mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
According to my auto-simplifier the most common missed simplifications in
optimized code are: (non-negative number)+(power-of-two) != 0 -> true and (x | 1) != 0 -> true Instcombine knows about the second one of course, but only does it if X|1 has only one use. These fire thousands of times in the testsuite. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124183 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b38824f866
commit
d70d1a5c44
@ -39,6 +39,23 @@ namespace llvm {
|
||||
APInt &KnownOne, const TargetData *TD = 0,
|
||||
unsigned Depth = 0);
|
||||
|
||||
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
|
||||
/// one. Convenience wrapper around ComputeMaskedBits.
|
||||
void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
|
||||
const TargetData *TD = 0, unsigned Depth = 0);
|
||||
|
||||
/// isPowerOfTwo - Return true if the given value is known to have exactly one
|
||||
/// bit set when defined. For vectors return true if every element is known to
|
||||
/// be a power of two when defined. Supports values with integer or pointer
|
||||
/// type and vectors of integers.
|
||||
bool isPowerOfTwo(Value *V, const TargetData *TD = 0, unsigned Depth = 0);
|
||||
|
||||
/// isKnownNonZero - Return true if the given value is known to be non-zero
|
||||
/// when defined. For vectors return true if every element is known to be
|
||||
/// non-zero when defined. Supports values with integer or pointer type and
|
||||
/// vectors of integers.
|
||||
bool isKnownNonZero(Value *V, const TargetData *TD = 0, unsigned Depth = 0);
|
||||
|
||||
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
|
||||
/// this predicate to simplify operations downstream. Mask is known to be
|
||||
/// zero for bits that V cannot have.
|
||||
|
@ -22,6 +22,7 @@
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
#include "llvm/Analysis/ConstantFolding.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/Support/PatternMatch.h"
|
||||
#include "llvm/Support/ValueHandle.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
@ -1153,7 +1154,69 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
|
||||
}
|
||||
}
|
||||
|
||||
// See if we are doing a comparison with a constant.
|
||||
// icmp <alloca*>, <global/alloca*/null> - Different stack variables have
|
||||
// different addresses, and what's more the address of a stack variable is
|
||||
// never null or equal to the address of a global. Note that generalizing
|
||||
// to the case where LHS is a global variable address or null is pointless,
|
||||
// since if both LHS and RHS are constants then we already constant folded
|
||||
// the compare, and if only one of them is then we moved it to RHS already.
|
||||
if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
|
||||
isa<ConstantPointerNull>(RHS)))
|
||||
// We already know that LHS != LHS.
|
||||
return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
|
||||
|
||||
// If we are comparing with zero then try hard since this is a common case.
|
||||
if (match(RHS, m_Zero())) {
|
||||
bool LHSKnownNonNegative, LHSKnownNegative;
|
||||
switch (Pred) {
|
||||
default:
|
||||
assert(false && "Unknown ICmp predicate!");
|
||||
case ICmpInst::ICMP_ULT:
|
||||
return ConstantInt::getFalse(LHS->getContext());
|
||||
case ICmpInst::ICMP_UGE:
|
||||
return ConstantInt::getTrue(LHS->getContext());
|
||||
case ICmpInst::ICMP_EQ:
|
||||
case ICmpInst::ICMP_ULE:
|
||||
if (isKnownNonZero(LHS, TD))
|
||||
return ConstantInt::getFalse(LHS->getContext());
|
||||
break;
|
||||
case ICmpInst::ICMP_NE:
|
||||
case ICmpInst::ICMP_UGT:
|
||||
if (isKnownNonZero(LHS, TD))
|
||||
return ConstantInt::getTrue(LHS->getContext());
|
||||
break;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
|
||||
if (LHSKnownNegative)
|
||||
return ConstantInt::getTrue(LHS->getContext());
|
||||
if (LHSKnownNonNegative)
|
||||
return ConstantInt::getFalse(LHS->getContext());
|
||||
break;
|
||||
case ICmpInst::ICMP_SLE:
|
||||
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
|
||||
if (LHSKnownNegative)
|
||||
return ConstantInt::getTrue(LHS->getContext());
|
||||
if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
|
||||
return ConstantInt::getFalse(LHS->getContext());
|
||||
break;
|
||||
case ICmpInst::ICMP_SGE:
|
||||
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
|
||||
if (LHSKnownNegative)
|
||||
return ConstantInt::getFalse(LHS->getContext());
|
||||
if (LHSKnownNonNegative)
|
||||
return ConstantInt::getTrue(LHS->getContext());
|
||||
break;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
|
||||
if (LHSKnownNegative)
|
||||
return ConstantInt::getFalse(LHS->getContext());
|
||||
if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
|
||||
return ConstantInt::getTrue(LHS->getContext());
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// See if we are doing a comparison with a constant integer.
