From e12c74c07bec6d2570bb052a2e23c9e4dbf8c7f1 Mon Sep 17 00:00:00 2001 From: "Vikram S. Adve" Date: Tue, 10 Dec 2002 00:43:34 +0000 Subject: [PATCH] This file implements a pass that automatically parallelizes a program, using the Cilk multi-threaded runtime system to execute parallel code. The current version inserts too many sync() operations in the program because it does not attempt to optimize their placement. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4962 91177308-0d34-0410-b5e6-96231b3b80d8 --- lib/Analysis/DataStructure/Parallelize.cpp | 548 +++++++++++++++++++++ lib/Transforms/IPO/Parallelize.cpp | 548 +++++++++++++++++++++ 2 files changed, 1096 insertions(+) create mode 100644 lib/Analysis/DataStructure/Parallelize.cpp create mode 100644 lib/Transforms/IPO/Parallelize.cpp diff --git a/lib/Analysis/DataStructure/Parallelize.cpp b/lib/Analysis/DataStructure/Parallelize.cpp new file mode 100644 index 00000000000..08c800eb1c7 --- /dev/null +++ b/lib/Analysis/DataStructure/Parallelize.cpp @@ -0,0 +1,548 @@ +//===- Parallelize.cpp - Auto parallelization using DS Graphs ---*- C++ -*-===// +// +// This file implements a pass that automatically parallelizes a program, +// using the Cilk multi-threaded runtime system to execute parallel code. +// +// The pass uses the Program Dependence Graph (class PDGIterator) to +// identify parallelizable function calls, i.e., calls whose instances +// can be executed in parallel with instances of other function calls. +// (In the future, this should also execute different instances of the same +// function call in parallel, but that requires parallelizing across +// loop iterations.) +// +// The output of the pass is LLVM code with: +// (1) all parallelizable functions renamed to flag them as parallelizable; +// (2) calls to a sync() function introduced at synchronization points. +// The CWriter recognizes these functions and inserts the appropriate Cilk +// keywords when writing out C code. This C code must be compiled with cilk2c. +// +// Current algorithmic limitations: +// -- no array dependence analysis +// -- no parallelization for function calls in different loop iterations +// (except in unlikely trivial cases) +// +// Limitations of using Cilk: +// -- No parallelism within a function body, e.g., in a loop; +// -- Simplistic synchronization model requiring all parallel threads +// created within a function to block at a sync(). +// -- Excessive overhead at "spawned" function calls, which has no benefit +// once all threads are busy (especially common when the degree of +// parallelism is low). +//===----------------------------------------------------------------------===// + + +#include "llvm/Transforms/Parallelize.h" +#include "llvm/Transforms/Utils/DemoteRegToStack.h" +#include "llvm/Analysis/PgmDependenceGraph.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/DataStructure.h" +#include "llvm/Analysis/DSGraph.h" +#include "llvm/Module.h" +#include "llvm/Function.h" +#include "llvm/iOther.h" +#include "llvm/iPHINode.h" +#include "llvm/iTerminators.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/Cilkifier.h" +#include "Support/NonCopyable.h" +#include "Support/Statistic.h" +#include "Support/STLExtras.h" +#include "Support/hash_set" +#include "Support/hash_map" +#include +#include +#include +#include + + + +#if 0 +void AddToDomSet(vector& domSet, BasicBlock* bb, + const DominatorTree& domTree) +{ + DominatorTreeBase::Node* bbNode = domTree.getNode(bb); + const std::vector& domKids = bbNode.getChildren(); + domSet.insert(domSet.end(), domKids.begin(), domKids.end()); + for (unsigned i = 0; i < domKids.size(); ++i) + AddToDomSet(domSet, domKids[i]->getNode(), domTree); +} + +bool CheckDominance(Function& func, + const CallInst& callInst1, + const CallInst& callInst2) +{ + if (callInst1 == callInst2) // makes sense if this is in a loop but + return false; // we're not handling loops yet + + // Check first if one call dominates the other + DominatorSet& domSet = getAnalysis(func); + if (domSet.dominates(callInst2, callInst1)) + { // swap callInst1 and callInst2 + const CallInst& tmp = callInst2; callInst2 = callInst1; callInst1 = tmp; + } + else if (! domSet.dominates(callInst1, callInst2)) + return false; // neither dominates the other: + + // + if (! AreIndependent(func, callInst1, callInst2)) + return false; +} + +#endif + + +//---------------------------------------------------------------------------- +// class Cilkifier +// +// Code generation pass that transforms code to identify where Cilk keywords +// should be inserted. This relies on