Simplify code, make it print the constructed module before it is run.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15792 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-08-15 23:21:54 +00:00
parent 105a56ac6b
commit e8bf58c170
3 changed files with 141 additions and 267 deletions

View File

@ -10,8 +10,6 @@
// This small program provides an example of how to quickly build a small
// module with two functions and execute it with the JIT.
//
//===------------------------------------------------------------------------===
// Goal:
// The goal of this snippet is to create in the memory
// the LLVM module consisting of two functions as follow:
@ -34,118 +32,78 @@
// conflict of temporary function name with some real
// existing function name?
//
//===----------------------------------------------------------------------===//
#include <iostream>
#include <llvm/Module.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Constants.h>
#include <llvm/Instructions.h>
#include <llvm/ModuleProvider.h>
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/Type.h"
#include "llvm/Instructions.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include <iostream>
using namespace llvm;
int main() {
// Create some module to put our function into it.
Module *M = new Module("test");
// Create the add1 function entry and insert this entry into module M. The
// function will have a return type of "int" and take an argument of "int".
// The '0' terminates the list of argument types.
Function *Add1F = M->getOrInsertFunction("add1", Type::IntTy, Type::IntTy, 0);
// We are about to create the add1 function:
Function *Add1F;
{
// first create type for the single argument of add1 function:
// the type is 'int ()'
std::vector<const Type*> ArgT(1);
ArgT[0] = Type::IntTy;
// now create full type of the add1 function:
FunctionType *Add1T = FunctionType::get(Type::IntTy, // type of result
ArgT,
/*not vararg*/false);
// Now create the add1 function entry and
// insert this entry into module M
// (By passing a module as the last parameter to the Function constructor,
// it automatically gets appended to the Module.)
Add1F = new Function(Add1T,
Function::ExternalLinkage, // maybe too much
"add1", M);
// Add a basic block to the function... (again, it automatically inserts
// because of the last argument.)
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", Add1F);
// Add a basic block to the function. As before, it automatically inserts
// because of the last argument.
BasicBlock *BB = new BasicBlock("EntryBlock", Add1F);
// Get pointers to the constant `1'...
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the constant `1'.
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument &ArgX = Add1F->afront(); // Get the arg
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument *ArgX = Add1F->abegin(); // Get the arg
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the add instruction... does not insert...
Instruction *Add = BinaryOperator::create(Instruction::Add, One, &ArgX,
"addresult");
// Create the add instruction, inserting it into the end of BB.
Instruction *Add = BinaryOperator::createAdd(One, ArgX, "addresult", BB);
// explicitly insert it into the basic block...
BB->getInstList().push_back(Add);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add));
// Create the return instruction and add it to the basic block
new ReturnInst(Add, BB);
// function add1 is ready
}
// Now, function add1 is ready.
// now we going to create function `foo':
Function *FooF;
// Now we going to create function `foo', which returns an int and takes no
// arguments.
Function *FooF = M->getOrInsertFunction("foo", Type::IntTy, 0);
{
// Create the foo function type:
FunctionType *FooT =
FunctionType::get(Type::IntTy, // result has type: 'int ()'
std::vector<const Type*>(), // no arguments
/*not vararg*/false);
// Add a basic block to the FooF function.
BB = new BasicBlock("EntryBlock", FooF);
// Get pointers to the constant `10'.
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Pass Ten to the call call:
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// create the entry for function `foo' and insert
// this entry into module M:
FooF =
new Function(FooT,
Function::ExternalLinkage, // too wide?
"foo", M);
// Add a basic block to the FooF function...
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", FooF);
// Create the return instruction and add it to the basic block.
new ReturnInst(Add1CallRes, BB);
// Get pointers to the constant `10'...
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Put the argument Ten on stack and make call:
// ...
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add1CallRes));
}
// Now we going to create JIT ??
// Now we create the JIT.
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
ExecutionEngine* EE = ExecutionEngine::create( MP, true );
ExecutionEngine* EE = ExecutionEngine::create(MP, true);
std::cout << "We just constructed this LLVM module:\n\n" << *M;
std::cout << "\n\nRunning foo: " << std::flush;
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv = EE->runFunction(FooF, noargs);
// import result of execution:
std::cout << "Result: " << gv.IntVal << std:: endl;
// Import result of execution:
std::cout << "Result: " << gv.IntVal << "\n";
return 0;
}

