Renamed files to match the primary classes they provide.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@620 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-09-18 13:10:05 +00:00
parent f1adecc7c7
commit e6cbbfeead
6 changed files with 0 additions and 1189 deletions

View File

@ -1,84 +0,0 @@
//===-- llvm/Target/Data.h - Data size & alignment routines ------*- C++ -*-==//
//
// This file defines target properties related to datatype size/offset/alignment
// information. It uses lazy annotations to cache information about how
// structure types are laid out and used.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&. None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_DATA_H
#define LLVM_TARGET_DATA_H
#include "llvm/Type.h"
class StructType;
class StructLayout;
class TargetData {
unsigned char ByteAlignment; // Defaults to 1 bytes
unsigned char ShortAlignment; // Defaults to 2 bytes
unsigned char IntAlignment; // Defaults to 4 bytes
unsigned char LongAlignment; // Defaults to 8 bytes
unsigned char FloatAlignment; // Defaults to 4 bytes
unsigned char DoubleAlignment; // Defaults to 8 bytes
unsigned char PointerSize; // Defaults to 8 bytes
unsigned char PointerAlignment; // Defaults to 8 bytes
AnnotationID AID; // AID for structure layout annotation
static Annotation *TypeAnFactory(AnnotationID, const Annotable *, void *);
public:
TargetData(const string &TargetName, unsigned char PtrSize = 8,
unsigned char PtrAl = 8, unsigned char DoubleAl = 8,
unsigned char FloatAl = 4, unsigned char LongAl = 8,
unsigned char IntAl = 4, unsigned char ShortAl = 2,
unsigned char ByteAl = 1);
~TargetData(); // Not virtual, do not subclass this class
unsigned char getByteAlignment() const { return ByteAlignment; }
unsigned char getShortAlignment() const { return ShortAlignment; }
unsigned char getIntAlignment() const { return IntAlignment; }
unsigned char getLongAlignment() const { return LongAlignment; }
unsigned char getFloatAlignment() const { return FloatAlignment; }
unsigned char getDoubleAlignment() const { return DoubleAlignment; }
unsigned char getPointerAlignment() const { return PointerAlignment; }
unsigned char getPointerSize() const { return PointerSize; }
AnnotationID getStructLayoutAID() const { return AID; }
// getTypeSize - Return the number of bytes neccesary to hold the specified
// type
unsigned getTypeSize (const Type *Ty) const;
// getTypeAlignment - Return the minimum required alignment for the specified
// type
unsigned char getTypeAlignment(const Type *Ty) const;
// getIndexOffset - return the offset from the beginning of the type for the
// specified indices. This is used to implement getElementPtr and load and
// stores that include the implicit form of getelementptr.
//
unsigned getIndexedOffset(const Type *Ty,
const vector<ConstPoolVal*> &Indices) const;
inline const StructLayout *getStructLayout(const StructType *Ty) const {
return (const StructLayout*)((const Type*)Ty)->getOrCreateAnnotation(AID);
}
};
// This annotation (attached ONLY to StructType classes) is used to lazily
// calculate structure layout information for a target machine, based on the
// TargetData structure.
//
struct StructLayout : public Annotation {
vector<unsigned> MemberOffsets;
unsigned StructSize;
unsigned StructAlignment;
private:
friend class TargetData; // Only TargetData can create this class
inline StructLayout(const StructType *ST, const TargetData &TD);
};
#endif

View File

@ -1,216 +0,0 @@
//===-- llvm/Target/InstInfo.h - Target Instruction Information --*- C++ -*-==//
//
// This file describes the target machine instructions to the code generator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_INSTINFO_H
#define LLVM_TARGET_INSTINFO_H
#include "llvm/Target/Machine.h"
#include "llvm/Support/DataTypes.h"
class MachineInstrDescriptor;
typedef int InstrSchedClass;
// Global variable holding an array of descriptors for machine instructions.
// The actual object needs to be created separately for each target machine.
// This variable is initialized and reset by class MachineInstrInfo.
//
// FIXME: This should be a property of the target so that more than one target
// at a time can be active...
//
extern const MachineInstrDescriptor *TargetInstrDescriptors;
//---------------------------------------------------------------------------
// struct MachineInstrDescriptor:
// Predefined information about each machine instruction.
// Designed to initialized statically.