dis -c to print out the keywords. +//---------------------------------------------------------------------------- + + +class Cilkifier: public InstVisitor +{ + Function* DummySyncFunc; + + // Data used when transforming each function. + hash_set stmtsVisited; // Flags for recursive DFS + hash_map > spawnToSyncsMap; + + // Input data for the transformation. + const hash_set* cilkFunctions; // Set of parallel functions + PgmDependenceGraph* depGraph; + + void DFSVisitInstr (Instruction* I, + Instruction* root, + hash_set& depsOfRoot); + +public: + /*ctor*/ Cilkifier (Module& M); + + // Transform a single function including its name, its call sites, and syncs + // + void TransformFunc (Function* F, + const hash_set& cilkFunctions, + PgmDependenceGraph& _depGraph); + + // The visitor function that does most of the hard work, via DFSVisitInstr + // + void visitCallInst(CallInst& CI); +}; + + +Cilkifier::Cilkifier(Module& M) +{ + // create the dummy Sync function and add it to the Module + DummySyncFunc = new Function(FunctionType::get( Type::VoidTy, + std::vector(), + /*isVararg*/ false), + /*isInternal*/ false, DummySyncFuncName, &M); +} + +void Cilkifier::TransformFunc(Function* F, + const hash_set& _cilkFunctions, + PgmDependenceGraph& _depGraph) +{ + // Memoize the information for this function + cilkFunctions = &_cilkFunctions; + depGraph = &_depGraph; + + // Add the marker suffix to the Function name + // This should automatically mark all calls to the function also! + F->setName(F->getName() + CilkSuffix); + + // Insert sync operations for each separate spawn + visit(*F); + + // Now traverse the CFG in rPostorder and eliminate redundant syncs, i.e., + // two consecutive sync's on a straight-line path with no intervening spawn. + +} + + +void Cilkifier::DFSVisitInstr(Instruction* I, + Instruction* root, + hash_set& depsOfRoot) +{ + assert(stmtsVisited.find(I) == stmtsVisited.end()); + stmtsVisited.insert(I); + + // If there is a dependence from root to I, insert Sync and return + if (depsOfRoot.find(I) != depsOfRoot.end()) + { // Insert a sync before I and stop searching along this path. + // If I is a Phi instruction, the dependence can only be an SSA dep. + // and we need to insert the sync in the predecessor on the appropriate + // incoming edge! + CallInst* syncI = 0; + if (PHINode* phiI = dyn_cast(I)) + { // check all operands of the Phi and insert before each one + for (unsigned i = 0, N = phiI->getNumIncomingValues(); i < N; ++i) + if (phiI->getIncomingValue(i) == root) + syncI = new CallInst(DummySyncFunc, std::vector(), "", + phiI->getIncomingBlock(i)->getTerminator()); + } + else + syncI = new CallInst(DummySyncFunc, std::vector(), "", I); + + // Remember the sync for each spawn to eliminate rendundant ones later + spawnToSyncsMap[cast(root)].insert(syncI); + + return; + } + + // else visit unvisited successors + if (BranchInst* brI = dyn_cast(I)) + { // visit first instruction in each successor BB + for (unsigned i = 0, N = brI->getNumSuccessors(); i < N; ++i) + if (stmtsVisited.find(&brI->getSuccessor(i)->front()) + == stmtsVisited.end()) + DFSVisitInstr(&brI->getSuccessor(i)->front(), root, depsOfRoot); + } + else + if (Instruction* nextI = I->getNext()) + if (stmtsVisited.find(nextI) == stmtsVisited.end()) + DFSVisitInstr(nextI, root, depsOfRoot); +} + + +void Cilkifier::visitCallInst(CallInst& CI) +{ + assert(CI.getCalledFunction() != 0 && "Only direct calls can be spawned."); + if (cilkFunctions->find(CI.getCalledFunction()) == cilkFunctions->end()) + return; // not a spawn + + // Find all the outgoing memory dependences. + hash_set depsOfRoot; + for (PgmDependenceGraph::iterator DI = + depGraph->outDepBegin(CI, MemoryDeps); ! DI.fini(); ++DI) + depsOfRoot.insert(&DI->getSink()->getInstr()); + + // Now find all outgoing SSA dependences to the eventual non-Phi users of + // the call value (i.e., direct users that are not phis, and for any + // user that is a Phi, direct non-Phi users of that Phi, and recursively). + std::stack phiUsers; + hash_set phisSeen; // ensures we don't visit a phi twice + for (Value::use_iterator UI=CI.use_begin(), UE=CI.use_end(); UI != UE; ++UI) + if (const PHINode* phiUser = dyn_cast(*UI)) + { + if (phisSeen.find(phiUser) == phisSeen.end()) + { + phiUsers.push(phiUser); + phisSeen.insert(phiUser); + } + } + else + depsOfRoot.insert(cast(*UI)); + + // Now we've found the non-Phi users and immediate phi users. + // Recursively walk the phi users and add their non-phi users. + for (const PHINode* phiUser; !phiUsers.empty(); phiUsers.pop()) + { + phiUser = phiUsers.top(); + for (Value::use_const_iterator UI=phiUser->use_begin(), + UE=phiUser->use_end(); UI != UE; ++UI) + if (const PHINode* pn = dyn_cast(*UI)) + { + if (phisSeen.find(pn) == phisSeen.end()) + { + phiUsers.push(pn); + phisSeen.insert(pn); + } + } + else + depsOfRoot.insert(cast(*UI)); + } + + // Walk paths of the CFG starting at the call instruction and insert + // one sync before the first dependence on each path, if any. + if (! depsOfRoot.empty()) + { + stmtsVisited.clear(); // start a new DFS for this CallInst + assert(CI.getNext() && "Call instruction cannot be a terminator!"); + DFSVisitInstr(CI.getNext(), &CI, depsOfRoot); + } + + // Now, eliminate all users of the SSA value of the CallInst, i.e., + // if the call instruction returns a value, delete the return value + // register and replace it by a stack slot. + if (CI.getType() != Type::VoidTy) + DemoteRegToStack(CI); +} + + +//---------------------------------------------------------------------------- +// class FindParallelCalls +// +// Find all CallInst instructions that have at least one other CallInst +// that is independent. These are the instructions that can produce +// useful parallelism. +//---------------------------------------------------------------------------- + +class FindParallelCalls: public InstVisitor, + public NonCopyable +{ + typedef hash_set DependentsSet; + typedef DependentsSet::iterator Dependents_iterator; + typedef DependentsSet::const_iterator Dependents_const_iterator; + + PgmDependenceGraph& depGraph; // dependence graph for the function + hash_set stmtsVisited; // flags for DFS walk of depGraph + hash_map completed; // flags marking if a CI is done + hash_map dependents; // dependent CIs for each CI + + void VisitOutEdges(Instruction* I, + CallInst* root, + DependentsSet& depsOfRoot); + +public: + std::vector parallelCalls; + +public: + /*ctor*/ FindParallelCalls (Function& F, PgmDependenceGraph& DG); + void visitCallInst (CallInst& CI); +}; + + +FindParallelCalls::FindParallelCalls(Function& F, + PgmDependenceGraph& DG) + : depGraph(DG) +{ + // Find all CallInsts reachable from each CallInst using a recursive DFS + visit(F); + + // Now we've found all CallInsts reachable from each CallInst. + // Find those CallInsts that are parallel with at least one other CallInst + // by counting total inEdges and outEdges. + // + unsigned long totalNumCalls = completed.size(); + + if (totalNumCalls == 1) + { // Check first for the special case of a single call instruction not + // in any loop. It is not parallel, even if it has no dependences + // (this is why it is a special case). + // + // FIXME: + // THIS CASE IS NOT HANDLED RIGHT NOW, I.E., THERE IS NO + // PARALLELISM FOR CALLS IN DIFFERENT ITERATIONS OF A LOOP. + // + return; + } + + hash_map numDeps; + for (hash_map::iterator II = dependents.begin(), + IE = dependents.end(); II != IE; ++II) + { + CallInst* fromCI = II->first; + numDeps[fromCI] += II->second.size(); + for (Dependents_iterator DI = II->second.begin(), DE = II->second.end(); + DI != DE; ++DI) + numDeps[*DI]++; // *DI can be reached from II->first + } + + for (hash_map::iterator + II = dependents.begin(), IE = dependents.end(); II != IE; ++II) + + // FIXME: Remove "- 1" when considering parallelism in loops + if (numDeps[II->first] < totalNumCalls - 1) + parallelCalls.push_back(II->first); +} + + +void FindParallelCalls::VisitOutEdges(Instruction* I, + CallInst* root, + DependentsSet& depsOfRoot) +{ + assert(stmtsVisited.find(I) == stmtsVisited.end() && "Stmt visited twice?"); + stmtsVisited.insert(I); + + if (CallInst* CI = dyn_cast(I)) + + // FIXME: Ignoring parallelism in a loop. Here we're actually *ignoring* + // a self-dependence in order to get the count comparison right above. + // When we include loop parallelism, self-dependences should be included. + // + if (CI != root) + + { // CallInst root has a path to CallInst I and any calls reachable from I + depsOfRoot.insert(CI); + if (completed[CI]) + { // We have already visited I so we know all nodes it can reach! + DependentsSet& depsOfI = dependents[CI]; + depsOfRoot.insert(depsOfI.begin(), depsOfI.end()); + return; + } + } + + // If we reach here, we need to visit all children of I + for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(*I); + ! DI.fini(); ++DI) + { + Instruction* sink = &DI->getSink()->getInstr(); + if (stmtsVisited.find(sink) == stmtsVisited.end()) + VisitOutEdges(sink, root, depsOfRoot); + } +} + + +void FindParallelCalls::visitCallInst(CallInst& CI) +{ + if (completed[&CI]) + return; + stmtsVisited.clear(); // clear flags to do