mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-28 06:32:09 +00:00
* Significant changes to the preheader insertion pass:
- Now we perform loop exit-block splitting to ensure exit blocks are always dominated by the loop header. - We now preserve dominance frontier information - This fixes bug: LICM/2003-02-26-LoopExitNotDominated.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5652 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
ef05100950
commit
dbf3cd7952
@ -1,7 +1,20 @@
|
||||
//===- LoopPreheaders.cpp - Loop Preheader Insertion Pass -----------------===//
|
||||
//
|
||||
// Insert Loop pre-headers into the CFG for each function in the module. This
|
||||
// pass updates loop information and dominator information.
|
||||
// Insert Loop pre-headers and exit blocks into the CFG for each function in the
|
||||
// module. This pass updates loop information and dominator information.
|
||||
//
|
||||
// Loop pre-header insertion guarantees that there is a single, non-critical
|
||||
// entry edge from outside of the loop to the loop header. This simplifies a
|
||||
// number of analyses and transformations, such as LICM.
|
||||
//
|
||||
// Loop exit-block insertion guarantees that all exit blocks from the loop
|
||||
// (blocks which are outside of the loop that have predecessors inside of the
|
||||
// loop) are dominated by the loop header. This simplifies transformations such
|
||||
// as store-sinking that is built into LICM.
|
||||
//
|
||||
// Note that the simplifycfg pass will clean up blocks which are split out but
|
||||
// end up being unneccesary, so usage of this pass does not neccesarily
|
||||
// pessimize generated code.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@ -13,6 +26,7 @@
|
||||
#include "llvm/iPHINode.h"
|
||||
#include "llvm/Constant.h"
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "Support/SetOperations.h"
|
||||
#include "Support/Statistic.h"
|
||||
|
||||
namespace {
|
||||
@ -24,15 +38,20 @@ namespace {
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
// We need loop information to identify the loops...
|
||||
AU.addRequired<LoopInfo>();
|
||||
AU.addRequired<DominatorSet>();
|
||||
|
||||
AU.addPreserved<LoopInfo>();
|
||||
AU.addPreserved<DominatorSet>();
|
||||
AU.addPreserved<ImmediateDominators>();
|
||||
AU.addPreserved<DominatorTree>();
|
||||
AU.addPreserved<DominanceFrontier>();
|
||||
AU.addPreservedID(BreakCriticalEdgesID); // No crit edges added....
|
||||
}
|
||||
private:
|
||||
bool ProcessLoop(Loop *L);
|
||||
BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
|
||||
const std::vector<BasicBlock*> &Preds);
|
||||
void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
|
||||
void InsertPreheaderForLoop(Loop *L);
|
||||
};
|
||||
|
||||
@ -71,12 +90,80 @@ bool Preheaders::ProcessLoop(Loop *L) {
|
||||
Changed = true;
|
||||
}
|
||||
|
||||
DominatorSet &DS = getAnalysis<DominatorSet>();
|
||||
BasicBlock *Header = L->getHeader();
|
||||
for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i)
|
||||
if (!DS.dominates(Header, L->getExitBlocks()[i])) {
|
||||
RewriteLoopExitBlock(L, L->getExitBlocks()[i]);
|
||||
NumInserted++;
|
||||
Changed = true;
|
||||
}
|
||||
|
||||
const std::vector<Loop*> &SubLoops = L->getSubLoops();
|
||||
for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
|
||||
Changed |= ProcessLoop(SubLoops[i]);
|
||||
return Changed;
|
||||
}
|
||||
|
||||
/// SplitBlockPredecessors - Split the specified block into two blocks. We want
|
||||
/// to move the predecessors specified in the Preds list to point to the new
|
||||
/// block, leaving the remaining predecessors pointing to BB. This method
|
||||
/// updates the SSA PHINode's, but no other analyses.
|
||||
///
|
||||
BasicBlock *Preheaders::SplitBlockPredecessors(BasicBlock *BB,
|
||||
const char *Suffix,
|
||||
const std::vector<BasicBlock*> &Preds) {
|
||||
|
||||
// Create new basic block, insert right before the original block...
|
||||
BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB);
|
||||
|
||||
// The preheader first gets an unconditional branch to the loop header...