//
// class MachineInstructionInfo
// Interface to description of machine instructions
//
//---------------------------------------------------------------------------
const unsigned int M_NOP_FLAG = 1;
const unsigned int M_BRANCH_FLAG = 1 << 1;
const unsigned int M_CALL_FLAG = 1 << 2;
const unsigned int M_RET_FLAG = 1 << 3;
const unsigned int M_ARITH_FLAG = 1 << 4;
const unsigned int M_CC_FLAG = 1 << 6;
const unsigned int M_LOGICAL_FLAG = 1 << 6;
const unsigned int M_INT_FLAG = 1 << 7;
const unsigned int M_FLOAT_FLAG = 1 << 8;
const unsigned int M_CONDL_FLAG = 1 << 9;
const unsigned int M_LOAD_FLAG = 1 << 10;
const unsigned int M_PREFETCH_FLAG = 1 << 11;
const unsigned int M_STORE_FLAG = 1 << 12;
const unsigned int M_DUMMY_PHI_FLAG = 1 << 13;
struct MachineInstrDescriptor {
string opCodeString; // Assembly language mnemonic for the opcode.
int numOperands; // Number of args; -1 if variable #args
int resultPos; // Position of the result; -1 if no result
unsigned int maxImmedConst; // Largest +ve constant in IMMMED field or 0.
bool immedIsSignExtended; // Is IMMED field sign-extended? If so,
// smallest -ve value is -(maxImmedConst+1).
unsigned int numDelaySlots; // Number of delay slots after instruction
unsigned int latency; // Latency in machine cycles
InstrSchedClass schedClass; // enum identifying instr sched class
unsigned int iclass; // flags identifying machine instr class
};
class MachineInstrInfo : public NonCopyableV {
protected:
const MachineInstrDescriptor* desc; // raw array to allow static init'n
unsigned int descSize; // number of entries in the desc array
unsigned int numRealOpCodes; // number of non-dummy op codes
public:
MachineInstrInfo(const MachineInstrDescriptor *desc, unsigned descSize,
unsigned numRealOpCodes);
virtual ~MachineInstrInfo();
unsigned getNumRealOpCodes() const { return numRealOpCodes; }
unsigned getNumTotalOpCodes() const { return descSize; }
const MachineInstrDescriptor& getDescriptor(MachineOpCode opCode) const {
assert(opCode >= 0 && opCode < (int)descSize);
return desc[opCode];
}
int getNumOperands(MachineOpCode opCode) const {
return getDescriptor(opCode).numOperands;
}
int getResultPos(MachineOpCode opCode) const {
return getDescriptor(opCode).resultPos;
}
unsigned getNumDelaySlots(MachineOpCode opCode) const {
return getDescriptor(opCode).numDelaySlots;
}
InstrSchedClass getSchedClass(MachineOpCode opCode) const {
return getDescriptor(opCode).schedClass;
}
//
// Query instruction class flags according to the machine-independent
// flags listed above.
//
unsigned int getIClass(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass;
}
bool isNop(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_NOP_FLAG;
}
bool isBranch(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_BRANCH_FLAG;
}
bool isCall(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_CALL_FLAG;
}
bool isReturn(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_RET_FLAG;
}
bool isControlFlow(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_BRANCH_FLAG
|| getDescriptor(opCode).iclass & M_CALL_FLAG
|| getDescriptor(opCode).iclass & M_RET_FLAG;
}
bool isArith(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_RET_FLAG;
}
bool isCCInstr(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_CC_FLAG;
}
bool isLogical(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOGICAL_FLAG;
}
bool isIntInstr(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_INT_FLAG;
}
bool isFloatInstr(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_FLOAT_FLAG;
}
bool isConditional(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_CONDL_FLAG;
}
bool isLoad(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOAD_FLAG;
}
bool isPrefetch(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
}
bool isLoadOrPrefetch(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOAD_FLAG
|| getDescriptor(opCode).iclass & M_PREFETCH_FLAG;
}
bool isStore(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_STORE_FLAG;
}
bool isMemoryAccess(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_LOAD_FLAG
|| getDescriptor(opCode).iclass & M_PREFETCH_FLAG
|| getDescriptor(opCode).iclass & M_STORE_FLAG;
}
bool isDummyPhiInstr(MachineOpCode opCode) const {
return getDescriptor(opCode).iclass & M_DUMMY_PHI_FLAG;
}
// delete this later *******
bool isPhi(MachineOpCode opCode) { return isDummyPhiInstr(opCode); }
// Check if an instruction can be issued before its operands are ready,
// or if a subsequent instruction that uses its result can be issued
// before the results are ready.
// Default to true since most instructions on many architectures allow this.