a fresh DFS + + // Visit all children of CI using a recursive walk through dep graph + DependentsSet& depsOfRoot = dependents[&CI]; + for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(CI); + ! DI.fini(); ++DI) + { + Instruction* sink = &DI->getSink()->getInstr(); + if (stmtsVisited.find(sink) == stmtsVisited.end()) + VisitOutEdges(sink, &CI, depsOfRoot); + } + + completed[&CI] = true; +} + + +//---------------------------------------------------------------------------- +// class Parallelize +// +// (1) Find candidate parallel functions: any function F s.t. +// there is a call C1 to the function F that is followed or preceded +// by at least one other call C2 that is independent of this one +// (i.e., there is no dependence path from C1 to C2 or C2 to C1) +// (2) Label such a function F as a cilk function. +// (3) Convert every call to F to a spawn +// (4) For every function X, insert sync statements so that +// every spawn is postdominated by a sync before any statements +// with a data dependence to/from the call site for the spawn +// +//---------------------------------------------------------------------------- + +namespace { + class Parallelize: public Pass + { + public: + /// Driver functions to transform a program + /// + bool run(Module& M); + + /// getAnalysisUsage - Modifies extensively so preserve nothing. + /// Uses the DependenceGraph and the Top-down DS Graph (only to find + /// all functions called via an indirect call). + /// + void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired(); + AU.addRequired(); // force this not to be released + AU.addRequired(); // because it is needed by this + } + }; + + RegisterOpt X("parallel", "Parallelize program using Cilk"); +} + + +static Function* FindMain(Module& M) +{ + for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) + if (FI->getName() == std::string("main")) + return FI; + return NULL; +} + + +bool Parallelize::run(Module& M) +{ + hash_set parallelFunctions; + hash_set safeParallelFunctions; + hash_set indirectlyCalled; + + // If there is no main (i.e., for an incomplete program), we can do nothing. + // If there is a main, mark main as a parallel function. + // + Function* mainFunc = FindMain(M); + if (!mainFunc) + return false; + + // (1) Find candidate parallel functions and mark them as Cilk functions + // + for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) + if (! FI->isExternal()) + { + Function* F = FI; + DSGraph& tdg = getAnalysis().getDSGraph(*F); + + // All the hard analysis work gets done here! + // + FindParallelCalls finder(*F, + getAnalysis().getGraph(*F)); + /* getAnalysis().getGraph(*F)); */ + + // Now we know which call instructions are useful to parallelize. + // Remember those callee functions. + // + for (std::vector::iterator + CII = finder.parallelCalls.begin(), + CIE = finder.parallelCalls.end(); CII != CIE; ++CII) + { + // Check if this is a direct call... + if ((*CII)->getCalledFunction() != NULL) + { // direct call: if this is to a non-external function, + // mark it as a parallelizable function + if (! (*CII)->getCalledFunction()->isExternal()) + parallelFunctions.insert((*CII)->getCalledFunction()); + } + else + { // Indirect call: mark all potential callees as bad + std::vector callees = + tdg.getNodeForValue((*CII)->getCalledValue()) + .getNode()->getGlobals(); + indirectlyCalled.insert(callees.begin(), callees.end()); + } + } + } + + // Remove all indirectly called functions from the list of Cilk functions. + // + for (hash_set::iterator PFI = parallelFunctions.begin(), + PFE = parallelFunctions.end(); PFI != PFE; ++PFI) + if (indirectlyCalled.count(*PFI) == 0) + safeParallelFunctions.insert(*PFI); + +#undef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS +#ifdef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS + // Use this undecipherable STLese because erase invalidates iterators. + // Otherwise we have to copy sets as above. + hash_set::iterator extrasBegin = + std::remove_if(parallelFunctions.begin(), parallelFunctions.end(), + compose1(std::bind2nd(std::greater(), 0), + bind_obj(&indirectlyCalled, + &hash_set::count))); + parallelFunctions.erase(extrasBegin, parallelFunctions.end()); +#endif + + // If there are no parallel functions, we can just give up. + if (safeParallelFunctions.empty()) + return false; + + // Add main as a parallel function since Cilk requires this. + safeParallelFunctions.insert(mainFunc); + + // (2,3) Transform each Cilk function and all its calls simply by + // adding a unique suffix to the function name. + // This should identify both functions and