|
||||
BranchInst *BI = new BranchInst(BB);
|
||||
NewBB->getInstList().push_back(BI);
|
||||
|
||||
// For every PHI node in the block, insert a PHI node into NewBB where the
|
||||
// incoming values from the out of loop edges are moved to NewBB. We have two
|
||||
// possible cases here. If the loop is dead, we just insert dummy entries
|
||||
// into the PHI nodes for the new edge. If the loop is not dead, we move the
|
||||
// incoming edges in BB into new PHI nodes in NewBB.
|
||||
//
|
||||
if (!Preds.empty()) { // Is the loop not obviously dead?
|
||||
for (BasicBlock::iterator I = BB->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
|
||||
|
||||
// Create the new PHI node, insert it into NewBB at the end of the block
|
||||
PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
|
||||
|
||||
// Move all of the edges from blocks outside the loop to the new PHI
|
||||
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
||||
Value *V = PN->removeIncomingValue(Preds[i]);
|
||||
NewPHI->addIncoming(V, Preds[i]);
|
||||
}
|
||||
|
||||
// Add an incoming value to the PHI node in the loop for the preheader
|
||||
// edge
|
||||
PN->addIncoming(NewPHI, NewBB);
|
||||
}
|
||||
|
||||
// Now that the PHI nodes are updated, actually move the edges from
|
||||
// Preds to point to NewBB instead of BB.
|
||||
//
|
||||
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
||||
TerminatorInst *TI = Preds[i]->getTerminator();
|
||||
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
|
||||
if (TI->getSuccessor(s) == BB)
|
||||
TI->setSuccessor(s, NewBB);
|
||||
}
|
||||
|
||||
} else { // Otherwise the loop is dead...
|
||||
for (BasicBlock::iterator I = BB->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(&*I); ++I)
|
||||
// Insert dummy values as the incoming value...
|
||||
PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
|
||||
}
|
||||
return NewBB;
|
||||
}
|
||||
|
||||
|
||||
/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
|
||||
/// preheader, this method is called to insert one. This method has two phases:
|
||||
@ -94,55 +181,10 @@ void Preheaders::InsertPreheaderForLoop(Loop *L) {
|
||||
|
||||
assert(OutsideBlocks.size() != 1 && "Loop already has a preheader!");
|
||||
|
||||
// Create new basic block, insert right before the header of the loop...
|
||||
BasicBlock *NewBB = new BasicBlock(Header->getName()+".preheader", Header);
|
||||
|
||||
// The preheader first gets an unconditional branch to the loop header...
|
||||
BranchInst *BI = new BranchInst(Header);
|
||||
NewBB->getInstList().push_back(BI);
|
||||
// Split out the loop pre-header
|
||||
BasicBlock *NewBB =
|
||||
SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
|
||||
|
||||
// For every PHI node in the loop body, insert a PHI node into NewBB where
|
||||
// the incoming values from the out of loop edges are moved to NewBB. We
|
||||
// have two possible cases here. If the loop is dead, we just insert dummy
|
||||
// entries into the PHI nodes for the new edge. If the loop is not dead, we
|
||||
// move the incoming edges in Header into new PHI nodes in NewBB.
|
||||
//
|
||||
if (!OutsideBlocks.empty()) { // Is the loop not obviously dead?
|
||||
for (BasicBlock::iterator I = Header->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
|
||||
|
||||
// Create the new PHI node, insert it into NewBB at the end of the block
|
||||
PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
|
||||
|
||||
// Move all of the edges from blocks outside the loop to the new PHI
|
||||
for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
|
||||
Value *V = PN->removeIncomingValue(OutsideBlocks[i]);
|
||||
NewPHI->addIncoming(V, OutsideBlocks[i]);
|
||||
}
|
||||
|
||||
// Add an incoming value to the PHI node in the loop for the preheader
|
||||
// edge
|
||||
PN->addIncoming(NewPHI, NewBB);
|
||||
}
|
||||
|
||||
// Now that the PHI nodes are updated, actually move the edges from
|
||||
// OutsideBlocks to point to NewBB instead of Header.
|
||||
//
|
||||
for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
|
||||
TerminatorInst *TI = OutsideBlocks[i]->getTerminator();
|
||||
for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
|
||||
if (TI->getSuccessor(s) == Header)
|
||||
TI->setSuccessor(s, NewBB);
|
||||
}
|
||||
|
||||
} else { // Otherwise the loop is dead...