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
|
||||
switch (Pred) {
|
||||
default: break;
|
||||
@ -1192,17 +1255,6 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
|
||||
}
|
||||
}
|
||||
|
||||
// icmp <alloca*>, <global/alloca*/null> - Different stack variables have
|
||||
// different addresses, and what's more the address of a stack variable is
|
||||
// never null or equal to the address of a global. Note that generalizing
|
||||
// to the case where LHS is a global variable address or null is pointless,
|
||||
// since if both LHS and RHS are constants then we already constant folded
|
||||
// the compare, and if only one of them is then we moved it to RHS already.
|
||||
if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
|
||||
isa<ConstantPointerNull>(RHS)))
|
||||
// We already know that LHS != LHS.
|
||||
return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
|
||||
|
||||
// Compare of cast, for example (zext X) != 0 -> X != 0
|
||||
if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
|
||||
Instruction *LI = cast<CastInst>(LHS);
|
||||
|
@ -24,9 +24,22 @@
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include "llvm/Support/PatternMatch.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include <cstring>
|
||||
using namespace llvm;
|
||||
using namespace llvm::PatternMatch;
|
||||
|
||||
const unsigned MaxDepth = 6;
|
||||
|
||||
/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
|
||||
/// unknown returns 0). For vector types, returns the element type's bitwidth.
|
||||
static unsigned getBitWidth(const Type *Ty, const TargetData *TD) {
|
||||
if (unsigned BitWidth = Ty->getScalarSizeInBits())
|
||||
return BitWidth;
|
||||
assert(isa<PointerType>(Ty) && "Expected a pointer type!");
|
||||
return TD ? TD->getPointerSizeInBits() : 0;
|
||||
}
|
||||
|
||||
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
|
||||
/// known to be either zero or one and return them in the KnownZero/KnownOne
|
||||
@ -47,7 +60,6 @@ using namespace llvm;
|
||||
void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
|
||||
APInt &KnownZero, APInt &KnownOne,
|
||||
const TargetData *TD, unsigned Depth) {
|
||||
const unsigned MaxDepth = 6;
|
||||
assert(V && "No Value?");
|
||||
assert(Depth <= MaxDepth && "Limit Search Depth");
|
||||
unsigned BitWidth = Mask.getBitWidth();
|
||||
@ -620,6 +632,157 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
|
||||
}
|
||||
}
|
||||
|
||||
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
|
||||
/// one. Convenience wrapper around ComputeMaskedBits.
|
||||
void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
|
||||
const TargetData *TD, unsigned Depth) {
|
||||
unsigned BitWidth = getBitWidth(V->getType(), TD);
|
||||
if (!BitWidth) {
|
||||
KnownZero = false;
|
||||
KnownOne = false;
|
||||
return;
|
||||
}
|
||||
APInt ZeroBits(BitWidth, 0);
|
||||
APInt OneBits(BitWidth, 0);
|
||||
ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
|
||||
Depth);
|
||||
KnownOne = OneBits[BitWidth - 1];
|
||||
KnownZero = ZeroBits[BitWidth - 1];
|
||||
}
|
||||
|
||||
/// isPowerOfTwo - Return true if the given value is known to have exactly one
|
||||
/// bit set when defined. For vectors return true if every element is known to
|
||||
/// be a power of two when defined. Supports values with integer or pointer
|
||||
/// types and vectors of integers.