calls to such functions + // to the code generator. + // (4) Also, insert calls to sync at appropriate points. + // + Cilkifier cilkifier(M); + for (hash_set::iterator CFI = safeParallelFunctions.begin(), + CFE = safeParallelFunctions.end(); CFI != CFE; ++CFI) + { + cilkifier.TransformFunc(*CFI, safeParallelFunctions, + getAnalysis().getGraph(**CFI)); + /* getAnalysis().getGraph(**CFI)); */ + } + + return true; +} diff --git a/lib/Transforms/IPO/Parallelize.cpp b/lib/Transforms/IPO/Parallelize.cpp new file mode 100644 index 00000000000..08c800eb1c7 --- /dev/null +++ b/lib/Transforms/IPO/Parallelize.cpp @@ -0,0 +1,548 @@ +//===- Parallelize.cpp - Auto parallelization using DS Graphs ---*- C++ -*-===// +// +// This file implements a pass that automatically parallelizes a program, +// using the Cilk multi-threaded runtime system to execute parallel code. +// +// The pass uses the Program Dependence Graph (class PDGIterator) to +// identify parallelizable function calls, i.e., calls whose instances +// can be executed in parallel with instances of other function calls. +// (In the future, this should also execute different instances of the same +// function call in parallel, but that requires parallelizing across +// loop iterations.) +// +// The output of the pass is LLVM code with: +// (1) all parallelizable functions renamed to flag them as parallelizable; +// (2) calls to a sync() function introduced at synchronization points. +// The CWriter recognizes these functions and inserts the appropriate Cilk +// keywords when writing out C code. This C code must be compiled with cilk2c. +// +// Current algorithmic limitations: +// -- no array dependence analysis +// -- no parallelization for function calls in different loop iterations +// (except in unlikely trivial cases) +// +// Limitations of using Cilk: +// -- No parallelism within a function body, e.g., in a loop; +// -- Simplistic synchronization model requiring all parallel threads +// created within a function to block at a sync(). +// -- Excessive overhead at "spawned" function calls, which has no benefit +// once all threads are busy (especially common when the degree of +// parallelism is low). +//===----------------------------------------------------------------------===// + + +#include "llvm/Transforms/Parallelize.h" +#include "llvm/Transforms/Utils/DemoteRegToStack.h" +#include "llvm/Analysis/PgmDependenceGraph.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/DataStructure.h" +#include "llvm/Analysis/DSGraph.h" +#include "llvm/Module.h" +#include "llvm/Function.h" +#include "llvm/iOther.h" +#include "llvm/iPHINode.h" +#include "llvm/iTerminators.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/Cilkifier.h" +#include "Support/NonCopyable.h" +#include "Support/Statistic.h" +#include "Support/STLExtras.h" +#include "Support/hash_set" +#include "Support/hash_map" +#include +#include +#include +#include + + + +#if 0 +void AddToDomSet(vector& domSet, BasicBlock* bb, + const DominatorTree& domTree) +{ + DominatorTreeBase::Node* bbNode = domTree.getNode(bb); + const std::vector& domKids = bbNode.getChildren(); + domSet.insert(domSet.end(), domKids.begin(), domKids.end()); + for (unsigned i = 0; i < domKids.size(); ++i) + AddToDomSet(domSet, domKids[i]->getNode(), domTree); +} + +bool CheckDominance(Function& func, + const CallInst& callInst1, + const CallInst& callInst2) +{ + if (callInst1 == callInst2) // makes sense if this is in a loop but + return false; // we're not handling loops yet + + // Check first if one call dominates the other + DominatorSet& domSet = getAnalysis(func); + if (domSet.dominates(callInst2, callInst1)) + { // swap callInst1 and callInst2 + const CallInst& tmp = callInst2; callInst2 = callInst1; callInst1 = tmp; + } + else if (! domSet.dominates(callInst1, callInst2)) + return false; // neither dominates the other: + + // + if (! AreIndependent(func, callInst1, callInst2)) + return false; +} + +#endif + + +//---------------------------------------------------------------------------- +// class Cilkifier +// +// Code generation pass that transforms code to identify where Cilk keywords +// should be inserted. This relies on dis -c to print out the keywords. +//---------------------------------------------------------------------------- + + +class Cilkifier: public InstVisitor +{ + Function* DummySyncFunc; + + // Data used when transforming each function. + hash_set stmtsVisited; // Flags for recursive DFS + hash_map > spawnToSyncsMap; + + // Input data for the transformation. + const hash_set* cilkFunctions; // Set of parallel