Added skeleton for inline asm multiple alternative constraint support.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113766 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
John Thompson 2010-09-13 18:15:37 +00:00
parent c32a2260a6
commit eac6e1d0c7
9 changed files with 419 additions and 103 deletions

View File

@ -87,6 +87,19 @@ public:
isClobber // '~x'
};
struct SubConstraintInfo {
/// MatchingInput - If this is not -1, this is an output constraint where an
/// input constraint is required to match it (e.g. "0"). The value is the
/// constraint number that matches this one (for example, if this is
/// constraint #0 and constraint #4 has the value "0", this will be 4).
signed char MatchingInput;
/// Code - The constraint code, either the register name (in braces) or the
/// constraint letter/number.
std::vector<std::string> Codes;
/// Default constructor.
SubConstraintInfo() : MatchingInput(-1) {}
};
struct ConstraintInfo {
/// Type - The basic type of the constraint: input/output/clobber
///
@ -120,11 +133,31 @@ public:
/// constraint letter/number.
std::vector<std::string> Codes;
/// isMultipleAlternative - '|': has multiple-alternative constraints.
bool isMultipleAlternative;
/// multipleAlternatives - If there are multiple alternative constraints,
/// this array will contain them. Otherwise it will be empty.
std::vector<SubConstraintInfo> multipleAlternatives;
/// The currently selected alternative constraint index.
unsigned currentAlternativeIndex;
///Default constructor.
ConstraintInfo();
/// Copy constructor.
ConstraintInfo(const ConstraintInfo &other);
/// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
bool Parse(StringRef Str,
std::vector<InlineAsm::ConstraintInfo> &ConstraintsSoFar);
/// selectAlternative - Point this constraint to the alternative constraint
/// indicated by the index.
void selectAlternative(unsigned index);
};
/// ParseConstraints - Split up the constraint string into the specific

View File

@ -45,6 +45,7 @@ namespace llvm {
class Function;
class FastISel;
class FunctionLoweringInfo;
class ImmutableCallSite;
class MachineBasicBlock;
class MachineFunction;
class MachineFrameInfo;
@ -1356,6 +1357,16 @@ public:
/// returns the output operand it matches.
unsigned getMatchedOperand() const;
/// Copy constructor for copying from an AsmOperandInfo.
AsmOperandInfo(const AsmOperandInfo &info)
: InlineAsm::ConstraintInfo(info),
ConstraintCode(info.ConstraintCode),
ConstraintType(info.ConstraintType),
CallOperandVal(info.CallOperandVal),
ConstraintVT(info.ConstraintVT) {
}
/// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
: InlineAsm::ConstraintInfo(info),
ConstraintType(TargetLowering::C_Unknown),
@ -1363,6 +1374,26 @@ public:
}
};
/// ParseConstraints - Split up the constraint string from the inline
/// assembly value into the specific constraints and their prefixes,
/// and also tie in the associated operand values.
/// If this returns an empty vector, and if the constraint string itself
/// isn't empty, there was an error parsing.
virtual std::vector<AsmOperandInfo> ParseConstraints(
ImmutableCallSite CS) const;
/// Examine constraint type and operand type and determine a weight value,
/// where: -1 = invalid match, and 0 = so-so match to 5 = good match.
/// The operand object must already have been set up with the operand type.
virtual int getMultipleConstraintMatchWeight(
AsmOperandInfo &info, int maIndex) const;
/// Examine constraint string and operand type and determine a weight value,
/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
/// The operand object must already have been set up with the operand type.
virtual int getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
/// ComputeConstraintToUse - Determines the constraint code and constraint
/// type to use for the specific AsmOperandInfo, setting
/// OpInfo.ConstraintCode and OpInfo.ConstraintType. If the actual operand