//
virtual bool hasOperandInterlock(MachineOpCode opCode) const {
return true;
}
virtual bool hasResultInterlock(MachineOpCode opCode) const {
return true;
}
//
// Latencies for individual instructions and instruction pairs
//
virtual int minLatency(MachineOpCode opCode) const {
return getDescriptor(opCode).latency;
}
virtual int maxLatency(MachineOpCode opCode) const {
return getDescriptor(opCode).latency;
}
// Check if the specified constant fits in the immediate field
// of this machine instruction
//
virtual bool constantFitsInImmedField(MachineOpCode opCode,
int64_t intValue) const;
// Return the largest +ve constant that can be held in the IMMMED field
// of this machine instruction.
// isSignExtended is set to true if the value is sign-extended before use
// (this is true for all immediate fields in SPARC instructions).
// Return 0 if the instruction has no IMMED field.
//
virtual uint64_t maxImmedConstant(MachineOpCode opCode,
bool &isSignExtended) const {
isSignExtended = getDescriptor(opCode).immedIsSignExtended;
return getDescriptor(opCode).maxImmedConst;
}
};
#endif

View File

@ -1,84 +0,0 @@
//===-- llvm/Target/Machine.h - General Target Information -------*- C++ -*-==//
//
// This file describes the general parts of a Target machine.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_MACHINE_H
#define LLVM_TARGET_MACHINE_H
#include "llvm/Target/Data.h"
#include "llvm/Support/NonCopyable.h"
#include <string>
class TargetMachine;
class MachineInstrInfo;
class MachineInstrDescriptor;
class MachineRegInfo;
//---------------------------------------------------------------------------
// Data types used to define information about a single machine instruction
//---------------------------------------------------------------------------
typedef int MachineOpCode;
typedef int OpCodeMask;
//---------------------------------------------------------------------------
// class TargetMachine
//
// Purpose:
// Primary interface to machine description for the target machine.
//
//---------------------------------------------------------------------------
class TargetMachine : public NonCopyableV {
public:
const string TargetName;
const TargetData DataLayout; // Calculates type size & alignment
int optSizeForSubWordData;
int minMemOpWordSize;
int maxAtomicMemOpWordSize;
// Register information. This needs to be reorganized into a single class.
int zeroRegNum; // register that gives 0 if any (-1 if none)
protected:
TargetMachine(const string &targetname, // Can only create subclasses...
unsigned char PtrSize = 8, unsigned char PtrAl = 8,
unsigned char DoubleAl = 8, unsigned char FloatAl = 4,
unsigned char LongAl = 8, unsigned char IntAl = 4,
unsigned char ShortAl = 2, unsigned char ByteAl = 1)
: TargetName(targetname), DataLayout(targetname, PtrSize, PtrAl,
DoubleAl, FloatAl, LongAl, IntAl,
ShortAl, ByteAl) { }
public:
virtual ~TargetMachine() {}
virtual const MachineInstrInfo& getInstrInfo() const = 0;
virtual const MachineRegInfo& getRegInfo() const = 0;
virtual unsigned int findOptimalStorageSize (const Type* ty) const;
// This really should be in the register info class
virtual bool regsMayBeAliased (unsigned int regNum1,
unsigned int regNum2) const {
return (regNum1 == regNum2);
}
// compileMethod - This does everything neccesary to compile a method into the
// built in representation. This allows the target to have complete control
// over how it does compilation. This does not emit assembly or output
// machine code however, this is done later.
//
virtual bool compileMethod(Method *M) = 0;
// emitAssembly - Output assembly language code (a .s file) for the specified
// method. The specified method must have been compiled before this may be
// used.
//
virtual void emitAssembly(Method *M, ostream &OutStr) { /* todo */ }
};
#endif

View File

@ -1,234 +0,0 @@
//===-- llvm/Target/RegInfo.h - Target Register Information ------*- C++ -*-==//
//
// This file is used to describe the register system of a target to the register
// allocator.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_REGINFO_H
#define LLVM_TARGET_REGINFO_H
#include "llvm/Support/NonCopyable.h"
#include <hash_map>
#include <string>
class IGNode;
class Value;
class LiveRangeInfo;
class Method;
class Instruction;
class LiveRange;
class AddedInstrns;
class MachineInstr;
//-----------------------------------------------------------------------------
// class MachineRegClassInfo
//
// Purpose:
// Interface to description of machine register class (e.g., int reg class
// float reg class etc)
//
//--------------------------------------------------------------------------
class MachineRegClassInfo {
protected:
const unsigned RegClassID; // integer ID of a reg class
const unsigned NumOfAvailRegs; // # of avail for coloring -without SP etc.
const unsigned NumOfAllRegs; // # of all registers -including SP,g0 etc.