|
||||
bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
||||
return CI->getValue().countPopulation() == 1;
|
||||
// TODO: Handle vector constants.
|
||||
|
||||
// 1 << X is clearly a power of two if the one is not shifted off the end. If
|
||||
// it is shifted off the end then the result is undefined.
|
||||
if (match(V, m_Shl(m_One(), m_Value())))
|
||||
return true;
|
||||
|
||||
// (signbit) >>l X is clearly a power of two if the one is not shifted off the
|
||||
// bottom. If it is shifted off the bottom then the result is undefined.
|
||||
ConstantInt *CI;
|
||||
if (match(V, m_LShr(m_ConstantInt(CI), m_Value())) &&
|
||||
CI->getValue().isSignBit())
|
||||
return true;
|
||||
|
||||
// The remaining tests are all recursive, so bail out if we hit the limit.
|
||||
if (Depth++ == MaxDepth)
|
||||
return false;
|
||||
|
||||
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
|
||||
return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
|
||||
|
||||
if (SelectInst *SI = dyn_cast<SelectInst>(V))
|
||||
return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
|
||||
isPowerOfTwo(SI->getFalseValue(), TD, Depth);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// isKnownNonZero - Return true if the given value is known to be non-zero
|
||||
/// when defined. For vectors return true if every element is known to be
|
||||
/// non-zero when defined. Supports values with integer or pointer type and
|
||||
/// vectors of integers.
|
||||
bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
|
||||
if (Constant *C = dyn_cast<Constant>(V)) {
|
||||
if (C->isNullValue())
|
||||
return false;
|
||||
if (isa<ConstantInt>(C))
|
||||
// Must be non-zero due to null test above.
|
||||
return true;
|
||||
// TODO: Handle vectors
|
||||
return false;
|
||||
}
|
||||
|
||||
// The remaining tests are all recursive, so bail out if we hit the limit.
|
||||
if (Depth++ == MaxDepth)
|
||||
return false;
|
||||
|
||||
unsigned BitWidth = getBitWidth(V->getType(), TD);
|
||||
|
||||
// X | Y != 0 if X != 0 or Y != 0.
|
||||
Value *X = 0, *Y = 0;
|
||||
if (match(V, m_Or(m_Value(X), m_Value(Y))))
|
||||
return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
|
||||
|
||||
// ext X != 0 if X != 0.
|
||||
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
|
||||
return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
|
||||
|
||||
// shl X, A != 0 if X is odd. Note that the value of the shift is undefined
|
||||
// if the lowest bit is shifted off the end.
|
||||
if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
|
||||
APInt KnownZero(BitWidth, 0);
|
||||
APInt KnownOne(BitWidth, 0);
|
||||
ComputeMaskedBits(V, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
|
||||
if (KnownOne[0])
|
||||
return true;
|
||||
}
|
||||
// shr X, A != 0 if X is negative. Note that the value of the shift is not
|
||||
// defined if the sign bit is shifted off the end.
|
||||
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
|
||||
bool XKnownNonNegative, XKnownNegative;
|
||||
ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
|
||||
if (XKnownNegative)
|
||||
return true;
|
||||
}
|
||||
// X + Y.
|
||||
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
|
||||
bool XKnownNonNegative, XKnownNegative;
|
||||
bool YKnownNonNegative, YKnownNegative;
|
||||
ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
|
||||
ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
|
||||
|
||||
// If X and Y are both non-negative (as signed values) then their sum is not
|
||||
// zero.
|
||||
if (XKnownNonNegative && YKnownNonNegative)
|
||||
return true;
|
||||
|
||||
// If X and Y are both negative (as signed values) then their sum is not
|
||||
// zero unless both X and Y equal INT_MIN.