View File

@ -5008,7 +5008,7 @@ public:
/// contains the set of register corresponding to the operand.
RegsForValue AssignedRegs;
explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
: TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
}
@ -5324,26 +5324,13 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
std::set<unsigned> OutputRegs, InputRegs;
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
std::vector<InlineAsm::ConstraintInfo>
ConstraintInfos = IA->ParseConstraints();
bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
SDValue Chain, Flag;
// We won't need to flush pending loads if this asm doesn't touch
// memory and is nonvolatile.
if (hasMemory || IA->hasSideEffects())
Chain = getRoot();
else
Chain = DAG.getRoot();
std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS);
bool hasMemory = false;
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
unsigned ResNo = 0; // ResNo - The result number of the next output.
for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
EVT OpVT = MVT::Other;
@ -5393,33 +5380,35 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
}
OpInfo.ConstraintVT = OpVT;
// Indirect operand accesses access memory.
if (OpInfo.isIndirect)
hasMemory = true;
else {
for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
if (CType == TargetLowering::C_Memory) {
hasMemory = true;
break;
}
}
}
}
SDValue Chain, Flag;
// We won't need to flush pending loads if this asm doesn't touch
// memory and is nonvolatile.
if (hasMemory || IA->hasSideEffects())
Chain = getRoot();
else
Chain = DAG.getRoot();
// Second pass over the constraints: compute which constraint option to use
// and assign registers to constraints that want a specific physreg.
for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
// If this is an output operand with a matching input operand, look up the
// matching input. If their types mismatch, e.g. one is an integer, the
// other is floating point, or their sizes are different, flag it as an
// error.
if (OpInfo.hasMatchingInput()) {
SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(OpInfo.ConstraintVT.getSizeInBits() !=
Input.ConstraintVT.getSizeInBits())) {
report_fatal_error("Unsupported asm: input constraint"
" with a matching output constraint of"
" incompatible type!");
}
Input.ConstraintVT = OpInfo.ConstraintVT;
}
}
// Compute the constraint code and ConstraintType to use.
TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
@ -5427,7 +5416,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// need to to provide an address for the memory input.
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
!OpInfo.isIndirect) {
assert(OpInfo.Type == InlineAsm::isInput &&
assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
"Can only indirectify direct input operands!");
// Memory operands really want the address of the value. If we don't have
@ -5469,8 +5458,6 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
}
ConstraintInfos.clear();
// Second pass - Loop over all of the operands, assigning virtual or physregs
// to register class operands.
for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {

View File

@ -2655,6 +2655,156 @@ unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
}
/// ParseConstraints - Split up the constraint string from the inline
/// assembly value into the specific constraints and their prefixes,
/// and also tie in the associated operand values.
/// If this returns an empty vector, and if the constraint string itself
/// isn't empty, there was an error parsing.
std::vector<TargetLowering::AsmOperandInfo> TargetLowering::ParseConstraints(
ImmutableCallSite CS) const {
/// ConstraintOperands - Information about all of the constraints.
std::vector<AsmOperandInfo> ConstraintOperands;
const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
std::vector<InlineAsm::ConstraintInfo>
ConstraintInfos = IA->ParseConstraints();
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
unsigned ResNo = 0; // ResNo - The result number of the next output.
for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
AsmOperandInfo &OpInfo = ConstraintOperands.back();
EVT OpVT = MVT::Other;
// Compute the value type for each operand.
switch (OpInfo.Type) {
case InlineAsm::isOutput:
// Indirect outputs just consume an argument.
if (OpInfo.isIndirect) {
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
break;
}
// The return value of the call is this value. As such, there is no
// corresponding argument.
assert(!CS.getType()->isVoidTy() &&
"Bad inline asm!");
if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
OpVT = getValueType(STy->getElementType(ResNo));
} else {
assert(ResNo == 0 && "Asm only has one result!");
OpVT = getValueType(CS.getType());
}
++ResNo;
break;
case InlineAsm::isInput:
OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
break;
case InlineAsm::isClobber:
// Nothing to do.
break;
}
}
// If we have multiple alternative constraints, select the best alternative.
if (ConstraintInfos.size()) {
unsigned maCount = ConstraintInfos[0].multipleAlternatives.size();
if (maCount) {
unsigned bestMAIndex = 0;
int bestWeight = -1;
// weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
int weight = -1;
unsigned maIndex;
// Compute the sums of the weights for each alternative, keeping track
// of the best (highest weight) one so far.
for (maIndex = 0; maIndex < maCount; ++maIndex) {
int weightSum = 0;
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
if (OpInfo.Type == InlineAsm::isClobber)
continue;
assert((OpInfo.multipleAlternatives.size() == maCount)
&& "Constraint has inconsistent multiple alternative count.");
// If this is an output operand with a matching input operand, look up the
// matching input. If their types mismatch, e.g. one is an integer, the
// other is floating point, or their sizes are different, flag it as an
// maCantMatch.
if (OpInfo.hasMatchingInput()) {
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(OpInfo.ConstraintVT.getSizeInBits() !=
Input.ConstraintVT.getSizeInBits())) {
weightSum = -1; // Can't match.
break;
}
Input.ConstraintVT = OpInfo.ConstraintVT;
}
}
weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
if (weight == -1) {
weightSum = -1;
break;
}
weightSum += weight;
}
// Update best.
if (weightSum > bestWeight) {
bestWeight = weightSum;
bestMAIndex = maIndex;
}
}
// Now select chosen alternative in each constraint.
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
if (cInfo.Type == InlineAsm::isClobber)
continue;
cInfo.selectAlternative(bestMAIndex);
}
}
}
// Check and hook up tied operands, choose constraint code to use.
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
cIndex != eIndex; ++cIndex) {
AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
// If this is an output operand with a matching input operand, look up the
// matching input. If their types mismatch, e.g. one is an integer, the
// other is floating point, or their sizes are different, flag it as an
// error.
if (OpInfo.hasMatchingInput()) {
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(OpInfo.ConstraintVT.getSizeInBits() !=
Input.ConstraintVT.getSizeInBits())) {
report_fatal_error("Unsupported asm: input constraint"
" with a matching output constraint of"
" incompatible type!");
}
Input.ConstraintVT = OpInfo.ConstraintVT;
}
}
}
return ConstraintOperands;
}
/// getConstraintGenerality - Return an integer indicating how general CT
/// is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
@ -2672,6 +2822,76 @@ static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
}
}
/// Examine constraint type and operand type and determine a weight value,
/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
int TargetLowering::getMultipleConstraintMatchWeight(
AsmOperandInfo &info, int maIndex) const {
std::vector<std::string> &rCodes = info.multipleAlternatives[maIndex].Codes;
int matchingInput = info.multipleAlternatives[maIndex].MatchingInput;
TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
int BestWeight = -1;
// Loop over the options, keeping track of the most general one.
for (unsigned i = 0, e = rCodes.size(); i != e; ++i) {
int weight = getSingleConstraintMatchWeight(info, rCodes[i].c_str());
if (weight > BestWeight)
BestWeight = weight;
}
return BestWeight;
}
/// Examine constraint type and operand type and determine a weight value,
/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
int TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
int weight = -1;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return 0;
// Look at the constraint type.
switch (*constraint) {
case 'i': // immediate integer.
case 'n': // immediate integer with a known value.
weight = 0;
if (info.CallOperandVal) {
if (isa<ConstantInt>(info.CallOperandVal))
weight = 3;
else
weight = -1;
}
break;
case 's': // non-explicit intregal immediate.
weight = 0;
if (info.CallOperandVal) {
if (isa<GlobalValue>(info.CallOperandVal))
weight = 3;
else
weight = -1;
}
break;
case 'm': // memory operand.
case 'o': // offsettable memory operand
case 'V': // non-offsettable memory operand
weight = 2;
break;
case 'g': // general register, memory operand or immediate integer.
case 'X': // any operand.
weight = 1;
break;
default:
weight = 0;
break;
}
return weight;
}
/// ChooseConstraint - If there are multiple different constraints that we
/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
/// This is somewhat tricky: constraints fall into four classes:

View File

@ -11193,6 +11193,34 @@ X86TargetLowering::getConstraintType(const std::string &Constraint) const {
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value,
/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
int X86TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
int weight = -1;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return 0;
// Look at the constraint type.
switch (*constraint) {
default:
return TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'I':
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
if (C->getZExtValue() <= 31)
weight = 3;
}
break;
// etc.
}
return weight;
}
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand.

View File

@ -532,6 +532,12 @@ namespace llvm {
ConstraintType getConstraintType(const std::string &Constraint) const;
/// Examine constraint string and operand type and determine a weight value,
/// where: -1 = invalid match, and 0 = so-so match to 3 = good match.
/// The operand object must already have been set up with the operand type.
virtual int getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
std::vector<unsigned>
getRegClassForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const;

View File

@ -738,32 +738,9 @@ bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
bool MadeChange = false;
InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
// Do a prepass over the constraints, canonicalizing them, and building up the
// ConstraintOperands list.
std::vector<InlineAsm::ConstraintInfo>
ConstraintInfos = IA->ParseConstraints();
/// ConstraintOperands - Information about all of the constraints.
std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
ConstraintOperands.
push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
// Compute the value type for each operand.
switch (OpInfo.Type) {
case InlineAsm::isOutput:
if (OpInfo.isIndirect)
OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
break;
case InlineAsm::isInput:
OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
break;
case InlineAsm::isClobber:
// Nothing to do.
break;
}
std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI->ParseConstraints(CS);
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
TLI->ComputeConstraintToUse(OpInfo, SDValue());

View File

@ -21,6 +21,7 @@
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CallSite.h"
using namespace llvm;
using namespace llvm::PatternMatch;
@ -379,26 +380,9 @@ bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
/// return false.
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
const TargetLowering &TLI) {
std::vector<InlineAsm::ConstraintInfo>
Constraints = IA->ParseConstraints();
unsigned ArgNo = 0; // The argument of the CallInst.
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
// Compute the value type for each operand.
switch (OpInfo.Type) {
case InlineAsm::isOutput:
if (OpInfo.isIndirect)
OpInfo.CallOperandVal = CI->getArgOperand(ArgNo++);
break;
case InlineAsm::isInput:
OpInfo.CallOperandVal = CI->getArgOperand(ArgNo++);
break;
case InlineAsm::isClobber:
// Nothing to do.
break;
}
std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
// Compute the constraint code and ConstraintType to use.
TLI.ComputeConstraintToUse(OpInfo, SDValue());

