changes BBsorting and oredering

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2817 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Anand Shukla 2002-07-08 19:37:06 +00:00
parent 82f40e8210
commit ec07c755fc
2 changed files with 90 additions and 720 deletions

View File

@ -10,9 +10,12 @@
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h"
#include "llvm/Transforms/Instrumentation/Graph.h"
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
//using std::list;
using std::map;
@ -55,7 +58,6 @@ static void removeTreeEdges(Graph &g, Graph& t){
Graph::nodeList nl=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
Edge ed(NLI->element, *NI, NLI->weight);
//if(!g.hasEdge(ed)) t.removeEdge(ed);
if(!g.hasEdgeAndWt(ed)) t.removeEdge(ed);//tree has only one edge
//between any pair of vertices, so no need to delete by edge wt
}
@ -68,35 +70,53 @@ static void removeTreeEdges(Graph &g, Graph& t){
//refers to the path we travelled
int valueAssignmentToEdges(Graph& g){
vector<Node *> revtop=g.reverseTopologicalSort();
/*
std::cerr<<"-----------Reverse topological sort\n";
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
std::cerr<<(*RI)->getElement()->getName()<<":";
}
std::cerr<<"\n----------------------"<<std::endl;
*/
map<Node *,int > NumPaths;
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end();
RI!=RE; ++RI){
if(g.isLeaf(*RI))
NumPaths[*RI]=1;
else{
NumPaths[*RI]=0;
/////
Graph::nodeList &nlist=g.getNodeList(*RI);
//sort nodelist by increasing order of numpaths
int sz=nlist.size();
//printing BB list
//std::cerr<<"node list------------\n";
//for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end();
// NLI!=NLE; ++NLI)
//std::cerr<<NLI->element->getElement()->getName()<<"->";
//std::cerr<<"\n-----------\n";
for(int i=0;i<sz-1; i++){
int min=i;
for(int j=i+1; j<sz; j++)
if(NumPaths[nlist[j].element]<NumPaths[nlist[min].element]) min=j;
for(int j=i+1; j<sz; j++){
BasicBlock *bb1 = nlist[j].element->getElement();
BasicBlock *bb2 = nlist[min].element->getElement();
assert(bb1->getParent() == bb2->getParent() &&
"BBs with diff parents");
TerminatorInst *ti = bb1->getTerminator();
//compare the order of BBs in the terminator instruction
for(int x=0, y = ti->getNumSuccessors(); x < y; x++){
if(ti->getSuccessor(x) == bb1){ //bb1 occurs first
min = j;
break;
}
if(ti->getSuccessor(x) == bb2) //bb2 occurs first
break;
}
}
graphListElement tempEl=nlist[min];
nlist[min]=nlist[i];
nlist[i]=tempEl;
}
//sorted now!
for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
GLI!=GLE; ++GLI){
GLI->weight=NumPaths[*RI];
@ -141,12 +161,6 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
vector<Node *> allNodes=t.getAllNodes();
//cerr<<"Called for\n";
//if(!e.isNull())
//printEdge(e);
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
@ -187,8 +201,6 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
*v==*(f.getFirst()))){
int dir_count=inc_Dir(e,f);
Increment[f]+=dir_count*events;
//cerr<<"assigned "<<Increment[f]<<" to"<<endl;
//printEdge(f);
}
}
}
@ -265,8 +277,6 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &i
Node *w=nl->element;
//if chords has v->w
Edge ed(v,w, edgeWt, nl->randId);
//cerr<<"Assign:\n";
//printEdge(ed);
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
CI!=CE && !hasEdge;++CI){
@ -280,7 +290,6 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &i
edCd->setCond(1);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
//std::cerr<<"Case 1\n";
}
else if(g.getNumberOfIncomingEdges(w)==1){
ws.push_back(w);
@ -310,16 +319,11 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &i
for(vector<Node *>::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){
Node *lnode=*EII;
Graph::nodeList &nl = g.getNodeList(lnode);
//cerr<<"Size:"<<lllt.size()<<"\n";
//cerr<<lnode->getElement()->getName()<<"\n";
graphListElement *N = findNodeInList(nl, w);
if (N){// lt.push_back(lnode);
//Node *v=*pd;
//Node *v=N->element;
if (N){
Node *v=lnode;
//if chords has v->w
Edge ed(v,w, N->weight, N->randId);
getEdgeCode *edCd=new getEdgeCode();
bool hasEdge=false;
@ -420,19 +424,18 @@ static void moveDummyCode(vector<Edge> &stDummy,
for(vector<Edge>::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){
if(ed.getRandId()==BEI->getRandId()){
//cerr<<"Looking at edge--------\n";
//printEdge(ed);
if(temp[*BEI]==0)
temp[*BEI]=new getEdgeCode();
//so ed is either in st, or ex!
