All PPC instructions are now auto-printed

32 and 64 bit AsmWriters unified
Darwin and AIX specific features of AsmWriter split out


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16163 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nate Begeman 2004-09-04 05:00:00 +00:00
parent ec9d780153
commit ed42853be1
11 changed files with 965 additions and 1197 deletions

View File

@ -24,9 +24,9 @@ class TargetMachine;
FunctionPass *createPPCBranchSelectionPass(); FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPC32ISelSimple(TargetMachine &TM); FunctionPass *createPPC32ISelSimple(TargetMachine &TM);
FunctionPass *createPPC32AsmPrinter(std::ostream &OS, TargetMachine &TM);
FunctionPass *createPPC64ISelSimple(TargetMachine &TM); FunctionPass *createPPC64ISelSimple(TargetMachine &TM);
FunctionPass *createPPC64AsmPrinter(std::ostream &OS, TargetMachine &TM); FunctionPass *createDarwinAsmPrinter(std::ostream &OS, TargetMachine &TM);
FunctionPass *createAIXAsmPrinter(std::ostream &OS, TargetMachine &TM);
} // end namespace llvm; } // end namespace llvm;

View File

@ -1,4 +1,4 @@
//===-- PPC32AsmPrinter.cpp - Print machine instrs to PowerPC assembly ----===// //===-- PowerPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
@ -18,7 +18,7 @@
#define DEBUG_TYPE "asmprinter" #define DEBUG_TYPE "asmprinter"
#include "PowerPC.h" #include "PowerPC.h"
#include "PPC32TargetMachine.h" #include "PowerPCTargetMachine.h"
#include "llvm/Constants.h" #include "llvm/Constants.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "llvm/Module.h" #include "llvm/Module.h"
@ -44,24 +44,18 @@ namespace {
std::set<std::string> Strings; std::set<std::string> Strings;
PPC32AsmPrinter(std::ostream &O, TargetMachine &TM) PPC32AsmPrinter(std::ostream &O, TargetMachine &TM)
: AsmPrinter(O, TM), LabelNumber(0) { : AsmPrinter(O, TM), LabelNumber(0) {}
CommentString = ";";
GlobalPrefix = "_";
ZeroDirective = "\t.space\t"; // ".space N" emits N zeros.
Data64bitsDirective = 0; // we can't emit a 64-bit unit
AlignmentIsInBytes = false; // Alignment is by power of 2.
}
/// Unique incrementer for label values for referencing Global values. /// Unique incrementer for label values for referencing Global values.
/// ///
unsigned LabelNumber; unsigned LabelNumber;
virtual const char *getPassName() const { virtual const char *getPassName() const {
return "PPC32 Assembly Printer"; return "PowerPC Assembly Printer";
} }
PPC32TargetMachine &getTM() { PowerPCTargetMachine &getTM() {
return static_cast<PPC32TargetMachine&>(TM); return static_cast<PowerPCTargetMachine&>(TM);
} }
/// printInstruction - This method is automatically generated by tablegen /// printInstruction - This method is automatically generated by tablegen
@ -72,7 +66,6 @@ namespace {
void printMachineInstruction(const MachineInstr *MI); void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO, bool LoadAddrOp = false); void printOp(const MachineOperand &MO, bool LoadAddrOp = false);
void printImmOp(const MachineOperand &MO, unsigned ArgType);
void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){ void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){
const MachineOperand &MO = MI->getOperand(OpNo); const MachineOperand &MO = MI->getOperand(OpNo);
@ -98,13 +91,24 @@ namespace {
assert(value <= 63 && "Invalid u6imm argument!"); assert(value <= 63 && "Invalid u6imm argument!");
O << (unsigned int)value; O << (unsigned int)value;
} }
void printS16ImmOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
O << (short)MI->getOperand(OpNo).getImmedValue();
}
void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo, void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
O << (unsigned short)MI->getOperand(OpNo).getImmedValue(); O << (unsigned short)MI->getOperand(OpNo).getImmedValue();
} }
void printBranchOperand(const MachineInstr *MI, unsigned OpNo, void printBranchOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
printOp(MI->getOperand(OpNo));
// Branches can take an immediate operand. This is used by the branch
// selection pass to print $+8, an eight byte displacement from the PC.