|
||||
for (BasicBlock::iterator I = Header->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(&*I); ++I)
|
||||
// Insert dummy values as the incoming value...
|
||||
PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
|
||||
}
|
||||
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Update analysis results now that we have preformed the transformation
|
||||
//
|
||||
@ -151,20 +193,20 @@ void Preheaders::InsertPreheaderForLoop(Loop *L) {
|
||||
if (Loop *Parent = L->getParentLoop())
|
||||
Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
|
||||
|
||||
// Update dominator information if it is around...
|
||||
if (DominatorSet *DS = getAnalysisToUpdate<DominatorSet>()) {
|
||||
DominatorSet &DS = getAnalysis<DominatorSet>(); // Update dominator info
|
||||
{
|
||||
// The blocks that dominate NewBB are the blocks that dominate Header,
|
||||
// minus Header, plus NewBB.
|
||||
DominatorSet::DomSetType DomSet = DS->getDominators(Header);
|
||||
DominatorSet::DomSetType DomSet = DS.getDominators(Header);
|
||||
DomSet.insert(NewBB); // We dominate ourself
|
||||
DomSet.erase(Header); // Header does not dominate us...
|
||||
DS->addBasicBlock(NewBB, DomSet);
|
||||
DS.addBasicBlock(NewBB, DomSet);
|
||||
|
||||
// The newly created basic block dominates all nodes dominated by Header.
|
||||
for (Function::iterator I = Header->getParent()->begin(),
|
||||
E = Header->getParent()->end(); I != E; ++I)
|
||||
if (DS->dominates(Header, I))
|
||||
DS->addDominator(I, NewBB);
|
||||
if (DS.dominates(Header, I))
|
||||
DS.addDominator(I, NewBB);
|
||||
}
|
||||
|
||||
// Update immediate dominator information if we have it...
|
||||
@ -188,4 +230,139 @@ void Preheaders::InsertPreheaderForLoop(Loop *L) {
|
||||
// Change the header node so that PNHode is the new immediate dominator
|
||||
DT->changeImmediateDominator(HeaderNode, PHNode);
|
||||
}
|
||||
|
||||
// Update dominance frontier information...
|
||||
if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
|
||||
// The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
|
||||
// everything that Header does, and it strictly dominates Header in
|
||||
// addition.
|
||||
assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
|
||||
DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
|
||||
NewDFSet.erase(Header);
|
||||
DF->addBasicBlock(NewBB, NewDFSet);
|
||||
|
||||
// Now we must loop over all of the dominance frontiers in the function,
|
||||
// replacing occurances of Header with NewBB in some cases. If a block
|
||||
// dominates a (now) predecessor of NewBB, but did not strictly dominate
|
||||
// Header, it will have Header in it's DF set, but should now have NewBB in
|
||||
// its set.
|
||||
for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
|
||||
// Get all of the dominators of the predecessor...
|
||||
const DominatorSet::DomSetType &PredDoms =
|
||||
DS.getDominators(OutsideBlocks[i]);
|
||||
for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
|
||||
PDE = PredDoms.end(); PDI != PDE; ++PDI) {
|
||||
BasicBlock *PredDom = *PDI;
|
||||
// If the loop header is in DF(PredDom), then PredDom didn't dominate
|
||||
// the header but did dominate a predecessor outside of the loop. Now
|
||||
// we change this entry to include the preheader in the DF instead of
|
||||
// the header.
|
||||
DominanceFrontier::iterator DFI = DF->find(PredDom);
|
||||
assert(DFI != DF->end() && "No dominance frontier for node?");
|
||||
if (DFI->second.count(Header)) {
|
||||
DF->removeFromFrontier(DFI, Header);
|
||||
DF->addToFrontier(DFI, NewBB);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Preheaders::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
|
||||
DominatorSet &DS = getAnalysis<DominatorSet>();
|
||||
assert(!DS.dominates(L->getHeader(), Exit) &&
|
||||
"Loop already dominates exit block??");
|
||||
|
||||
std::vector<BasicBlock*> LoopBlocks;
|
||||
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
|
||||
if (L->contains(*I))
|
||||
LoopBlocks.push_back(*I);
|
||||
|
||||
BasicBlock *NewBB =
|
||||
SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
|
||||
|
||||
// Update dominator information... The blocks that dominate NewBB are the
|
||||
// intersection of the dominators of predecessors, plus the block itself.