if(ed.getFirst()==g.getRoot()){
//so its in stDummy
temp[*BEI]->setCdIn(edCd);
toErase.push_back(ed);
}
else if(ed.getSecond()==g.getExit()){
//so its in exDummy
toErase.push_back(ed);
temp[*BEI]->setCdOut(edCd);
@ -447,119 +450,16 @@ static void moveDummyCode(vector<Edge> &stDummy,
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
++vmi){
insertions.erase(*vmi);
//cerr<<"Erasing from insertion\n";
//printEdge(*vmi);
g.removeEdgeWithWt(*vmi);
}
for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=temp.begin(),
ME=temp.end(); MI!=ME; ++MI){
insertions[MI->first]=MI->second;
//cerr<<"inserting into insertion-----\n";
//printEdge(MI->first);
}
//cerr<<"----\n";
/*
///---new code end
bool dummyHasIt=false;
DEBUG(cerr<<"Current edge considered---\n";
printEdge(ed));
//now check if stDummy has ed
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
++VI){
if(*VI==ed){
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with stDummy\n";
printEdge(ed);
//#endif
dummyHasIt=true;
bool dummyInBe=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe; ++BE){
Edge backEdge=*BE;
Node *st=backEdge.getSecond();
Node *dm=ed.getSecond();
if(*dm==*st){
//so this is the back edge to use
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Moving to backedge\n";
printEdge(backEdge);
//#endif
getEdgeCode *ged=new getEdgeCode();
ged->setCdIn(edCd);
toErase.push_back(ed);//MI);//ed);
insertions[backEdge]=ged;
dummyInBe=true;
}
}
assert(dummyInBe);
//modf
//new
//vec_iter VII=VI;
stDummy.erase(VI);
break;
//end new
}
}
if(!dummyHasIt){
//so exDummy may hv it
bool inExDummy=false;
for(vec_iter VI=exDummy.begin(), VE=exDummy.end(); VI!=VE && !inExDummy;
++VI){
if(*VI==ed){
inExDummy=true;
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with exDummy\n";
//#endif
bool dummyInBe2=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
++BE){
Edge backEdge=*BE;
Node *st=backEdge.getFirst();
Node *dm=ed.getFirst();
if(*dm==*st){
//so this is the back edge to use
cerr<<"Moving to backedge\n";
printEdge(backEdge);
getEdgeCode *ged;
if(insertions[backEdge]==NULL)
ged=new getEdgeCode();
else
ged=insertions[backEdge];
toErase.push_back(ed);//MI);//ed);
ged->setCdOut(edCd);
insertions[backEdge]=ged;
dummyInBe2=true;
}
}
assert(dummyInBe2);
//modf
//vec_iter VII=VI;
exDummy.erase(VI);
break;
//end
}
}
}
}
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"size of deletions: "<<toErase.size()<<"\n";
#endif
/*
for(vector<map<Edge, getEdgeCode *>::iterator>::iterator
vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; ++vmi)
insertions.erase(*vmi);
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n";
#endif
@ -576,7 +476,7 @@ void processGraph(Graph &g,
vector<Edge >& exDummy,
int numPaths){
static int MethNo=0;
static int MethNo=-1;
MethNo++;
//Given a graph: with exit->root edge, do the following in seq:
//1. get back edges
@ -623,10 +523,10 @@ void processGraph(Graph &g,
DEBUG(printGraph(g2));
Graph *t=g2.getMaxSpanningTree();
//#ifdef DEBUG_PATH_PROFILES
//cerr<<"Original maxspanning tree\n";
//printGraph(*t);
//#endif
#ifdef DEBUG_PATH_PROFILES
std::cerr<<"Original maxspanning tree\n";
printGraph(*t);
#endif
//now edges of tree t have weights reversed
//(negative) because the algorithm used
//to find max spanning tree is
@ -721,9 +621,7 @@ void processGraph(Graph &g,
//edge code over to the corresponding back edge
moveDummyCode(stDummy, exDummy, be, codeInsertions, g);
//cerr<<"After dummy removals\n";
//printGraph(g);
#ifdef DEBUG_PATH_PROFILES