if (MI->getOperand(OpNo).isImmediate()) {
O << "$+" << MI->getOperand(OpNo).getImmedValue() << '\n';
} else {
printOp(MI->getOperand(OpNo));
}
} }
void printPICLabel(const MachineInstr *MI, unsigned OpNo, void printPICLabel(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
@ -112,80 +116,195 @@ namespace {
O << "\"L0000" << LabelNumber << "$pb\"\n"; O << "\"L0000" << LabelNumber << "$pb\"\n";
O << "\"L0000" << LabelNumber << "$pb\":"; O << "\"L0000" << LabelNumber << "$pb\":";
} }
void printSymbolHi(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
O << "ha16(";
printOp(MI->getOperand(OpNo), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")";
}
void printSymbolLo(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
// FIXME: Because LFS, LFD, and LWZ can be used either with a s16imm or
// a lo16 of a global or constant pool operand, we must handle both here.
// this isn't a great design, but it works for now.
if (MI->getOperand(OpNo).isImmediate()) {
O << (short)MI->getOperand(OpNo).getImmedValue();
} else {
O << "lo16(";
printOp(MI->getOperand(OpNo), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")";
}
}
virtual void printConstantPool(MachineConstantPool *MCP) = 0;
virtual bool runOnMachineFunction(MachineFunction &F) = 0;
virtual bool doFinalization(Module &M) = 0;
};
//
//
struct DarwinAsmPrinter : public PPC32AsmPrinter {
DarwinAsmPrinter(std::ostream &O, TargetMachine &TM)
: PPC32AsmPrinter(O, TM) {
CommentString = ";";
GlobalPrefix = "_";
ZeroDirective = "\t.space\t"; // ".space N" emits N zeros.
Data64bitsDirective = 0; // we can't emit a 64-bit unit
AlignmentIsInBytes = false; // Alignment is by power of 2.
}
virtual const char *getPassName() const {
return "Darwin PPC Assembly Printer";
}
void printConstantPool(MachineConstantPool *MCP); void printConstantPool(MachineConstantPool *MCP);
bool runOnMachineFunction(MachineFunction &F); bool runOnMachineFunction(MachineFunction &F);
bool doFinalization(Module &M); bool doFinalization(Module &M);
}; };
//
//
struct AIXAsmPrinter : public PPC32AsmPrinter {
/// Map for labels corresponding to global variables
///
std::map<const GlobalVariable*,std::string> GVToLabelMap;
AIXAsmPrinter(std::ostream &O, TargetMachine &TM)
: PPC32AsmPrinter(O, TM) {
CommentString = "#";
GlobalPrefix = "_";
ZeroDirective = "\t.space\t"; // ".space N" emits N zeros.
Data64bitsDirective = 0; // we can't emit a 64-bit unit
AlignmentIsInBytes = false; // Alignment is by power of 2.
}
virtual const char *getPassName() const {
return "AIX PPC Assembly Printer";
}
void printConstantPool(MachineConstantPool *MCP);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
} // end of anonymous namespace } // end of anonymous namespace
/// createPPC32AsmPrinterPass - Returns a pass that prints the PPC // SwitchSection - Switch to the specified section of the executable if we are
/// assembly code for a MachineFunction to the given output stream, // not already in it!
/// using the given target machine description. This should work //
/// regardless of whether the function is in SSA form or not. static void SwitchSection(std::ostream &OS, std::string &CurSection,
const char *NewSection) {
if (CurSection != NewSection) {
CurSection = NewSection;
if (!CurSection.empty())
OS << "\t" << NewSection << "\n";
}
}
/// isStringCompatible - Can we treat the specified array as a string?
/// Only if it is an array of ubytes or non-negative sbytes.