public:
inline unsigned getRegClassID() const { return RegClassID; }
inline unsigned getNumOfAvailRegs() const { return NumOfAvailRegs; }
inline unsigned getNumOfAllRegs() const { return NumOfAllRegs; }
// This method should find a color which is not used by neighbors
// (i.e., a false position in IsColorUsedArr) and
virtual void colorIGNode(IGNode * Node, bool IsColorUsedArr[] ) const = 0;
MachineRegClassInfo(const unsigned ID, const unsigned NVR,
const unsigned NAR): RegClassID(ID), NumOfAvailRegs(NVR),
NumOfAllRegs(NAR)
{ } // empty constructor
};
//---------------------------------------------------------------------------
// class MachineRegInfo
//
// Purpose:
// Interface to register info of target machine
//
//--------------------------------------------------------------------------
typedef hash_map<const MachineInstr *, AddedInstrns *> AddedInstrMapType;
// A vector of all machine register classes
typedef vector<const MachineRegClassInfo *> MachineRegClassArrayType;
class MachineRegInfo : public NonCopyableV {
protected:
MachineRegClassArrayType MachineRegClassArr;
public:
// According the definition of a MachineOperand class, a Value in a
// machine instruction can go into either a normal register or a
// condition code register. If isCCReg is true below, the ID of the condition
// code regiter class will be returned. Otherwise, the normal register
// class (eg. int, float) must be returned.
virtual unsigned getRegClassIDOfValue (const Value *const Val,
bool isCCReg = false) const =0;
inline unsigned int getNumOfRegClasses() const {
return MachineRegClassArr.size();
}
const MachineRegClassInfo *const getMachineRegClass(unsigned i) const {
return MachineRegClassArr[i];
}
//virtual unsigned getRegClassIDOfValue (const Value *const Val) const = 0;
// this method must give the exact register class of a machine operand
// e.g, Int, Float, Int CC, Float CC
//virtual unsigned getRCIDOfMachineOp (const MachineOperand &MO) const = 0;
virtual void colorArgs(const Method *const Meth,
LiveRangeInfo & LRI) const = 0;
virtual void colorCallArgs(vector<const Instruction *> & CallInstrList,
LiveRangeInfo& LRI,
AddedInstrMapType& AddedInstrMap ) const = 0 ;
virtual int getUnifiedRegNum(int RegClassID, int reg) const = 0;
virtual const string getUnifiedRegName(int UnifiedRegNum) const = 0;
//virtual void printReg(const LiveRange *const LR) const =0;
MachineRegInfo() { }
};
#if 0
class Value;
class Instruction;
class Method;
class LiveRangeInfo;
class LiveRange;
class AddedInstrns;
class MachineInstr;
//-----------------------------------------------------------------------------
// class MachineRegClassInfo
//
// Purpose:
// Interface to description of machine register class (e.g., int reg class
// float reg class etc)
//
//--------------------------------------------------------------------------
class IGNode;
class MachineRegClassInfo {
protected:
const unsigned RegClassID; // integer ID of a reg class
const unsigned NumOfAvailRegs; // # of avail for coloring -without SP etc.
const unsigned NumOfAllRegs; // # of all registers -including SP,g0 etc.
public:
inline unsigned getRegClassID() const { return RegClassID; }
inline unsigned getNumOfAvailRegs() const { return NumOfAvailRegs; }
inline unsigned getNumOfAllRegs() const { return NumOfAllRegs; }
// This method should find a color which is not used by neighbors
// (i.e., a false position in IsColorUsedArr) and
virtual void colorIGNode(IGNode * Node, bool IsColorUsedArr[] ) const = 0;
MachineRegClassInfo(const unsigned ID, const unsigned NVR,
const unsigned NAR): RegClassID(ID), NumOfAvailRegs(NVR),
NumOfAllRegs(NAR) { }
};
//---------------------------------------------------------------------------
// class MachineRegInfo
//
// Purpose:
// Interface to register info of target machine
//
//--------------------------------------------------------------------------
typedef hash_map<const MachineInstr *, AddedInstrns *> AddedInstrMapType;
// A vector of all machine register classestypedef vector<const MachineRegClassInfo *> MachineRegClassArrayType;
class MachineRegInfo : public NonCopyableV {
protected:
MachineRegClassArrayType MachineRegClassArr;
public:
inline unsigned int getNumOfRegClasses() const {
return MachineRegClassArr.size();
}
const MachineRegClassInfo *const getMachineRegClass(unsigned i) const {
return MachineRegClassArr[i];
}
virtual unsigned getRegClassIDOfValue (const Value *const Val) const = 0;
virtual void colorArgs(const Method *const Meth,
LiveRangeInfo & LRI) const = 0;
virtual void colorCallArgs(vector<const Instruction *> & CallInstrList,
LiveRangeInfo& LRI,
AddedInstrMapType& AddedInstrMap ) const = 0;
virtual int getUnifiedRegNum(int RegClassID, int reg) const = 0;
virtual const string getUnifiedRegName(int reg) const = 0;
//virtual void printReg(const LiveRange *const LR) const =0;
MachineRegInfo() { }
};
#endif
#endif

View File

@ -1,396 +0,0 @@
//===-- llvm/Target/SchedInfo.h - Target Instruction Sched Info --*- C++ -*-==//
//
// This file describes the target machine to the instruction scheduler.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_SCHEDINFO_H
#define LLVM_TARGET_SCHEDINFO_H
#include "llvm/Target/InstInfo.h"
#include <hash_map>
typedef long long cycles_t;
const cycles_t HUGE_LATENCY = ~((unsigned long long) 1 << sizeof(cycles_t)-1);
const cycles_t INVALID_LATENCY = -HUGE_LATENCY;
static const unsigned MAX_OPCODE_SIZE = 16;
class OpCodePair {
public:
long val; // make long by concatenating two opcodes
OpCodePair(MachineOpCode op1, MachineOpCode op2)
: val((op1 < 0 || op2 < 0)?