//debugging info
cerr<<"After moving dummy code\n";
@ -746,8 +644,6 @@ void processGraph(Graph &g,
}
}
//print the graph (for debugging)
void printGraph(Graph &g){
vector<Node *> lt=g.getAllNodes();
@ -766,214 +662,3 @@ void printGraph(Graph &g){
}
cerr<<"--------------------Graph\n";
}
/*
////////// Getting back BBs from path number
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/Support/CFG.h"
#include "llvm/BasicBlock.h"
#include "llvm/Pass.h"
void getPathFrmNode(Node *n, vector<BasicBlock*> &vBB, int pathNo, Graph g,
vector<Edge> &stDummy, vector<Edge> &exDummy, vector<Edge> &be,
double strand){
Graph::nodeList nlist=g.getNodeList(n);
int maxCount=-9999999;
bool isStart=false;
if(*n==*g.getRoot())//its root: so first node of path
isStart=true;
double edgeRnd=0;
Node *nextRoot=n;
for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end(); NLI!=NLE;
++NLI){
//cerr<<"Saw:"<<NLI->weight<<endl;
if(NLI->weight>maxCount && NLI->weight<=pathNo){
maxCount=NLI->weight;
nextRoot=NLI->element;
edgeRnd=NLI->randId;
if(isStart)
strand=NLI->randId;
}
}
//cerr<<"Max:"<<maxCount<<endl;
if(!isStart)
assert(strand!=-1 && "strand not assigned!");
assert(!(*nextRoot==*n && pathNo>0) && "No more BBs to go");
assert(!(*nextRoot==*g.getExit() && pathNo-maxCount!=0) && "Reached exit");
vBB.push_back(n->getElement());
if(pathNo-maxCount==0 && *nextRoot==*g.getExit()){
//look for strnd and edgeRnd now:
bool has1=false, has2=false;
//check if exit has it
for(vector<Edge>::iterator VI=exDummy.begin(), VE=exDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==edgeRnd){
has2=true;
//cerr<<"has2: looking at"<<std::endl;
//printEdge(*VI);
break;
}
}
//check if start has it
for(vector<Edge>::iterator VI=stDummy.begin(), VE=stDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==strand){
//cerr<<"has1: looking at"<<std::endl;
//printEdge(*VI);
has1=true;
break;
}
}
if(has1){
//find backedge with endpoint vBB[1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getSecond()->getElement() == vBB[1] ){
vBB[0]=VI->getFirst()->getElement();
break;
}
}
}
if(has2){
//find backedge with startpoint vBB[vBB.size()-1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getFirst()->getElement() == vBB[vBB.size()-1] ){
//if(vBB[0]==VI->getFirst()->getElement())
//vBB.erase(vBB.begin()+vBB.size()-1);
//else
vBB.push_back(VI->getSecond()->getElement());
break;
}
}
}
else
vBB.push_back(nextRoot->getElement());
return;
}
assert(pathNo-maxCount>=0);
return getPathFrmNode(nextRoot, vBB, pathNo-maxCount, g, stDummy,
exDummy, be, strand);
}
static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
if(((*si)->getElement())==BB){
return *si;
}
}
return NULL;
}
void getBBtrace(vector<BasicBlock *> &vBB, int pathNo, Function *M){
//step 1: create graph
//Transform the cfg s.t. we have just one exit node
std::vector<Node *> nodes;
std::vector<Edge> edges;
Node *tmp;
Node *exitNode=0, *startNode=0;
BasicBlock *ExitNode = 0;
for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I) {
BasicBlock *BB = *I;
if (isa<ReturnInst>(BB->getTerminator())) {
ExitNode = BB;
break;
}
}
assert(ExitNode!=0 && "exitnode not found");
//iterating over BBs and making graph
//The nodes must be uniquesly identified:
//That is, no two nodes must hav same BB*
//First enter just nodes: later enter edges
for(Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=new Node(*BB);
nodes.push_back(nd);
if(*BB==ExitNode)
exitNode=nd;
if(*BB==M->front())
startNode=nd;
}
