Rein in overzealous InstCombine of fptrunc(OP(fpextend, fpextend)).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195934 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Stephen Canon 2013-11-28 21:38:05 +00:00
parent 88ccad035e
commit e9f8ce8cde
3 changed files with 152 additions and 27 deletions

View File

@ -1189,36 +1189,92 @@ static Value *LookThroughFPExtensions(Value *V) {
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
// smaller than the destination type, we can eliminate the truncate by doing
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
// as many builtins (sqrt, etc).
// If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
// simpilify this expression to avoid one or more of the trunc/extend
// operations if we can do so without changing the numerical results.
//
// The exact manner in which the widths of the operands interact to limit
// what we can and cannot do safely varies from operation to operation, and
// is explained below in the various case statements.
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
if (OpI && OpI->hasOneUse()) {
Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
unsigned DstWidth = CI.getType()->getFPMantissaWidth();
switch (OpI->getOpcode()) {
default: break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
Type *SrcTy = OpI->getType();
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
if (LHSTrunc->getType() != SrcTy &&
RHSTrunc->getType() != SrcTy) {
unsigned DstSize = CI.getType()->getScalarSizeInBits();
// If the source types were both smaller than the destination type of
// the cast, do this xform.
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
default: break;
case Instruction::FAdd:
case Instruction::FSub:
// For addition and subtraction, the infinitely precise result can
// essentially be arbitrarily wide; proving that double rounding
// will not occur because the result of OpI is exact (as we will for
// FMul, for example) is hopeless. However, we *can* nonetheless
// frequently know that double rounding cannot occur (or that it is
// innoculous) by taking advantage of the specific structure of
// infinitely-precise results that admit double rounding.
//
// Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficent
// to represent both sources, we can guarantee that the double
// rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
// "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
// for proof of this fact).
//
// Note: Figueroa does not consider the case where DstFormat !=
// SrcFormat. It's possible (likely even!) that this analysis
// could be tightened for those cases, but they are rare (the main
// case of interest here is (float)((double)float + float)).
if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
if (LHSOrig->getType() != CI.getType())
LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
if (RHSOrig->getType() != CI.getType())
RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
return BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
}
}
break;
break;
case Instruction::FMul:
// For multiplication, the infinitely precise result has at most
// LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
// that such a value can be exactly represented, then no double
// rounding can possibly occur; we can safely perform the operation
// in the destination format if it can represent both sources.
if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
if (LHSOrig->getType() != CI.getType())
LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
if (RHSOrig->getType() != CI.getType())
RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
return BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
}
break;
case Instruction::FDiv:
// For division, we use again use the bound from Figueroa's
// dissertation. I am entirely certain that this bound can be
// tightened in the unbalanced operand case by an analysis based on
// the diophantine rational approximation bound, but the well-known
// condition used here is a good conservative first pass.
// TODO: Tighten bound via rigorous analysis of the unbalanced case.
if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
if (LHSOrig->getType() != CI.getType())
LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
if (RHSOrig->getType() != CI.getType())
RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
return BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
}
break;
case Instruction::FRem:
// Remainder is straightforward. Remainder is always exact, so the
// type of OpI doesn't enter into things at all. We simply evaluate
// in whichever source type is larger, then convert to the
// destination type.
if (LHSWidth < SrcWidth)
LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
else if (RHSWidth <= SrcWidth)
RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
return CastInst::CreateFPCast(ExactResult, CI.getType());
}
// (fptrunc (fneg x)) -> (fneg (fptrunc x))

View File

@ -1,3 +1,4 @@
; RUN: opt < %s -instcombine -S | not grep fpext
@X = external global float
@Y = external global float
@ -12,6 +13,18 @@ entry:
ret void
}
define void @test2() nounwind {
entry:
%tmp = load float* @X, align 4 ; <float> [#uses=1]
%tmp1 = fpext float %tmp to double ; <double> [#uses=1]
%tmp2 = load float* @Y, align 4 ; <float> [#uses=1]
%tmp23 = fpext float %tmp2 to double ; <double> [#uses=1]
%tmp5 = fmul double %tmp1, %tmp23 ; <double> [#uses=1]
%tmp56 = fptrunc double %tmp5 to float ; <float> [#uses=1]
store float %tmp56, float* @X, align 4
ret void
}
define void @test3() nounwind {
entry:
%tmp = load float* @X, align 4 ; <float> [#uses=1]
@ -33,4 +46,3 @@ entry:
store float %tmp34, float* @X, align 4
ret void
}

View File

@ -0,0 +1,57 @@
; RUN: opt < %s -instcombine -mtriple=x86_64-apple-macosx -S | FileCheck %s
target triple = "x86_64-apple-macosx"
define double @test1(double %a, double %b) nounwind {
%wa = fpext double %a to x86_fp80
%wb = fpext double %b to x86_fp80
%wr = fadd x86_fp80 %wa, %wb
%r = fptrunc x86_fp80 %wr to double
ret double %r
; CHECK: test1
; CHECK: fadd x86_fp80
; CHECK: ret
}
define double @test2(double %a, double %b) nounwind {
%wa = fpext double %a to x86_fp80
%wb = fpext double %b to x86_fp80
%wr = fsub x86_fp80 %wa, %wb
%r = fptrunc x86_fp80 %wr to double
ret double %r
; CHECK: test2
; CHECK: fsub x86_fp80
; CHECK: ret
}
define double @test3(double %a, double %b) nounwind {
%wa = fpext double %a to x86_fp80
%wb = fpext double %b to x86_fp80
%wr = fmul x86_fp80 %wa, %wb
%r = fptrunc x86_fp80 %wr to double
ret double %r
; CHECK: test3
; CHECK: fmul x86_fp80
; CHECK: ret
}
define double @test4(double %a, half %b) nounwind {
%wa = fpext double %a to x86_fp80
%wb = fpext half %b to x86_fp80
%wr = fmul x86_fp80 %wa, %wb
%r = fptrunc x86_fp80 %wr to double
ret double %r
; CHECK: test4
; CHECK: fmul double
; CHECK: ret
}
define double @test5(double %a, double %b) nounwind {
%wa = fpext double %a to x86_fp80
%wb = fpext double %b to x86_fp80
%wr = fdiv x86_fp80 %wa, %wb
%r = fptrunc x86_fp80 %wr to double
ret double %r
; CHECK: test5
; CHECK: fdiv x86_fp80
; CHECK: ret
}