functions + PgmDependenceGraph* depGraph; + + void DFSVisitInstr (Instruction* I, + Instruction* root, + hash_set& depsOfRoot); + +public: + /*ctor*/ Cilkifier (Module& M); + + // Transform a single function including its name, its call sites, and syncs + // + void TransformFunc (Function* F, + const hash_set& cilkFunctions, + PgmDependenceGraph& _depGraph); + + // The visitor function that does most of the hard work, via DFSVisitInstr + // + void visitCallInst(CallInst& CI); +}; + + +Cilkifier::Cilkifier(Module& M) +{ + // create the dummy Sync function and add it to the Module + DummySyncFunc = new Function(FunctionType::get( Type::VoidTy, + std::vector(), + /*isVararg*/ false), + /*isInternal*/ false, DummySyncFuncName, &M); +} + +void Cilkifier::TransformFunc(Function* F, + const hash_set& _cilkFunctions, + PgmDependenceGraph& _depGraph) +{ + // Memoize the information for this function + cilkFunctions = &_cilkFunctions; + depGraph = &_depGraph; + + // Add the marker suffix to the Function name + // This should automatically mark all calls to the function also! + F->setName(F->getName() + CilkSuffix); + + // Insert sync operations for each separate spawn + visit(*F); + + // Now traverse the CFG in rPostorder and eliminate redundant syncs, i.e., + // two consecutive sync's on a straight-line path with no intervening spawn. + +} + + +void Cilkifier::DFSVisitInstr(Instruction* I, + Instruction* root, + hash_set& depsOfRoot) +{ + assert(stmtsVisited.find(I) == stmtsVisited.end()); + stmtsVisited.insert(I); + + // If there is a dependence from root to I, insert Sync and return + if (depsOfRoot.find(I) != depsOfRoot.end()) + { // Insert a sync before I and stop searching along this path. + // If I is a Phi instruction, the dependence can only be an SSA dep. + // and we need to insert the sync in the predecessor on the appropriate + // incoming edge! + CallInst* syncI = 0; + if (PHINode* phiI = dyn_cast(I)) + { // check all operands of the Phi and insert before each one + for (unsigned i = 0, N = phiI->getNumIncomingValues(); i < N; ++i) + if (phiI->getIncomingValue(i) == root) + syncI = new CallInst(DummySyncFunc, std::vector(), "", + phiI->getIncomingBlock(i)->getTerminator()); + } + else + syncI = new CallInst(DummySyncFunc, std::vector(), "", I); + + // Remember the sync for each spawn to eliminate rendundant ones later + spawnToSyncsMap[cast(root)].insert(syncI); + + return; + } + + // else visit unvisited successors + if (BranchInst* brI = dyn_cast(I)) + { // visit first instruction in each successor BB + for (unsigned i = 0, N = brI->getNumSuccessors(); i < N; ++i) + if (stmtsVisited.find(&brI->getSuccessor(i)->front()) + == stmtsVisited.end()) + DFSVisitInstr(&brI->getSuccessor(i)->front(), root, depsOfRoot); + } + else + if (Instruction* nextI = I->getNext()) + if (stmtsVisited.find(nextI) == stmtsVisited.end()) + DFSVisitInstr(nextI, root, depsOfRoot); +} + + +void Cilkifier::visitCallInst(CallInst& CI) +{ + assert(CI.getCalledFunction() != 0 && "Only direct calls can be spawned."); + if (cilkFunctions->find(CI.getCalledFunction()) == cilkFunctions->end()) + return; // not a spawn + + // Find all the outgoing memory dependences. + hash_set depsOfRoot; + for (PgmDependenceGraph::iterator DI = + depGraph->outDepBegin(CI, MemoryDeps); ! DI.fini(); ++DI) + depsOfRoot.insert(&DI->getSink()->getInstr()); + + // Now find all outgoing SSA dependences to the eventual non-Phi users of + // the call value (i.e., direct users that are not phis, and for any + // user that is a Phi, direct non-Phi users of that Phi, and recursively). + std::stack phiUsers; + hash_set phisSeen; // ensures we don't visit a phi twice + for (Value::use_iterator UI=CI.use_begin(), UE=CI.use_end(); UI != UE; ++UI) + if (const PHINode* phiUser = dyn_cast(*UI)) + { + if (phisSeen.find(phiUser) == phisSeen.end()) + { + phiUsers.push(phiUser); + phisSeen.insert(phiUser); + } + } + else + depsOfRoot.insert(cast(*UI)); + + // Now we've found the non-Phi users and immediate phi users. + // Recursively walk the phi users and add their non-phi users. + for (const PHINode* phiUser; !phiUsers.empty(); phiUsers.pop()) + { + phiUser = phiUsers.top(); + for (Value::use_const_iterator UI=phiUser->use_begin(), + UE=phiUser->use_end(); UI != UE; ++UI) + if (const PHINode* pn = dyn_cast(*UI)) + { + if (phisSeen.find(pn) == phisSeen.end()) + { + phiUsers.push(pn); + phisSeen.insert(pn); + } + } + else + depsOfRoot.insert(cast(*UI)); + } + + // Walk paths of the CFG starting at the call instruction and insert + // one sync before the first dependence on