assert(exitNode!=0 && startNode!=0 && "Start or exit not found!");
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=findBB(nodes, *BB);
assert(nd && "No node for this edge!");
for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
s!=se; ++s){
Node *nd2=findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
Edge ed(nd,nd2,0);
edges.push_back(ed);
}
}
static bool printed=false;
Graph g(nodes,edges, startNode, exitNode);
//if(!printed)
//printGraph(g);
if (M->getBasicBlocks().size() <= 1) return; //uninstrumented
//step 2: getBackEdges
vector<Edge> be;
g.getBackEdges(be);
//cerr<<"BackEdges\n";
//for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
//printEdge(*VI);
//cerr<<"\n";
//}
//cerr<<"------\n";
//step 3: add dummy edges
vector<Edge> stDummy;
vector<Edge> exDummy;
addDummyEdges(stDummy, exDummy, g, be);
//cerr<<"After adding dummy edges\n";
//printGraph(g);
//step 4: value assgn to edges
int numPaths=valueAssignmentToEdges(g);
//if(!printed){
//printGraph(g);
//printed=true;
//}
//step 5: now travel from root, select max(edge) < pathNo,
//and go on until reach the exit
return getPathFrmNode(g.getRoot(), vBB, pathNo, g, stDummy, exDummy, be, -1);
}
*/

View File

@ -10,9 +10,12 @@
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/BasicBlock.h"
#include "llvm/InstrTypes.h"
#include "llvm/Transforms/Instrumentation/Graph.h"
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
//using std::list;
using std::map;
@ -55,7 +58,6 @@ static void removeTreeEdges(Graph &g, Graph& t){
Graph::nodeList nl=t.getNodeList(*NI);
for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){
Edge ed(NLI->element, *NI, NLI->weight);
//if(!g.hasEdge(ed)) t.removeEdge(ed);
if(!g.hasEdgeAndWt(ed)) t.removeEdge(ed);//tree has only one edge
//between any pair of vertices, so no need to delete by edge wt
}
@ -68,35 +70,53 @@ static void removeTreeEdges(Graph &g, Graph& t){
//refers to the path we travelled
int valueAssignmentToEdges(Graph& g){
vector<Node *> revtop=g.reverseTopologicalSort();
/*
std::cerr<<"-----------Reverse topological sort\n";
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
std::cerr<<(*RI)->getElement()->getName()<<":";
}
std::cerr<<"\n----------------------"<<std::endl;
*/
map<Node *,int > NumPaths;
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){
for(vector<Node *>::iterator RI=revtop.begin(), RE=revtop.end();
RI!=RE; ++RI){
if(g.isLeaf(*RI))
NumPaths[*RI]=1;
else{
NumPaths[*RI]=0;
/////
Graph::nodeList &nlist=g.getNodeList(*RI);
//sort nodelist by increasing order of numpaths
int sz=nlist.size();
//printing BB list
//std::cerr<<"node list------------\n";
//for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end();
// NLI!=NLE; ++NLI)
//std::cerr<<NLI->element->getElement()->getName()<<"->";
//std::cerr<<"\n-----------\n";
for(int i=0;i<sz-1; i++){
int min=i;
for(int j=i+1; j<sz; j++)
if(NumPaths[nlist[j].element]<NumPaths[nlist[min].element]) min=j;
for(int j=i+1; j<sz; j++){
BasicBlock *bb1 = nlist[j].element->getElement();
BasicBlock *bb2 = nlist[min].element->getElement();
assert(bb1->getParent() == bb2->getParent() &&
"BBs with diff parents");
TerminatorInst *ti = bb1->getTerminator();
//compare the order of BBs in the terminator instruction
for(int x=0, y = ti->getNumSuccessors(); x < y; x++){
if(ti->getSuccessor(x) == bb1){ //bb1 occurs first
min = j;
break;
}
if(ti->getSuccessor(x) == bb2) //bb2 occurs first
break;
}
}
graphListElement tempEl=nlist[min];
nlist[min]=nlist[i];
nlist[i]=tempEl;
}
//sorted now!