View File

@ -54,19 +54,46 @@ const FunctionType *InlineAsm::getFunctionType() const {
return cast<FunctionType>(getType()->getElementType());
}
///Default constructor.
InlineAsm::ConstraintInfo::ConstraintInfo() :
isMultipleAlternative(false),
Type(isInput), isEarlyClobber(false),
MatchingInput(-1), isCommutative(false),
isIndirect(false), currentAlternativeIndex(0) {
}
/// Copy constructor.
InlineAsm::ConstraintInfo::ConstraintInfo(const ConstraintInfo &other) :
isMultipleAlternative(other.isMultipleAlternative),
Type(other.Type), isEarlyClobber(other.isEarlyClobber),
MatchingInput(other.MatchingInput), isCommutative(other.isCommutative),
isIndirect(other.isIndirect), Codes(other.Codes),
multipleAlternatives(other.multipleAlternatives),
currentAlternativeIndex(other.currentAlternativeIndex) {
}
/// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
std::vector<InlineAsm::ConstraintInfo> &ConstraintsSoFar) {
StringRef::iterator I = Str.begin(), E = Str.end();
unsigned multipleAlternativeCount = Str.count('|') + 1;
unsigned multipleAlternativeIndex = 0;
std::vector<std::string> *pCodes = &Codes;
// Initialize
isMultipleAlternative = (multipleAlternativeCount > 1 ? true : false);
if (isMultipleAlternative) {
multipleAlternatives.resize(multipleAlternativeCount);
pCodes = &multipleAlternatives[0].Codes;
}
Type = isInput;
isEarlyClobber = false;
MatchingInput = -1;
isCommutative = false;
isIndirect = false;
currentAlternativeIndex = 0;
// Parse prefixes.
if (*I == '~') {
@ -120,15 +147,15 @@ bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
// Find the end of the register name.
StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
if (ConstraintEnd == E) return true; // "{foo"
Codes.push_back(std::string(I, ConstraintEnd+1));
pCodes->push_back(std::string(I, ConstraintEnd+1));
I = ConstraintEnd+1;
} else if (isdigit(*I)) { // Matching Constraint
// Maximal munch numbers.
StringRef::iterator NumStart = I;
while (I != E && isdigit(*I))
++I;
Codes.push_back(std::string(NumStart, I));
unsigned N = atoi(Codes.back().c_str());
pCodes->push_back(std::string(NumStart, I));
unsigned N = atoi(pCodes->back().c_str());
// Check that this is a valid matching constraint!
if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
Type != isInput)
@ -136,14 +163,26 @@ bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
// If Operand N already has a matching input, reject this. An output
// can't be constrained to the same value as multiple inputs.
if (ConstraintsSoFar[N].hasMatchingInput())
return true;
// Note that operand #n has a matching input.
ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
if (isMultipleAlternative) {
InlineAsm::SubConstraintInfo &scInfo =
ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
if (scInfo.MatchingInput != -1)
return true;
// Note that operand #n has a matching input.
scInfo.MatchingInput = ConstraintsSoFar.size();
} else {
if (ConstraintsSoFar[N].hasMatchingInput())
return true;
// Note that operand #n has a matching input.
ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
}
} else if (*I == '|') {
multipleAlternativeIndex++;
pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
++I;
} else {
// Single letter constraint.
Codes.push_back(std::string(I, I+1));
pCodes->push_back(std::string(I, I+1));
++I;
}
}
@ -151,6 +190,18 @@ bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
return false;
}
/// selectAlternative - Point this constraint to the alternative constraint
/// indicated by the index.
void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
if (index < multipleAlternatives.size()) {
currentAlternativeIndex = index;
InlineAsm::SubConstraintInfo &scInfo =
multipleAlternatives[currentAlternativeIndex];
MatchingInput = scInfo.MatchingInput;
Codes = scInfo.Codes;
}
}
std::vector<InlineAsm::ConstraintInfo>
InlineAsm::ParseConstraints(StringRef Constraints) {
std::vector<ConstraintInfo> Result;
@ -183,7 +234,6 @@ InlineAsm::ParseConstraints(StringRef Constraints) {
return Result;
}
/// Verify - Verify that the specified constraint string is reasonable for the
/// specified function type, and otherwise validate the constraint string.
bool InlineAsm::Verify(const FunctionType *Ty, StringRef ConstStr) {