|
||||
if (BitWidth && XKnownNegative && YKnownNegative) {
|
||||
APInt KnownZero(BitWidth, 0);
|
||||
APInt KnownOne(BitWidth, 0);
|
||||
APInt Mask = APInt::getSignedMaxValue(BitWidth);
|
||||
// The sign bit of X is set. If some other bit is set then X is not equal
|
||||
// to INT_MIN.
|
||||
ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
|
||||
if ((KnownOne & Mask) != 0)
|
||||
return true;
|
||||
// The sign bit of Y is set. If some other bit is set then Y is not equal
|
||||
// to INT_MIN.
|
||||
ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
|
||||
if ((KnownOne & Mask) != 0)
|
||||
return true;
|
||||
}
|
||||
|
||||
// The sum of a non-negative number and a power of two is not zero.
|
||||
if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
|
||||
return true;
|
||||
if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
|
||||
return true;
|
||||
}
|
||||
// (C ? X : Y) != 0 if X != 0 and Y != 0.
|
||||
else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
|
||||
if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
|
||||
isKnownNonZero(SI->getFalseValue(), TD, Depth))
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!BitWidth) return false;
|
||||
APInt KnownZero(BitWidth, 0);
|
||||
APInt KnownOne(BitWidth, 0);
|
||||
ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
|
||||
TD, Depth);
|
||||
return KnownOne != 0;
|
||||
}
|
||||
|
||||
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
|
||||
/// this predicate to simplify operations downstream. Mask is known to be zero
|
||||
/// for bits that V cannot have.
|
||||
|
@ -27,6 +27,14 @@ define i1 @zext2(i1 %x) {
|
||||
; CHECK: ret i1 %x
|
||||
}
|
||||
|
||||
define i1 @zext3() {
|
||||
; CHECK: @zext3
|
||||
%e = zext i1 1 to i32
|
||||
%c = icmp ne i32 %e, 0
|
||||
ret i1 %c
|
||||
; CHECK: ret i1 true
|
||||
}
|
||||
|
||||
define i1 @sext(i32 %x) {
|
||||
; CHECK: @sext
|
||||
%e1 = sext i32 %x to i64
|
||||
@ -43,3 +51,49 @@ define i1 @sext2(i1 %x) {
|
||||
ret i1 %c
|
||||
; CHECK: ret i1 %x
|
||||
}
|
||||
|
||||
define i1 @sext3() {
|
||||
; CHECK: @sext3
|
||||
%e = sext i1 1 to i32
|
||||
%c = icmp ne i32 %e, 0
|
||||
ret i1 %c
|
||||
; CHECK: ret i1 true
|
||||
}
|
||||
|
||||
define i1 @add(i32 %x, i32 %y) {
|
||||
; CHECK: @add
|
||||
%l = lshr i32 %x, 1
|
||||
%r = lshr i32 %y, 1
|
||||
%s = add i32 %l, %r
|
||||
%c = icmp eq i32 %s, 0
|
||||
ret i1 %c
|
||||
; CHECK: ret i1 false
|
||||
}
|
||||
|
||||
define i1 @add2(i8 %x, i8 %y) {
|
||||
; CHECK: @add2
|
||||
%l = or i8 %x, 128
|
||||
%r = or i8 %y, 129
|
||||
%s = add i8 %l, %r
|
||||
%c = icmp eq i8 %s, 0
|
||||
ret i1 %c
|
||||
; CHECK: ret i1 false
|
||||
}
|
||||
|
||||
define i1 @addpowtwo(i32 %x, i32 %y) {
|
||||
; CHECK: @addpowtwo
|
||||
%l = lshr i32 %x, 1
|
||||
%r = shl i32 1, %y
|
||||
%s = add i32 %l, %r
|
||||
%c = icmp eq i32 %s, 0
|
||||
ret i1 %c
|
||||
; CHECK: ret i1 false
|
||||
}
|
||||
|
||||
define i1 @or(i32 %x) {
|
||||
; CHECK: @or
|
||||
%o = or i32 %x, 1
|
||||
%c = icmp eq i32 %o, 0
|
||||
ret i1 %c
|
||||
; CHECK: ret i1 false
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user