for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end();
GLI!=GLE; ++GLI){
GLI->weight=NumPaths[*RI];
@ -141,12 +161,6 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
vector<Node *> allNodes=t.getAllNodes();
//cerr<<"Called for\n";
//if(!e.isNull())
//printEdge(e);
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI){
Graph::nodeList node_list=t.getNodeList(*NI);
@ -187,8 +201,6 @@ static void inc_DFS(Graph& g,Graph& t,map<Edge, int, EdgeCompare>& Increment,
*v==*(f.getFirst()))){
int dir_count=inc_Dir(e,f);
Increment[f]+=dir_count*events;
//cerr<<"assigned "<<Increment[f]<<" to"<<endl;
//printEdge(f);
}
}
}
@ -265,8 +277,6 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &i
Node *w=nl->element;
//if chords has v->w
Edge ed(v,w, edgeWt, nl->randId);
//cerr<<"Assign:\n";
//printEdge(ed);
bool hasEdge=false;
for(vector<Edge>::iterator CI=chords.begin(), CE=chords.end();
CI!=CE && !hasEdge;++CI){
@ -280,7 +290,6 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &i
edCd->setCond(1);
edCd->setInc(edIncrements[ed]);
instr[ed]=edCd;
//std::cerr<<"Case 1\n";
}
else if(g.getNumberOfIncomingEdges(w)==1){
ws.push_back(w);
@ -310,16 +319,11 @@ static void getCodeInsertions(Graph &g, map<Edge, getEdgeCode *, EdgeCompare> &i
for(vector<Node *>::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){
Node *lnode=*EII;
Graph::nodeList &nl = g.getNodeList(lnode);
//cerr<<"Size:"<<lllt.size()<<"\n";
//cerr<<lnode->getElement()->getName()<<"\n";
graphListElement *N = findNodeInList(nl, w);
if (N){// lt.push_back(lnode);
//Node *v=*pd;
//Node *v=N->element;
if (N){
Node *v=lnode;
//if chords has v->w
Edge ed(v,w, N->weight, N->randId);
getEdgeCode *edCd=new getEdgeCode();
bool hasEdge=false;
@ -420,19 +424,18 @@ static void moveDummyCode(vector<Edge> &stDummy,
for(vector<Edge>::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){
if(ed.getRandId()==BEI->getRandId()){
//cerr<<"Looking at edge--------\n";
//printEdge(ed);
if(temp[*BEI]==0)
temp[*BEI]=new getEdgeCode();
//so ed is either in st, or ex!
if(ed.getFirst()==g.getRoot()){
//so its in stDummy
temp[*BEI]->setCdIn(edCd);
toErase.push_back(ed);
}
else if(ed.getSecond()==g.getExit()){
//so its in exDummy
toErase.push_back(ed);
temp[*BEI]->setCdOut(edCd);
@ -447,119 +450,16 @@ static void moveDummyCode(vector<Edge> &stDummy,
for(vector<Edge >::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme;
++vmi){
insertions.erase(*vmi);
//cerr<<"Erasing from insertion\n";
//printEdge(*vmi);
g.removeEdgeWithWt(*vmi);
}
for(map<Edge,getEdgeCode *, EdgeCompare>::iterator MI=temp.begin(),
ME=temp.end(); MI!=ME; ++MI){
insertions[MI->first]=MI->second;
//cerr<<"inserting into insertion-----\n";
//printEdge(MI->first);
}
//cerr<<"----\n";
/*
///---new code end
bool dummyHasIt=false;
DEBUG(cerr<<"Current edge considered---\n";
printEdge(ed));
//now check if stDummy has ed
for(vec_iter VI=stDummy.begin(), VE=stDummy.end(); VI!=VE && !dummyHasIt;
++VI){
if(*VI==ed){
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with stDummy\n";
printEdge(ed);
//#endif
dummyHasIt=true;
bool dummyInBe=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe; ++BE){
Edge backEdge=*BE;
Node *st=backEdge.getSecond();
Node *dm=ed.getSecond();
if(*dm==*st){
//so this is the back edge to use
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Moving to backedge\n";
printEdge(backEdge);
//#endif
getEdgeCode *ged=new getEdgeCode();
ged->setCdIn(edCd);