each path, if any. + if (! depsOfRoot.empty()) + { + stmtsVisited.clear(); // start a new DFS for this CallInst + assert(CI.getNext() && "Call instruction cannot be a terminator!"); + DFSVisitInstr(CI.getNext(), &CI, depsOfRoot); + } + + // Now, eliminate all users of the SSA value of the CallInst, i.e., + // if the call instruction returns a value, delete the return value + // register and replace it by a stack slot. + if (CI.getType() != Type::VoidTy) + DemoteRegToStack(CI); +} + + +//---------------------------------------------------------------------------- +// class FindParallelCalls +// +// Find all CallInst instructions that have at least one other CallInst +// that is independent. These are the instructions that can produce +// useful parallelism. +//---------------------------------------------------------------------------- + +class FindParallelCalls: public InstVisitor, + public NonCopyable +{ + typedef hash_set DependentsSet; + typedef DependentsSet::iterator Dependents_iterator; + typedef DependentsSet::const_iterator Dependents_const_iterator; + + PgmDependenceGraph& depGraph; // dependence graph for the function + hash_set stmtsVisited; // flags for DFS walk of depGraph + hash_map completed; // flags marking if a CI is done + hash_map dependents; // dependent CIs for each CI + + void VisitOutEdges(Instruction* I, + CallInst* root, + DependentsSet& depsOfRoot); + +public: + std::vector parallelCalls; + +public: + /*ctor*/ FindParallelCalls (Function& F, PgmDependenceGraph& DG); + void visitCallInst (CallInst& CI); +}; + + +FindParallelCalls::FindParallelCalls(Function& F, + PgmDependenceGraph& DG) + : depGraph(DG) +{ + // Find all CallInsts reachable from each CallInst using a recursive DFS + visit(F); + + // Now we've found all CallInsts reachable from each CallInst. + // Find those CallInsts that are parallel with at least one other CallInst + // by counting total inEdges and outEdges. + // + unsigned long totalNumCalls = completed.size(); + + if (totalNumCalls == 1) + { // Check first for the special case of a single call instruction not + // in any loop. It is not parallel, even if it has no dependences + // (this is why it is a special case). + // + // FIXME: + // THIS CASE IS NOT HANDLED RIGHT NOW, I.E., THERE IS NO + // PARALLELISM FOR CALLS IN DIFFERENT ITERATIONS OF A LOOP. + // + return; + } + + hash_map numDeps; + for (hash_map::iterator II = dependents.begin(), + IE = dependents.end(); II != IE; ++II) + { + CallInst* fromCI = II->first; + numDeps[fromCI] += II->second.size(); + for (Dependents_iterator DI = II->second.begin(), DE = II->second.end(); + DI != DE; ++DI) + numDeps[*DI]++; // *DI can be reached from II->first + } + + for (hash_map::iterator + II = dependents.begin(), IE = dependents.end(); II != IE; ++II) + + // FIXME: Remove "- 1" when considering parallelism in loops + if (numDeps[II->first] < totalNumCalls - 1) + parallelCalls.push_back(II->first); +} + + +void FindParallelCalls::VisitOutEdges(Instruction* I, + CallInst* root, + DependentsSet& depsOfRoot) +{ + assert(stmtsVisited.find(I) == stmtsVisited.end() && "Stmt visited twice?"); + stmtsVisited.insert(I); + + if (CallInst* CI = dyn_cast(I)) + + // FIXME: Ignoring parallelism in a loop. Here we're actually *ignoring* + // a self-dependence in order to get the count comparison right above. + // When we include loop parallelism, self-dependences should be included. + // + if (CI != root) + + { // CallInst root has a path to CallInst I and any calls reachable from I + depsOfRoot.insert(CI); + if (completed[CI]) + { // We have already visited I so we know all nodes it can reach! + DependentsSet& depsOfI = dependents[CI]; + depsOfRoot.insert(depsOfI.begin(), depsOfI.end()); + return; + } + } + + // If we reach here, we need to visit all children of I + for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(*I); + ! DI.fini(); ++DI) + { + Instruction* sink = &DI->getSink()->getInstr(); + if (stmtsVisited.find(sink) == stmtsVisited.end()) + VisitOutEdges(sink, root, depsOfRoot); + } +} + + +void FindParallelCalls::visitCallInst(CallInst& CI) +{ + if (completed[&CI]) + return; + stmtsVisited.clear(); // clear flags to do a fresh DFS + + // Visit all children of CI using a recursive walk through dep graph + DependentsSet& depsOfRoot = dependents[&CI]; + for (PgmDependenceGraph::iterator DI = depGraph.outDepBegin(CI); + ! DI.fini(); ++DI) + { + Instruction* sink = &DI->getSink()->getInstr(); + if (stmtsVisited.find(sink) == stmtsVisited.end()) + VisitOutEdges(sink, &CI, depsOfRoot); + } + + completed[&CI] = true; +} + + +//---------------------------------------------------------------------------- +// class