/// ///
FunctionPass *llvm::createPPC32AsmPrinter(std::ostream &o, TargetMachine &tm) { static bool isStringCompatible(const ConstantArray *CVA) {
return new PPC32AsmPrinter(o, tm); const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
if (ETy == Type::UByteTy) return true;
if (ETy != Type::SByteTy) return false;
for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
return false;
return true;
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
// Possible states while outputting ASCII strings
namespace {
enum StringSection {
None,
Alpha,
Numeric
};
}
/// SwitchStringSection - manage the changes required to output bytes as
/// characters in a string vs. numeric decimal values
///
static inline void SwitchStringSection(std::ostream &O, StringSection NewSect,
StringSection &Current) {
if (Current == None) {
if (NewSect == Alpha)
O << "\t.byte \"";
else if (NewSect == Numeric)
O << "\t.byte ";
} else if (Current == Alpha) {
if (NewSect == None)
O << "\"";
else if (NewSect == Numeric)
O << "\"\n"
<< "\t.byte ";
} else if (Current == Numeric) {
if (NewSect == Alpha)
O << '\n'
<< "\t.byte \"";
else if (NewSect == Numeric)
O << ", ";
}
Current = NewSect;
}
/// getAsCString - Return the specified array as a C compatible
/// string, only if the predicate isStringCompatible is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
assert(isStringCompatible(CVA) && "Array is not string compatible!");
if (CVA->getNumOperands() == 0)
return;
StringSection Current = None;
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) {
unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
if (C == '"') {
SwitchStringSection(O, Alpha, Current);
O << "\"\"";
} else if (isprint(C)) {
SwitchStringSection(O, Alpha, Current);
O << C;
} else {
SwitchStringSection(O, Numeric, Current);
O << utostr((unsigned)C);
}
}
SwitchStringSection(O, None, Current);
O << '\n';
}
/// createDarwinAsmPrinterPass - Returns a pass that prints the PPC assembly
/// code for a MachineFunction to the given output stream, in a format that the
/// Darwin assembler can deal with.
///
FunctionPass *llvm::createDarwinAsmPrinter(std::ostream &o, TargetMachine &tm) {
return new DarwinAsmPrinter(o, tm);
}
/// createAIXAsmPrinterPass - Returns a pass that prints the PPC assembly code
/// for a MachineFunction to the given output stream, in a format that the
/// AIX 5L assembler can deal with.
///
FunctionPass *llvm::createAIXAsmPrinter(std::ostream &o, TargetMachine &tm) {
return new AIXAsmPrinter(o, tm);
} }
// Include the auto-generated portion of the assembly writer // Include the auto-generated portion of the assembly writer
#include "PowerPCGenAsmWriter.inc" #include "PowerPCGenAsmWriter.inc"
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void PPC32AsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.const\n";
emitAlignment(TD.getTypeAlignmentShift(CP[i]->getType()));
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t" << CommentString
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
}
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool PPC32AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
setupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
printConstantPool(MF.getConstantPool());
// Print out labels for the function.
O << "\t.text\n";
emitAlignment(2);
O << "\t.globl\t" << CurrentFnName << "\n";
O << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t"
<< CommentString << " " << I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
++LabelNumber;
// We didn't modify anything.
return false;
}
void PPC32AsmPrinter::printOp(const MachineOperand &MO, void PPC32AsmPrinter::printOp(const MachineOperand &MO,
bool LoadAddrOp /* = false */) { bool LoadAddrOp /* = false */) {
const MRegisterInfo &RI = *TM.getRegisterInfo(); const MRegisterInfo &RI = *TM.getRegisterInfo();
@ -268,15 +387,6 @@ void PPC32AsmPrinter::printOp(const MachineOperand &MO,
} }
} }
void PPC32AsmPrinter::printImmOp(const MachineOperand &MO, unsigned ArgType) {
int Imm = MO.getImmedValue();
if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
O << (short)Imm;
} else {
O << Imm;
}
}
/// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to /// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream. /// the current output stream.