toErase.push_back(ed);//MI);//ed);
insertions[backEdge]=ged;
dummyInBe=true;
}
}
assert(dummyInBe);
//modf
//new
//vec_iter VII=VI;
stDummy.erase(VI);
break;
//end new
}
}
if(!dummyHasIt){
//so exDummy may hv it
bool inExDummy=false;
for(vec_iter VI=exDummy.begin(), VE=exDummy.end(); VI!=VE && !inExDummy;
++VI){
if(*VI==ed){
inExDummy=true;
//#ifdef DEBUG_PATH_PROFILES
cerr<<"Edge matched with exDummy\n";
//#endif
bool dummyInBe2=false;
//dummy edge with code
for(vec_iter BE=be.begin(), BEE=be.end(); BE!=BEE && !dummyInBe2;
++BE){
Edge backEdge=*BE;
Node *st=backEdge.getFirst();
Node *dm=ed.getFirst();
if(*dm==*st){
//so this is the back edge to use
cerr<<"Moving to backedge\n";
printEdge(backEdge);
getEdgeCode *ged;
if(insertions[backEdge]==NULL)
ged=new getEdgeCode();
else
ged=insertions[backEdge];
toErase.push_back(ed);//MI);//ed);
ged->setCdOut(edCd);
insertions[backEdge]=ged;
dummyInBe2=true;
}
}
assert(dummyInBe2);
//modf
//vec_iter VII=VI;
exDummy.erase(VI);
break;
//end
}
}
}
}
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"size of deletions: "<<toErase.size()<<"\n";
#endif
/*
for(vector<map<Edge, getEdgeCode *>::iterator>::iterator
vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; ++vmi)
insertions.erase(*vmi);
*/
#ifdef DEBUG_PATH_PROFILES
cerr<<"SIZE OF INSERTIONS AFTER DEL "<<insertions.size()<<"\n";
#endif
@ -576,7 +476,7 @@ void processGraph(Graph &g,
vector<Edge >& exDummy,
int numPaths){
static int MethNo=0;
static int MethNo=-1;
MethNo++;
//Given a graph: with exit->root edge, do the following in seq:
//1. get back edges
@ -623,10 +523,10 @@ void processGraph(Graph &g,
DEBUG(printGraph(g2));
Graph *t=g2.getMaxSpanningTree();
//#ifdef DEBUG_PATH_PROFILES
//cerr<<"Original maxspanning tree\n";
//printGraph(*t);
//#endif
#ifdef DEBUG_PATH_PROFILES
std::cerr<<"Original maxspanning tree\n";
printGraph(*t);
#endif
//now edges of tree t have weights reversed
//(negative) because the algorithm used
//to find max spanning tree is
@ -721,9 +621,7 @@ void processGraph(Graph &g,
//edge code over to the corresponding back edge
moveDummyCode(stDummy, exDummy, be, codeInsertions, g);
//cerr<<"After dummy removals\n";
//printGraph(g);
#ifdef DEBUG_PATH_PROFILES
//debugging info
cerr<<"After moving dummy code\n";
@ -746,8 +644,6 @@ void processGraph(Graph &g,
}
}
//print the graph (for debugging)
void printGraph(Graph &g){
vector<Node *> lt=g.getAllNodes();
@ -766,214 +662,3 @@ void printGraph(Graph &g){
}
cerr<<"--------------------Graph\n";
}
/*
////////// Getting back BBs from path number
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/Support/CFG.h"
#include "llvm/BasicBlock.h"
#include "llvm/Pass.h"
void getPathFrmNode(Node *n, vector<BasicBlock*> &vBB, int pathNo, Graph g,
vector<Edge> &stDummy, vector<Edge> &exDummy, vector<Edge> &be,
double strand){
Graph::nodeList nlist=g.getNodeList(n);
int maxCount=-9999999;
bool isStart=false;
if(*n==*g.getRoot())//its root: so first node of path
isStart=true;
double edgeRnd=0;
Node *nextRoot=n;
for(Graph::nodeList::iterator NLI=nlist.begin(), NLE=nlist.end(); NLI!=NLE;
++NLI){
//cerr<<"Saw:"<<NLI->weight<<endl;
if(NLI->weight>maxCount && NLI->weight<=pathNo){
maxCount=NLI->weight;
nextRoot=NLI->element;
edgeRnd=NLI->randId;
if(isStart)
strand=NLI->randId;
}
}
//cerr<<"Max:"<<maxCount<<endl;
if(!isStart)
assert(strand!=-1 && "strand not assigned!");
assert(!(*nextRoot==*n && pathNo>0) && "No more BBs to go");