View File

@ -10,8 +10,6 @@
// This small program provides an example of how to quickly build a small
// module with two functions and execute it with the JIT.
//
//===------------------------------------------------------------------------===
// Goal:
// The goal of this snippet is to create in the memory
// the LLVM module consisting of two functions as follow:
@ -34,118 +32,78 @@
// conflict of temporary function name with some real
// existing function name?
//
//===----------------------------------------------------------------------===//
#include <iostream>
#include <llvm/Module.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Constants.h>
#include <llvm/Instructions.h>
#include <llvm/ModuleProvider.h>
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/Type.h"
#include "llvm/Instructions.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include <iostream>
using namespace llvm;
int main() {
// Create some module to put our function into it.
Module *M = new Module("test");
// Create the add1 function entry and insert this entry into module M. The
// function will have a return type of "int" and take an argument of "int".
// The '0' terminates the list of argument types.
Function *Add1F = M->getOrInsertFunction("add1", Type::IntTy, Type::IntTy, 0);
// We are about to create the add1 function:
Function *Add1F;
{
// first create type for the single argument of add1 function:
// the type is 'int ()'
std::vector<const Type*> ArgT(1);
ArgT[0] = Type::IntTy;
// now create full type of the add1 function:
FunctionType *Add1T = FunctionType::get(Type::IntTy, // type of result
ArgT,
/*not vararg*/false);
// Now create the add1 function entry and
// insert this entry into module M
// (By passing a module as the last parameter to the Function constructor,
// it automatically gets appended to the Module.)
Add1F = new Function(Add1T,
Function::ExternalLinkage, // maybe too much
"add1", M);
// Add a basic block to the function... (again, it automatically inserts
// because of the last argument.)
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", Add1F);
// Add a basic block to the function. As before, it automatically inserts
// because of the last argument.
BasicBlock *BB = new BasicBlock("EntryBlock", Add1F);
// Get pointers to the constant `1'...
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the constant `1'.
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument &ArgX = Add1F->afront(); // Get the arg
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument *ArgX = Add1F->abegin(); // Get the arg
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the add instruction... does not insert...
Instruction *Add = BinaryOperator::create(Instruction::Add, One, &ArgX,
"addresult");
// Create the add instruction, inserting it into the end of BB.
Instruction *Add = BinaryOperator::createAdd(One, ArgX, "addresult", BB);
// explicitly insert it into the basic block...
BB->getInstList().push_back(Add);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add));
// Create the return instruction and add it to the basic block
new ReturnInst(Add, BB);
// function add1 is ready
}
// Now, function add1 is ready.
// now we going to create function `foo':
Function *FooF;
// Now we going to create function `foo', which returns an int and takes no
// arguments.
Function *FooF = M->getOrInsertFunction("foo", Type::IntTy, 0);
{
// Create the foo function type:
FunctionType *FooT =
FunctionType::get(Type::IntTy, // result has type: 'int ()'
std::vector<const Type*>(), // no arguments
/*not vararg*/false);
// Add a basic block to the FooF function.
BB = new BasicBlock("EntryBlock", FooF);
// Get pointers to the constant `10'.
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Pass Ten to the call call:
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// create the entry for function `foo' and insert
// this entry into module M:
FooF =
new Function(FooT,
Function::ExternalLinkage, // too wide?
"foo", M);
// Add a basic block to the FooF function...
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", FooF);
// Create the return instruction and add it to the basic block.
new ReturnInst(Add1CallRes, BB);
// Get pointers to the constant `10'...
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Put the argument Ten on stack and make call:
// ...
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add1CallRes));
}
// Now we going to create JIT ??
// Now we create the JIT.
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
ExecutionEngine* EE = ExecutionEngine::create( MP, true );
ExecutionEngine* EE = ExecutionEngine::create(MP, true);
std::cout << "We just constructed this LLVM module:\n\n" << *M;
std::cout << "\n\nRunning foo: " << std::flush;
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv = EE->runFunction(FooF, noargs);
// import result of execution:
std::cout << "Result: " << gv.IntVal << std:: endl;
// Import result of execution:
std::cout << "Result: " << gv.IntVal << "\n";
return 0;
}