Parallelize +// +// (1) Find candidate parallel functions: any function F s.t. +// there is a call C1 to the function F that is followed or preceded +// by at least one other call C2 that is independent of this one +// (i.e., there is no dependence path from C1 to C2 or C2 to C1) +// (2) Label such a function F as a cilk function. +// (3) Convert every call to F to a spawn +// (4) For every function X, insert sync statements so that +// every spawn is postdominated by a sync before any statements +// with a data dependence to/from the call site for the spawn +// +//---------------------------------------------------------------------------- + +namespace { + class Parallelize: public Pass + { + public: + /// Driver functions to transform a program + /// + bool run(Module& M); + + /// getAnalysisUsage - Modifies extensively so preserve nothing. + /// Uses the DependenceGraph and the Top-down DS Graph (only to find + /// all functions called via an indirect call). + /// + void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired(); + AU.addRequired(); // force this not to be released + AU.addRequired(); // because it is needed by this + } + }; + + RegisterOpt X("parallel", "Parallelize program using Cilk"); +} + + +static Function* FindMain(Module& M) +{ + for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) + if (FI->getName() == std::string("main")) + return FI; + return NULL; +} + + +bool Parallelize::run(Module& M) +{ + hash_set parallelFunctions; + hash_set safeParallelFunctions; + hash_set indirectlyCalled; + + // If there is no main (i.e., for an incomplete program), we can do nothing. + // If there is a main, mark main as a parallel function. + // + Function* mainFunc = FindMain(M); + if (!mainFunc) + return false; + + // (1) Find candidate parallel functions and mark them as Cilk functions + // + for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) + if (! FI->isExternal()) + { + Function* F = FI; + DSGraph& tdg = getAnalysis().getDSGraph(*F); + + // All the hard analysis work gets done here! + // + FindParallelCalls finder(*F, + getAnalysis().getGraph(*F)); + /* getAnalysis().getGraph(*F)); */ + + // Now we know which call instructions are useful to parallelize. + // Remember those callee functions. + // + for (std::vector::iterator + CII = finder.parallelCalls.begin(), + CIE = finder.parallelCalls.end(); CII != CIE; ++CII) + { + // Check if this is a direct call... + if ((*CII)->getCalledFunction() != NULL) + { // direct call: if this is to a non-external function, + // mark it as a parallelizable function + if (! (*CII)->getCalledFunction()->isExternal()) + parallelFunctions.insert((*CII)->getCalledFunction()); + } + else + { // Indirect call: mark all potential callees as bad + std::vector callees = + tdg.getNodeForValue((*CII)->getCalledValue()) + .getNode()->getGlobals(); + indirectlyCalled.insert(callees.begin(), callees.end()); + } + } + } + + // Remove all indirectly called functions from the list of Cilk functions. + // + for (hash_set::iterator PFI = parallelFunctions.begin(), + PFE = parallelFunctions.end(); PFI != PFE; ++PFI) + if (indirectlyCalled.count(*PFI) == 0) + safeParallelFunctions.insert(*PFI); + +#undef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS +#ifdef CAN_USE_BIND1ST_ON_REFERENCE_TYPE_ARGS + // Use this undecipherable STLese because erase invalidates iterators. + // Otherwise we have to copy sets as above. + hash_set::iterator extrasBegin = + std::remove_if(parallelFunctions.begin(), parallelFunctions.end(), + compose1(std::bind2nd(std::greater(), 0), + bind_obj(&indirectlyCalled, + &hash_set::count))); + parallelFunctions.erase(extrasBegin, parallelFunctions.end()); +#endif + + // If there are no parallel functions, we can just give up. + if (safeParallelFunctions.empty()) + return false; + + // Add main as a parallel function since Cilk requires this. + safeParallelFunctions.insert(mainFunc); + + // (2,3) Transform each Cilk function and all its calls simply by + // adding a unique suffix to the function name. + // This should identify both functions and calls to such functions + // to the code generator. + // (4) Also, insert calls to sync at appropriate points. + // + Cilkifier cilkifier(M); + for (hash_set::iterator CFI = safeParallelFunctions.begin(), + CFE = safeParallelFunctions.end(); CFI != CFE; ++CFI) + { + cilkifier.TransformFunc(*CFI, safeParallelFunctions, + getAnalysis().getGraph(**CFI)); + /* getAnalysis().getGraph(**CFI)); */ + } + + return true; +}