[SystemZ] Define remainig *MUL_LOHI patterns

The initial port used MLG(R) for i64 UMUL_LOHI but left the other three
combinations as not-legal-or-custom.  Although 32x32->{32,32}
multiplications exist, they're not as quick as doing a normal 64-bit
multiplication, so it didn't seem like i32 SMUL_LOHI and UMUL_LOHI
would be useful.  There's also no direct instruction for i64 SMUL_LOHI,
so it needs to be implemented in terms of UMUL_LOHI.

However, not defining these patterns means that we don't convert
division by a constant into multiplication, so this patch fills
in the other cases.  The new i64 SMUL_LOHI sequence is simpler
than the one that we used previously for 64x64->128 multiplication,
so int-mul-08.ll now tests the full sequence.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188898 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Richard Sandiford 2013-08-21 09:34:56 +00:00
parent f44026bf26
commit df40f8e8ad
4 changed files with 136 additions and 19 deletions

View File

@ -128,9 +128,11 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
// Use *MUL_LOHI where possible and a wider multiplication otherwise.
// Use *MUL_LOHI where possible instead of MULH*.
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Custom);
setOperationAction(ISD::UMUL_LOHI, VT, Custom);
// We have instructions for signed but not unsigned FP conversion.
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
@ -165,14 +167,6 @@ SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
// Give LowerOperation the chance to replace 64-bit ORs with subregs.
setOperationAction(ISD::OR, MVT::i64, Custom);
// The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR),
// but they aren't really worth using. There is no 64-bit SMUL_LOHI,
// but there is a 64-bit UMUL_LOHI: MLGR.
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
// FIXME: Can we support these natively?
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
@ -1142,6 +1136,20 @@ static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
DL, MVT::Glue, CmpOp0, CmpOp1);
}
// Implement a 32-bit *MUL_LOHI operation by extending both operands to
// 64 bits. Extend is the extension type to use. Store the high part
// in Hi and the low part in Lo.
static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
unsigned Extend, SDValue Op0, SDValue Op1,
SDValue &Hi, SDValue &Lo) {
Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
}
// Lower a binary operation that produces two VT results, one in each
// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
@ -1427,18 +1435,64 @@ lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Ops[2];
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else {
// Do a full 128-bit multiplication based on UMUL_LOHI64:
//
// (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
//
// but using the fact that the upper halves are either all zeros
// or all ones:
//
// (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
//
// and grouping the right terms together since they are quicker than the
// multiplication:
//
// (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
SDValue C63 = DAG.getConstant(63, MVT::i64);
SDValue LL = Op.getOperand(0);
SDValue RL = Op.getOperand(1);
SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
// UMUL_LOHI64 returns the low result in the odd register and the high
// result in the even register. SMUL_LOHI is defined to return the
// low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
LL, RL, Ops[1], Ops[0]);
SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
}
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI");
// UMUL_LOHI64 returns the low result in the odd register and the high
// result in the even register. UMUL_LOHI is defined to return the
// low half first, so the results are in reverse order.
SDValue Ops[2];
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else
// UMUL_LOHI64 returns the low result in the odd register and the high
// result in the even register. UMUL_LOHI is defined to return the
// low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, 2, DL);
}
@ -1706,6 +1760,8 @@ SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
return lowerVACOPY(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return lowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::SMUL_LOHI:
return lowerSMUL_LOHI(Op, DAG);
case ISD::UMUL_LOHI:
return lowerUMUL_LOHI(Op, DAG);
case ISD::SDIVREM:

View File

@ -214,6 +214,7 @@ private:
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;

View File

@ -0,0 +1,56 @@
; Test that divisions by constants are implemented as multiplications.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
; Check signed 32-bit division.
define i32 @f1(i32 %a) {
; CHECK-LABEL: f1:
; CHECK: lgfr [[REG:%r[0-5]]], %r2
; CHECK: msgfi [[REG]], 502748801
; CHECK-DAG: srlg [[RES1:%r[0-5]]], [[REG]], 63
; CHECK-DAG: srag %r2, [[REG]], 46
; CHECK: ar %r2, [[RES1]]
; CHECK: br %r14
%b = sdiv i32 %a, 139968
ret i32 %b
}
; Check unsigned 32-bit division.
define i32 @f2(i32 %a) {
; CHECK-LABEL: f2:
; CHECK: llgfr [[REG:%r[0-5]]], %r2
; CHECK: msgfi [[REG]], 502748801
; CHECK: srlg %r2, [[REG]], 46
; CHECK: br %r14
%b = udiv i32 %a, 139968
ret i32 %b
}
; Check signed 64-bit division.
define i64 @f3(i64 %dummy, i64 %a) {
; CHECK-LABEL: f3:
; CHECK-DAG: llihf [[CONST:%r[0-5]]], 1005497601
; CHECK-DAG: oilf [[CONST]], 4251762321
; CHECK-DAG: srag [[REG:%r[0-5]]], %r3, 63
; CHECK-DAG: ngr [[REG]], [[CONST]]
; CHECK-DAG: mlgr %r2, [[CONST]]
; CHECK: sgr %r2, [[REG]]
; CHECK: srlg [[RES1:%r[0-5]]], %r2, 63
; CHECK: srag %r2, %r2, 15
; CHECK: agr %r2, [[RES1]]
; CHECK: br %r14
%b = sdiv i64 %a, 139968
ret i64 %b
}
; Check unsigned 64-bit division.
define i64 @f4(i64 %dummy, i64 %a) {
; CHECK-LABEL: f4:
; CHECK: llihf [[CONST:%r[0-5]]], 1005497601
; CHECK: oilf [[CONST]], 4251762321
; CHECK: mlgr %r2, [[CONST]]
; CHECK: srlg %r2, %r2, 15
; CHECK: br %r14
%b = udiv i64 %a, 139968
ret i64 %b
}

View File

@ -22,9 +22,13 @@ define i64 @f1(i64 %dummy, i64 %a, i64 %b) {
; This needs a rather convoluted sequence.
define i64 @f2(i64 %dummy, i64 %a, i64 %b) {
; CHECK-LABEL: f2:
; CHECK: mlgr
; CHECK: agr
; CHECK: agr
; CHECK-DAG: srag [[RES1:%r[0-5]]], %r3, 63
; CHECK-DAG: srag [[RES2:%r[0-5]]], %r4, 63
; CHECK-DAG: ngr [[RES1]], %r4
; CHECK-DAG: ngr [[RES2]], %r3
; CHECK-DAG: agr [[RES2]], [[RES1]]
; CHECK-DAG: mlgr %r2, %r4
; CHECK: sgr %r2, [[RES2]]
; CHECK: br %r14
%ax = sext i64 %a to i128
%bx = sext i64 %b to i128