-1 : (long)((((unsigned) op1) << MAX_OPCODE_SIZE) | (unsigned) op2)) {}
bool operator==(const OpCodePair& op) const {
return val == op.val;
}
private:
OpCodePair(); // disable for now
};
template <> struct hash<OpCodePair> {
size_t operator()(const OpCodePair& pair) const {
return hash<long>()(pair.val);
}
};
//---------------------------------------------------------------------------
// class MachineResource
// class CPUResource
//
// Purpose:
// Representation of a single machine resource used in specifying
// resource usages of machine instructions for scheduling.
//---------------------------------------------------------------------------
typedef unsigned int resourceId_t;
class MachineResource {
public:
const string rname;
resourceId_t rid;
/*ctor*/ MachineResource(const string& resourceName)
: rname(resourceName), rid(nextId++) {}
private:
static resourceId_t nextId;
MachineResource(); // disable
};
class CPUResource : public MachineResource {
public:
int maxNumUsers; // MAXINT if no restriction
/*ctor*/ CPUResource(const string& rname, int maxUsers)
: MachineResource(rname), maxNumUsers(maxUsers) {}
};
//---------------------------------------------------------------------------
// struct InstrClassRUsage
// struct InstrRUsageDelta
// struct InstrIssueDelta
// struct InstrRUsage
//
// Purpose:
// The first three are structures used to specify machine resource
// usages for each instruction in a machine description file:
// InstrClassRUsage : resource usages common to all instrs. in a class
// InstrRUsageDelta : add/delete resource usage for individual instrs.
// InstrIssueDelta : add/delete instr. issue info for individual instrs
//
// The last one (InstrRUsage) is the internal representation of
// instruction resource usage constructed from the above three.
//---------------------------------------------------------------------------
const int MAX_NUM_SLOTS = 32;
const int MAX_NUM_CYCLES = 32;
struct InstrClassRUsage {
InstrSchedClass schedClass;
int totCycles;
// Issue restrictions common to instructions in this class
unsigned int maxNumIssue;
bool isSingleIssue;
bool breaksGroup;
cycles_t numBubbles;
// Feasible slots to use for instructions in this class.
// The size of vector S[] is `numSlots'.
unsigned int numSlots;
unsigned int feasibleSlots[MAX_NUM_SLOTS];
// Resource usages common to instructions in this class.
// The size of vector V[] is `numRUEntries'.
unsigned int numRUEntries;
struct {
resourceId_t resourceId;
unsigned int startCycle;
int numCycles;
} V[MAX_NUM_CYCLES];
};
struct InstrRUsageDelta {
MachineOpCode opCode;
resourceId_t resourceId;
unsigned int startCycle;
int numCycles;
};
// Specify instruction issue restrictions for individual instructions
// that differ from the common rules for the class.