View File

@ -10,8 +10,6 @@
// This small program provides an example of how to quickly build a small
// module with two functions and execute it with the JIT.
//
//===------------------------------------------------------------------------===
// Goal:
// The goal of this snippet is to create in the memory
// the LLVM module consisting of two functions as follow:
@ -34,118 +32,78 @@
// conflict of temporary function name with some real
// existing function name?
//
//===----------------------------------------------------------------------===//
#include <iostream>
#include <llvm/Module.h>
#include <llvm/DerivedTypes.h>
#include <llvm/Constants.h>
#include <llvm/Instructions.h>
#include <llvm/ModuleProvider.h>
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/Type.h"
#include "llvm/Instructions.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include <iostream>
using namespace llvm;
int main() {
// Create some module to put our function into it.
Module *M = new Module("test");
// Create the add1 function entry and insert this entry into module M. The
// function will have a return type of "int" and take an argument of "int".
// The '0' terminates the list of argument types.
Function *Add1F = M->getOrInsertFunction("add1", Type::IntTy, Type::IntTy, 0);
// We are about to create the add1 function:
Function *Add1F;
{
// first create type for the single argument of add1 function:
// the type is 'int ()'
std::vector<const Type*> ArgT(1);
ArgT[0] = Type::IntTy;
// now create full type of the add1 function:
FunctionType *Add1T = FunctionType::get(Type::IntTy, // type of result
ArgT,
/*not vararg*/false);
// Now create the add1 function entry and
// insert this entry into module M
// (By passing a module as the last parameter to the Function constructor,
// it automatically gets appended to the Module.)
Add1F = new Function(Add1T,
Function::ExternalLinkage, // maybe too much
"add1", M);
// Add a basic block to the function... (again, it automatically inserts
// because of the last argument.)
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", Add1F);
// Add a basic block to the function. As before, it automatically inserts
// because of the last argument.
BasicBlock *BB = new BasicBlock("EntryBlock", Add1F);
// Get pointers to the constant `1'...
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the constant `1'.
Value *One = ConstantSInt::get(Type::IntTy, 1);
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument &ArgX = Add1F->afront(); // Get the arg
// Get pointers to the integer argument of the add1 function...
assert(Add1F->abegin() != Add1F->aend()); // Make sure there's an arg
Argument *ArgX = Add1F->abegin(); // Get the arg
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the add instruction... does not insert...
Instruction *Add = BinaryOperator::create(Instruction::Add, One, &ArgX,
"addresult");
// Create the add instruction, inserting it into the end of BB.
Instruction *Add = BinaryOperator::createAdd(One, ArgX, "addresult", BB);
// explicitly insert it into the basic block...
BB->getInstList().push_back(Add);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add));
// Create the return instruction and add it to the basic block
new ReturnInst(Add, BB);
// function add1 is ready
}
// Now, function add1 is ready.
// now we going to create function `foo':
Function *FooF;
// Now we going to create function `foo', which returns an int and takes no
// arguments.
Function *FooF = M->getOrInsertFunction("foo", Type::IntTy, 0);
{
// Create the foo function type:
FunctionType *FooT =
FunctionType::get(Type::IntTy, // result has type: 'int ()'
std::vector<const Type*>(), // no arguments
/*not vararg*/false);
// Add a basic block to the FooF function.
BB = new BasicBlock("EntryBlock", FooF);
// Get pointers to the constant `10'.
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Pass Ten to the call call:
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// create the entry for function `foo' and insert
// this entry into module M:
FooF =
new Function(FooT,
Function::ExternalLinkage, // too wide?
"foo", M);
// Add a basic block to the FooF function...
BasicBlock *BB = new BasicBlock("EntryBlock of add1 function", FooF);
// Create the return instruction and add it to the basic block.
new ReturnInst(Add1CallRes, BB);
// Get pointers to the constant `10'...
Value *Ten = ConstantSInt::get(Type::IntTy, 10);
// Put the argument Ten on stack and make call:
// ...
std::vector<Value*> Params;
Params.push_back(Ten);
CallInst * Add1CallRes = new CallInst(Add1F, Params, "add1", BB);
// Create the return instruction and add it to the basic block
BB->getInstList().push_back(new ReturnInst(Add1CallRes));
}
// Now we going to create JIT ??
// Now we create the JIT.
ExistingModuleProvider* MP = new ExistingModuleProvider(M);
ExecutionEngine* EE = ExecutionEngine::create( MP, true );
ExecutionEngine* EE = ExecutionEngine::create(MP, true);
std::cout << "We just constructed this LLVM module:\n\n" << *M;
std::cout << "\n\nRunning foo: " << std::flush;
// Call the `foo' function with no arguments:
std::vector<GenericValue> noargs;
GenericValue gv = EE->runFunction(FooF, noargs);
// import result of execution:
std::cout << "Result: " << gv.IntVal << std:: endl;
// Import result of execution:
std::cout << "Result: " << gv.IntVal << "\n";
return 0;
}