|
||||
// The newly created basic block does not dominate anything except itself.
|
||||
//
|
||||
DominatorSet::DomSetType NewBBDomSet = DS.getDominators(LoopBlocks[0]);
|
||||
for (unsigned i = 1, e = LoopBlocks.size(); i != e; ++i)
|
||||
set_intersect(NewBBDomSet, DS.getDominators(LoopBlocks[i]));
|
||||
NewBBDomSet.insert(NewBB); // All blocks dominate themselves...
|
||||
DS.addBasicBlock(NewBB, NewBBDomSet);
|
||||
|
||||
// Update immediate dominator information if we have it...
|
||||
BasicBlock *NewBBIDom = 0;
|
||||
if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
|
||||
// This block does not strictly dominate anything, so it is not an immediate
|
||||
// dominator. To find the immediate dominator of the new exit node, we
|
||||
// trace up the immediate dominators of a predecessor until we find a basic
|
||||
// block that dominates the exit block.
|
||||
//
|
||||
BasicBlock *Dom = LoopBlocks[0]; // Some random predecessor...
|
||||
while (!NewBBDomSet.count(Dom)) { // Loop until we find a dominator...
|
||||
assert(Dom != 0 && "No shared dominator found???");
|
||||
Dom = ID->get(Dom);
|
||||
}
|
||||
|
||||
// Set the immediate dominator now...
|
||||
ID->addNewBlock(NewBB, Dom);
|
||||
NewBBIDom = Dom; // Reuse this if calculating DominatorTree info...
|
||||
}
|
||||
|
||||
// Update DominatorTree information if it is active.
|
||||
if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
|
||||
// NewBB doesn't dominate anything, so just create a node and link it into
|
||||
// its immediate dominator. If we don't have ImmediateDominator info
|
||||
// around, calculate the idom as above.
|
||||
DominatorTree::Node *NewBBIDomNode;
|
||||
if (NewBBIDom) {
|
||||
NewBBIDomNode = DT->getNode(NewBBIDom);
|
||||
} else {
|
||||
NewBBIDomNode = DT->getNode(LoopBlocks[0]); // Random pred
|
||||
while (!NewBBDomSet.count(NewBBIDomNode->getNode())) {
|
||||
NewBBIDomNode = NewBBIDomNode->getIDom();
|
||||
assert(NewBBIDomNode && "No shared dominator found??");
|
||||
}
|
||||
}
|
||||
|
||||
// Create the new dominator tree node...
|
||||
DT->createNewNode(NewBB, NewBBIDomNode);
|
||||
}
|
||||
|
||||
// Update dominance frontier information...
|
||||
if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
|
||||
// DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it
|
||||
// does dominate itself (and there is an edge (NewBB -> Exit)).
|
||||
DominanceFrontier::DomSetType NewDFSet;
|
||||
NewDFSet.insert(Exit);
|
||||
DF->addBasicBlock(NewBB, NewDFSet);
|
||||
|
||||
// Now we must loop over all of the dominance frontiers in the function,
|
||||
// replacing occurances of Exit with NewBB in some cases. If a block
|
||||
// dominates a (now) predecessor of NewBB, but did not strictly dominate
|
||||
// Exit, it will have Exit in it's DF set, but should now have NewBB in its
|
||||
// set.
|
||||
for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
|
||||
// Get all of the dominators of the predecessor...
|
||||
const DominatorSet::DomSetType &PredDoms =DS.getDominators(LoopBlocks[i]);
|
||||
for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
|
||||
PDE = PredDoms.end(); PDI != PDE; ++PDI) {
|
||||
BasicBlock *PredDom = *PDI;
|
||||
// Make sure to only rewrite blocks that are part of the loop...
|
||||
if (L->contains(PredDom)) {
|
||||
// If the exit node is in DF(PredDom), then PredDom didn't dominate
|
||||
// Exit but did dominate a predecessor inside of the loop. Now we
|
||||
// change this entry to include NewBB in the DF instead of Exit.
|
||||
DominanceFrontier::iterator DFI = DF->find(PredDom);
|
||||
assert(DFI != DF->end() && "No dominance frontier for node?");
|
||||
if (DFI->second.count(Exit)) {
|
||||
DF->removeFromFrontier(DFI, Exit);
|
||||
DF->addToFrontier(DFI, NewBB);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user