//
struct InstrIssueDelta {
MachineOpCode opCode;
bool isSingleIssue;
bool breaksGroup;
cycles_t numBubbles;
};
struct InstrRUsage {
/*ctor*/ InstrRUsage () {}
/*ctor*/ InstrRUsage (const InstrRUsage& instrRU);
InstrRUsage& operator= (const InstrRUsage& instrRU);
bool sameAsClass;
// Issue restrictions for this instruction
bool isSingleIssue;
bool breaksGroup;
cycles_t numBubbles;
// Feasible slots to use for this instruction.
vector<bool> feasibleSlots;
// Resource usages for this instruction, with one resource vector per cycle.
cycles_t numCycles;
vector<vector<resourceId_t> > resourcesByCycle;
private:
// Conveniences for initializing this structure
InstrRUsage& operator= (const InstrClassRUsage& classRU);
void addIssueDelta (const InstrIssueDelta& delta);
void addUsageDelta (const InstrRUsageDelta& delta);
void setMaxSlots (int maxNumSlots);
friend class MachineSchedInfo; // give access to these functions
};
inline void
InstrRUsage::setMaxSlots(int maxNumSlots)
{
feasibleSlots.resize(maxNumSlots);
}
inline InstrRUsage&
InstrRUsage::operator=(const InstrRUsage& instrRU)
{
sameAsClass = instrRU.sameAsClass;
isSingleIssue = instrRU.isSingleIssue;
breaksGroup = instrRU.breaksGroup;
numBubbles = instrRU.numBubbles;
feasibleSlots = instrRU.feasibleSlots;
numCycles = instrRU.numCycles;
resourcesByCycle = instrRU.resourcesByCycle;
return *this;
}
inline /*ctor*/
InstrRUsage::InstrRUsage(const InstrRUsage& instrRU)
{
*this = instrRU;
}
inline InstrRUsage&
InstrRUsage::operator=(const InstrClassRUsage& classRU)
{
sameAsClass = true;
isSingleIssue = classRU.isSingleIssue;
breaksGroup = classRU.breaksGroup;
numBubbles = classRU.numBubbles;
for (unsigned i=0; i < classRU.numSlots; i++)
{
unsigned slot = classRU.feasibleSlots[i];
assert(slot < feasibleSlots.size() && "Invalid slot specified!");
this->feasibleSlots[slot] = true;
}
this->numCycles = classRU.totCycles;
this->resourcesByCycle.resize(this->numCycles);
for (unsigned i=0; i < classRU.numRUEntries; i++)
for (unsigned c=classRU.V[i].startCycle, NC = c + classRU.V[i].numCycles;
c < NC; c++)
this->resourcesByCycle[c].push_back(classRU.V[i].resourceId);
// Sort each resource usage vector by resourceId_t to speed up conflict checking
for (unsigned i=0; i < this->resourcesByCycle.size(); i++)
sort(resourcesByCycle[i].begin(), resourcesByCycle[i].end());
return *this;
}
inline void
InstrRUsage::addIssueDelta(const InstrIssueDelta& delta)
{
sameAsClass = false;
isSingleIssue = delta.isSingleIssue;
breaksGroup = delta.breaksGroup;
numBubbles = delta.numBubbles;
}
// Add the extra resource usage requirements specified in the delta.
// Note that a negative value of `numCycles' means one entry for that
// resource should be deleted for each cycle.
//
inline void
InstrRUsage::addUsageDelta(const InstrRUsageDelta& delta)
{
int NC = delta.numCycles;
this->sameAsClass = false;
// resize the resources vector if more cycles are specified
unsigned maxCycles = this->numCycles;
maxCycles = max(maxCycles, delta.startCycle + abs(NC) - 1);
if (maxCycles > this->numCycles)
{
this->resourcesByCycle.resize(maxCycles);
this->numCycles = maxCycles;
}
if (NC >= 0)
for (unsigned c=delta.startCycle, last=c+NC-1; c <= last; c++)
this->resourcesByCycle[c].push_back(delta.resourceId);
else
// Remove the resource from all NC cycles.
for (unsigned c=delta.startCycle, last=(c-NC)-1; c <= last; c++)
{
// Look for the resource backwards so we remove the last entry
// for that resource in each cycle.
