
|
||||
|
||||
SmallVector<Matcher*, 32> NewOptionsToMatch;
|
||||
|
||||
// Now that we have bucketed up things by hash code, iterate over sets of
|
||||
// matchers that all start with the same node. We would like to iterate over
|
||||
// the hash table, but it isn't in deterministic order, emulate this by going
|
||||
// about this slightly backwards. After each set of nodes is processed, we
|
||||
// remove them from MatchersByHash.
|
||||
for (unsigned i = 0, e = OptionsToMatch.size();
|
||||
i != e && !MatchersByHash.empty(); ++i) {
|
||||
// Loop over options to match, merging neighboring patterns with identical
|
||||
// starting nodes into a shared matcher.
|
||||
for (unsigned i = 0, e = OptionsToMatch.size(); i != e;) {
|
||||
// Find the set of matchers that start with this node.
|
||||
Matcher *Optn = OptionsToMatch[i];
|
||||
|
||||
// Find all nodes that hash to the same value. If there is no entry in the
|
||||
// hash table, then we must have previously processed a node equal to this
|
||||
// one.
|
||||
HashTableTy::iterator DMI = MatchersByHash.find(Optn->getHash());
|
||||
if (DMI == MatchersByHash.end()) {
|
||||
delete Optn;
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<Matcher*> &HashMembers = DMI->second;
|
||||
assert(!HashMembers.empty() && "Should be removed if empty");
|
||||
|
||||
// Check to see if this node is in HashMembers, if not it was equal to a
|
||||
// previous node and removed.
|
||||
std::vector<Matcher*>::iterator MemberSlot =
|
||||
std::find(HashMembers.begin(), HashMembers.end(), Optn);
|
||||
if (MemberSlot == HashMembers.end()) {
|
||||
delete Optn;
|
||||
continue;
|
||||
}
|
||||
|
||||
// If the node *does* exist in HashMembers, then we've confirmed that it
|
||||
// hasn't been processed as equal to a previous node. Process it now, start
|
||||
// by removing it from the list of hash-equal nodes.
|
||||
HashMembers.erase(MemberSlot);
|
||||
|
||||
// Scan all of the hash members looking for ones that are equal, removing
|
||||
// them from HashMembers, adding them to EqualMatchers.
|
||||
SmallVector<Matcher*, 8> EqualMatchers;
|
||||
|
||||
// Scan the vector backwards so we're generally removing from the end to
|
||||
// avoid pointless data copying.
|
||||
for (unsigned i = HashMembers.size(); i != 0; --i) {
|
||||
if (!HashMembers[i-1]->isEqual(Optn)) continue;
|
||||
|
||||
EqualMatchers.push_back(HashMembers[i-1]);
|
||||
HashMembers.erase(HashMembers.begin()+i-1);
|
||||
}
|
||||
EqualMatchers.push_back(Optn);
|
||||
|
||||
// Reverse the vector so that we preserve the match ordering.
|
||||
std::reverse(EqualMatchers.begin(), EqualMatchers.end());
|
||||
|
||||
// If HashMembers is empty at this point, then we've gotten all nodes with
|
||||
// the same hash, nuke the entry in the hash table.
|
||||
if (HashMembers.empty())
|
||||
MatchersByHash.erase(Optn->getHash());
|
||||
|
||||
// Okay, we have the list of all matchers that start with the same node as
|
||||
// Optn. If there is more than one in the set, we want to factor them.
|
||||
if (EqualMatchers.size() == 1) {
|
||||
Matcher *Optn = OptionsToMatch[i++];
|
||||
|
||||
// See if the next option starts with the same matcher, if not, no sharing.
|
||||
if (i == e || !OptionsToMatch[i]->isEqual(Optn)) {
|
||||
// TODO: Skip over mutually exclusive patterns.
|
||||
NewOptionsToMatch.push_back(Optn);
|
||||
continue;
|
||||
}
|
||||
|
||||
// If the two neighbors *do* start with the same matcher, we can factor the
|
||||
// matcher out of at least these two patterns. See what the maximal set we
|
||||
// can merge together is.
|
||||
SmallVector<Matcher*, 8> EqualMatchers;
|
||||
EqualMatchers.push_back(Optn);
|
||||
EqualMatchers.push_back(OptionsToMatch[i++]);
|
||||
|
||||
while (i != e && OptionsToMatch[i]->isEqual(Optn))
|
||||
EqualMatchers.push_back(OptionsToMatch[i++]);
|
||||
|
||||
// Factor these checks by pulling the first node off each entry and
|
||||
// discarding it. Take the first one off the first entry to reuse.
|
||||
Matcher *Shared = Optn;
|
||||
Optn = Optn->takeNext();
|
||||
EqualMatchers[0] = Optn;
|
||||
|
||||
// Skip the first node. Leave the first node around though, we'll delete it
|
||||
// on subsequent iterations over OptionsToMatch.
|
||||
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i)
|
||||
EqualMatchers[i] = EqualMatchers[i]->takeNext();
|
||||
// Remove and delete the first node from the other matchers we're factoring.
|
||||
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
|
||||
Matcher *Tmp = EqualMatchers[i]->takeNext();
|
||||
delete EqualMatchers[i];
|
||||
EqualMatchers[i] = Tmp;
|
||||
}
|
||||
|
||||
Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user