/// ///
@ -285,99 +395,67 @@ void PPC32AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
if (printInstruction(MI)) if (printInstruction(MI))
return; // Printer was automatically generated return; // Printer was automatically generated
unsigned Opcode = MI->getOpcode(); assert(0 && "Unhandled instruction in asm writer!");
const TargetInstrInfo &TII = *TM.getInstrInfo(); abort();
const TargetInstrDescriptor &Desc = TII.get(Opcode);
unsigned i;
unsigned ArgCount = MI->getNumOperands();
unsigned ArgType[] = {
(Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
};
assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
"Instruction requires VMX support");
assert(((Desc.TSFlags & PPCII::PPC64) == 0) &&
"Instruction requires 64 bit support");
O << TII.getName(Opcode) << " ";
if (Opcode == PPC::LOADHiAddr) {
printOp(MI->getOperand(0));
O << ", ";
if (MI->getOperand(1).getReg() == PPC::R0)
O << "0";
else
printOp(MI->getOperand(1));
O << ", ha16(" ;
printOp(MI->getOperand(2), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")\n";
} else if (ArgCount == 3 && (MI->getOperand(2).isConstantPoolIndex()
|| MI->getOperand(2).isGlobalAddress())) {
printOp(MI->getOperand(0));
O << ", lo16(";
printOp(MI->getOperand(2), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")";
O << "(";
if (MI->getOperand(1).getReg() == PPC::R0)
O << "0";
else
printOp(MI->getOperand(1));
O << ")\n";
} else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) {
printOp(MI->getOperand(0));
O << ", ";
printImmOp(MI->getOperand(1), ArgType[1]);
O << "(";
if (MI->getOperand(2).hasAllocatedReg() &&
MI->getOperand(2).getReg() == PPC::R0)
O << "0";
else
printOp(MI->getOperand(2));
O << ")\n";
} else {
for (i = 0; i < ArgCount; ++i) {
// addi and friends
if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
MI->getOperand(1).hasAllocatedReg() &&
MI->getOperand(1).getReg() == PPC::R0) {
O << "0";
// for long branch support, bc $+8
} else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
TII.isBranch(MI->getOpcode())) {
O << "$+8";
assert(8 == MI->getOperand(i).getImmedValue()
&& "branch off PC not to pc+8?");
//printOp(MI->getOperand(i));
} else if (MI->getOperand(i).isImmediate()) {
printImmOp(MI->getOperand(i), ArgType[i]);
} else {
printOp(MI->getOperand(i));
}
if (ArgCount - 1 == i)
O << "\n";
else
O << ", ";
}
}
return; return;
} }
// SwitchSection - Switch to the specified section of the executable if we are /// runOnMachineFunction - This uses the printMachineInstruction()
// not already in it! /// method to print assembly for each instruction.
// ///
static void SwitchSection(std::ostream &OS, std::string &CurSection, bool DarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
const char *NewSection) { setupMachineFunction(MF);
if (CurSection != NewSection) { O << "\n\n";
CurSection = NewSection;
if (!CurSection.empty()) // Print out constants referenced by the function
OS << "\t" << NewSection << "\n"; printConstantPool(MF.getConstantPool());
// Print out labels for the function.
O << "\t.text\n";
emitAlignment(2);
O << "\t.globl\t" << CurrentFnName << "\n";
O << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t"
<< CommentString << " " << I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
++LabelNumber;
// We didn't modify anything.
return false;
}
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void DarwinAsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.const\n";
emitAlignment(TD.getTypeAlignmentShift(CP[i]->getType()));
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t" << CommentString
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
} }
} }
bool PPC32AsmPrinter::doFinalization(Module &M) { bool DarwinAsmPrinter::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData(); const TargetData &TD = TM.getTargetData();
std::string CurSection; std::string CurSection;
@ -487,3 +565,145 @@ bool PPC32AsmPrinter::doFinalization(Module &M) {
AsmPrinter::doFinalization(M); AsmPrinter::doFinalization(M);
return false; // success return false; // success
} }
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool AIXAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
CurrentFnName = MF.getFunction()->getName();
// Print out constants referenced by the function
printConstantPool(MF.getConstantPool());
// Print out header for the function.
O << "\t.csect .text[PR]\n"
<< "\t.align 2\n"
<< "\t.globl " << CurrentFnName << '\n'
<< "\t.globl ." << CurrentFnName << '\n'
<< "\t.csect " << CurrentFnName << "[DS],3\n"
<< CurrentFnName << ":\n"
<< "\t.llong ." << CurrentFnName << ", TOC[tc0], 0\n"
<< "\t.csect .text[PR]\n"
<< '.' << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << "LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
<< I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
++LabelNumber;
O << "LT.." << CurrentFnName << ":\n"
<< "\t.long 0\n"
<< "\t.byte 0,0,32,65,128,0,0,0\n"
<< "\t.long LT.." << CurrentFnName << "-." << CurrentFnName << '\n'
<< "\t.short 3\n"
<< "\t.byte \"" << CurrentFnName << "\"\n"
<< "\t.align 2\n";
// We didn't modify anything.