vector<resourceId_t>& rvec = this->resourcesByCycle[c];
int r;
for (r = (int) rvec.size(); r >= 0; r--)
if (rvec[r] == delta.resourceId)
{// found last entry for the resource
rvec.erase(rvec.begin() + r);
break;
}
assert(r >= 0 && "Resource to remove was unused in cycle c!");
}
}
//---------------------------------------------------------------------------
// class MachineSchedInfo
//
// Purpose:
// Common interface to machine information for instruction scheduling
//---------------------------------------------------------------------------
class MachineSchedInfo : public NonCopyableV {
public:
unsigned int maxNumIssueTotal;
int longestIssueConflict;
int branchMispredictPenalty; // 4 for SPARC IIi
int branchTargetUnknownPenalty; // 2 for SPARC IIi
int l1DCacheMissPenalty; // 7 or 9 for SPARC IIi
int l1ICacheMissPenalty; // ? for SPARC IIi
bool inOrderLoads; // true for SPARC IIi
bool inOrderIssue; // true for SPARC IIi
bool inOrderExec; // false for most architectures
bool inOrderRetire; // true for most architectures
protected:
inline const InstrRUsage& getInstrRUsage(MachineOpCode opCode) const {
assert(opCode >= 0 && opCode < (int) instrRUsages.size());
return instrRUsages[opCode];
}
inline const InstrClassRUsage&
getClassRUsage(const InstrSchedClass& sc) const {
assert(sc >= 0 && sc < numSchedClasses);
return classRUsages[sc];
}
public:
/*ctor*/ MachineSchedInfo (int _numSchedClasses,
const MachineInstrInfo* _mii,
const InstrClassRUsage* _classRUsages,
const InstrRUsageDelta* _usageDeltas,
const InstrIssueDelta* _issueDeltas,
unsigned int _numUsageDeltas,
unsigned int _numIssueDeltas);
/*dtor*/ virtual ~MachineSchedInfo () {}
inline const MachineInstrInfo& getInstrInfo() const {
return *mii;
}
inline int getNumSchedClasses() const {
return numSchedClasses;
}
inline unsigned int getMaxNumIssueTotal() const {
return maxNumIssueTotal;
}
inline unsigned int getMaxIssueForClass(const InstrSchedClass& sc) const {
assert(sc >= 0 && sc < numSchedClasses);
return classRUsages[sc].maxNumIssue;
}
inline InstrSchedClass getSchedClass (MachineOpCode opCode) const {
return getInstrInfo().getSchedClass(opCode);
}
inline bool instrCanUseSlot (MachineOpCode opCode,
unsigned s) const {
assert(s < getInstrRUsage(opCode).feasibleSlots.size() && "Invalid slot!");
return getInstrRUsage(opCode).feasibleSlots[s];
}
inline int getLongestIssueConflict () const {
return longestIssueConflict;
}
inline int getMinIssueGap (MachineOpCode fromOp,
MachineOpCode toOp) const {
hash_map<OpCodePair,int>::const_iterator
I = issueGaps.find(OpCodePair(fromOp, toOp));
return (I == issueGaps.end())? 0 : (*I).second;
}
inline const vector<MachineOpCode>*
getConflictList(MachineOpCode opCode) const {
hash_map<MachineOpCode,vector<MachineOpCode> >::const_iterator
I = conflictLists.find(opCode);
return (I == conflictLists.end())? NULL : & (*I).second;
}
inline bool isSingleIssue (MachineOpCode opCode) const {
return getInstrRUsage(opCode).isSingleIssue;
}
inline bool breaksIssueGroup (MachineOpCode opCode) const {
return getInstrRUsage(opCode).breaksGroup;
}
inline unsigned int numBubblesAfter (MachineOpCode opCode) const {
return getInstrRUsage(opCode).numBubbles;
}
protected:
virtual void initializeResources ();
private:
void computeInstrResources(const vector<InstrRUsage>& instrRUForClasses);
void computeIssueGaps(const vector<InstrRUsage>& instrRUForClasses);
protected:
int numSchedClasses;
const MachineInstrInfo* mii;
const InstrClassRUsage* classRUsages; // raw array by sclass
const InstrRUsageDelta* usageDeltas; // raw array [1:numUsageDeltas]
const InstrIssueDelta* issueDeltas; // raw array [1:numIssueDeltas]
unsigned int numUsageDeltas;
unsigned int numIssueDeltas;
vector<InstrRUsage> instrRUsages; // indexed by opcode
hash_map<OpCodePair,int> issueGaps; // indexed by opcode pair
hash_map<MachineOpCode,vector<MachineOpCode> >
conflictLists; // indexed by opcode
};
#endif

View File

@ -1,175 +0,0 @@
//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==//
//
// This file implements the generic part of a Scheduler description for a
// target. This functionality is defined in the llvm/Target/SchedInfo.h file.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/SchedInfo.h"
// External object describing the machine instructions
// Initialized only when the TargetMachine class is created
// and reset when that class is destroyed.
//
const MachineInstrDescriptor* TargetInstrDescriptors = 0;
resourceId_t MachineResource::nextId = 0;
// Check if fromRVec and toRVec have *any* common entries.
// Assume the vectors are sorted in increasing order.
// Algorithm copied from function set_intersection() for sorted ranges
// (stl_algo.h).