assert(!(*nextRoot==*g.getExit() && pathNo-maxCount!=0) && "Reached exit");
vBB.push_back(n->getElement());
if(pathNo-maxCount==0 && *nextRoot==*g.getExit()){
//look for strnd and edgeRnd now:
bool has1=false, has2=false;
//check if exit has it
for(vector<Edge>::iterator VI=exDummy.begin(), VE=exDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==edgeRnd){
has2=true;
//cerr<<"has2: looking at"<<std::endl;
//printEdge(*VI);
break;
}
}
//check if start has it
for(vector<Edge>::iterator VI=stDummy.begin(), VE=stDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==strand){
//cerr<<"has1: looking at"<<std::endl;
//printEdge(*VI);
has1=true;
break;
}
}
if(has1){
//find backedge with endpoint vBB[1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getSecond()->getElement() == vBB[1] ){
vBB[0]=VI->getFirst()->getElement();
break;
}
}
}
if(has2){
//find backedge with startpoint vBB[vBB.size()-1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getFirst()->getElement() == vBB[vBB.size()-1] ){
//if(vBB[0]==VI->getFirst()->getElement())
//vBB.erase(vBB.begin()+vBB.size()-1);
//else
vBB.push_back(VI->getSecond()->getElement());
break;
}
}
}
else
vBB.push_back(nextRoot->getElement());
return;
}
assert(pathNo-maxCount>=0);
return getPathFrmNode(nextRoot, vBB, pathNo-maxCount, g, stDummy,
exDummy, be, strand);
}
static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
if(((*si)->getElement())==BB){
return *si;
}
}
return NULL;
}
void getBBtrace(vector<BasicBlock *> &vBB, int pathNo, Function *M){
//step 1: create graph
//Transform the cfg s.t. we have just one exit node
std::vector<Node *> nodes;
std::vector<Edge> edges;
Node *tmp;
Node *exitNode=0, *startNode=0;
BasicBlock *ExitNode = 0;
for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I) {
BasicBlock *BB = *I;
if (isa<ReturnInst>(BB->getTerminator())) {
ExitNode = BB;
break;
}
}
assert(ExitNode!=0 && "exitnode not found");
//iterating over BBs and making graph
//The nodes must be uniquesly identified:
//That is, no two nodes must hav same BB*
//First enter just nodes: later enter edges
for(Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=new Node(*BB);
nodes.push_back(nd);
if(*BB==ExitNode)
exitNode=nd;
if(*BB==M->front())
startNode=nd;
}
assert(exitNode!=0 && startNode!=0 && "Start or exit not found!");
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
Node *nd=findBB(nodes, *BB);
assert(nd && "No node for this edge!");
for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB);
s!=se; ++s){
Node *nd2=findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
Edge ed(nd,nd2,0);
edges.push_back(ed);
}
}
static bool printed=false;
Graph g(nodes,edges, startNode, exitNode);
//if(!printed)
//printGraph(g);
if (M->getBasicBlocks().size() <= 1) return; //uninstrumented
//step 2: getBackEdges
vector<Edge> be;
g.getBackEdges(be);
//cerr<<"BackEdges\n";
//for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
//printEdge(*VI);
//cerr<<"\n";
//}
//cerr<<"------\n";
//step 3: add dummy edges
vector<Edge> stDummy;
vector<Edge> exDummy;
addDummyEdges(stDummy, exDummy, g, be);
//cerr<<"After adding dummy edges\n";
//printGraph(g);
//step 4: value assgn to edges
int numPaths=valueAssignmentToEdges(g);
//if(!printed){
//printGraph(g);
//printed=true;
//}
//step 5: now travel from root, select max(edge) < pathNo,
//and go on until reach the exit
return getPathFrmNode(g.getRoot(), vBB, pathNo, g, stDummy, exDummy, be, -1);
}
*/