//
inline static bool RUConflict(const vector<resourceId_t>& fromRVec,
const vector<resourceId_t>& toRVec) {
unsigned fN = fromRVec.size(), tN = toRVec.size();
unsigned fi = 0, ti = 0;
while (fi < fN && ti < tN) {
if (fromRVec[fi] < toRVec[ti])
++fi;
else if (toRVec[ti] < fromRVec[fi])
++ti;
else
return true;
}
return false;
}
static cycles_t ComputeMinGap(const InstrRUsage &fromRU,
const InstrRUsage &toRU) {
cycles_t minGap = 0;
if (fromRU.numBubbles > 0)
minGap = fromRU.numBubbles;
if (minGap < fromRU.numCycles) {
// only need to check from cycle `minGap' onwards
for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) {
// check if instr. #2 can start executing `gap' cycles after #1
// by checking for resource conflicts in each overlapping cycle
cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles);
for (cycles_t c = 0; c <= numOverlap-1; c++)
if (RUConflict(fromRU.resourcesByCycle[gap + c],
toRU.resourcesByCycle[c])) {
// conflict found so minGap must be more than `gap'
minGap = gap+1;
break;
}
}
}
return minGap;
}
//---------------------------------------------------------------------------
// class MachineSchedInfo
// Interface to machine description for instruction scheduling
//---------------------------------------------------------------------------
MachineSchedInfo::MachineSchedInfo(int NumSchedClasses,
const MachineInstrInfo* Mii,
const InstrClassRUsage* ClassRUsages,
const InstrRUsageDelta* UsageDeltas,
const InstrIssueDelta* IssueDeltas,
unsigned int NumUsageDeltas,
unsigned int NumIssueDeltas)
: numSchedClasses(NumSchedClasses), mii(Mii),
classRUsages(ClassRUsages), usageDeltas(UsageDeltas),
issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas),
numIssueDeltas(NumIssueDeltas) {
}
void MachineSchedInfo::initializeResources() {
assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal()
&& "Insufficient slots for static data! Increase MAX_NUM_SLOTS");
// First, compute common resource usage info for each class because
// most instructions will probably behave the same as their class.
// Cannot allocate a vector of InstrRUsage so new each one.
//
vector<InstrRUsage> instrRUForClasses;
instrRUForClasses.resize(numSchedClasses);
for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) {
// instrRUForClasses.push_back(new InstrRUsage);
instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal());
instrRUForClasses[sc] = classRUsages[sc];
}
computeInstrResources(instrRUForClasses);
computeIssueGaps(instrRUForClasses);
}
void MachineSchedInfo::computeInstrResources(
const vector<InstrRUsage> &instrRUForClasses) {
int numOpCodes = mii->getNumRealOpCodes();
instrRUsages.resize(numOpCodes);
// First get the resource usage information from the class resource usages.
for (MachineOpCode op = 0; op < numOpCodes; ++op) {
InstrSchedClass sc = getSchedClass(op);
assert(sc >= 0 && sc < numSchedClasses);
instrRUsages[op] = instrRUForClasses[sc];
}
// Now, modify the resource usages as specified in the deltas.
for (unsigned i = 0; i < numUsageDeltas; ++i) {
MachineOpCode op = usageDeltas[i].opCode;
assert(op < numOpCodes);
instrRUsages[op].addUsageDelta(usageDeltas[i]);
}
// Then modify the issue restrictions as specified in the deltas.
for (unsigned i = 0; i < numIssueDeltas; ++i) {
MachineOpCode op = issueDeltas[i].opCode;
assert(op < numOpCodes);
instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]);
}
}
void MachineSchedInfo::computeIssueGaps(
const vector<InstrRUsage> &instrRUForClasses) {
int numOpCodes = mii->getNumRealOpCodes();
instrRUsages.resize(numOpCodes);
assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1
&& "numOpCodes invalid for implementation of class OpCodePair!");
// First, compute issue gaps between pairs of classes based on common
// resources usages for each class, because most instruction pairs will
// usually behave the same as their class.
//
int classPairGaps[numSchedClasses][numSchedClasses];
for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++)
for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) {
int classPairGap = ComputeMinGap(instrRUForClasses[fromSC],
instrRUForClasses[toSC]);
classPairGaps[fromSC][toSC] = classPairGap;
}
// Now, for each pair of instructions, use the class pair gap if both
// instructions have identical resource usage as their respective classes.
// If not, recompute the gap for the pair from scratch.
longestIssueConflict = 0;
for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++)
for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) {
int instrPairGap =
(instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass)
? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)]
: ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]);
if (instrPairGap > 0) {
issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap;
conflictLists[fromOp].push_back(toOp);
longestIssueConflict = max(longestIssueConflict, instrPairGap);
}
}
}