return false;
}
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AIXAsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.const\n";
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
<< "\n";
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
}
}
bool AIXAsmPrinter::doInitialization(Module &M) {
const TargetData &TD = TM.getTargetData();
std::string CurSection;
O << "\t.machine \"ppc64\"\n"
<< "\t.toc\n"
<< "\t.csect .text[PR]\n";
// Print out module-level global variables
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
if (!I->hasInitializer())
continue;
std::string Name = I->getName();
Constant *C = I->getInitializer();
// N.B.: We are defaulting to writable strings
if (I->hasExternalLinkage()) {
O << "\t.globl " << Name << '\n'
<< "\t.csect .data[RW],3\n";
} else {
O << "\t.csect _global.rw_c[RW],3\n";
}
O << Name << ":\n";
emitGlobalConstant(C);
}
// Output labels for globals
if (M.gbegin() != M.gend()) O << "\t.toc\n";
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
const GlobalVariable *GV = I;
// Do not output labels for unused variables
if (GV->isExternal() && GV->use_begin() == GV->use_end())
continue;
std::string Name = GV->getName();
std::string Label = "LC.." + utostr(LabelNumber++);
GVToLabelMap[GV] = Label;
O << Label << ":\n"
<< "\t.tc " << Name << "[TC]," << Name;
if (GV->isExternal()) O << "[RW]";
O << '\n';
}
Mang = new Mangler(M, ".");
return false; // success
}
bool AIXAsmPrinter::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData();
// Print out module-level global variables
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
if (I->hasInitializer() || I->hasExternalLinkage())
continue;
std::string Name = I->getName();
if (I->hasInternalLinkage()) {
O << "\t.lcomm " << Name << ",16,_global.bss_c";
} else {
O << "\t.comm " << Name << "," << TD.getTypeSize(I->getType())
<< "," << log2((unsigned)TD.getTypeAlignment(I->getType()));
}
O << "\t\t# ";
WriteAsOperand(O, I, true, true, &M);
O << "\n";
}
O << "_section_.text:\n"
<< "\t.csect .data[RW],3\n"
<< "\t.llong _section_.text\n";
delete Mang;
return false; // success
}

View File

@ -624,12 +624,13 @@ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
copyGlobalBaseToRegister(MBB, IP, GlobalBase); copyGlobalBaseToRegister(MBB, IP, GlobalBase);
BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1).addReg(GlobalBase) BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
.addConstantPoolIndex(CPI); .addConstantPoolIndex(CPI);
BuildMI(*MBB, IP, Opcode, 2, R).addReg(Reg1).addConstantPoolIndex(CPI); BuildMI(*MBB, IP, Opcode, 2, R).addConstantPoolIndex(CPI).addReg(Reg1);
} else if (isa<ConstantPointerNull>(C)) { } else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register. // Copy zero (null pointer) to the register.
BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0); BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// GV is located at base + distance // GV is located at base + distance
unsigned GlobalBase = makeAnotherReg(Type::IntTy); unsigned GlobalBase = makeAnotherReg(Type::IntTy);
unsigned TmpReg = makeAnotherReg(GV->getType()); unsigned TmpReg = makeAnotherReg(GV->getType());
unsigned Opcode = (GV->hasWeakLinkage() unsigned Opcode = (GV->hasWeakLinkage()
@ -640,7 +641,7 @@ void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
copyGlobalBaseToRegister(MBB, IP, GlobalBase); copyGlobalBaseToRegister(MBB, IP, GlobalBase);
BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg).addReg(GlobalBase) BuildMI(*MBB, IP, PPC::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
.addGlobalAddress(GV); .addGlobalAddress(GV);
BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV); BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(TmpReg);
// Add the GV to the list of things whose addresses have been taken. // Add the GV to the list of things whose addresses have been taken.
TM.AddressTaken.insert(GV); TM.AddressTaken.insert(GV);
@ -1179,7 +1180,7 @@ void ISel::emitSelectOperation(MachineBasicBlock *MBB,
Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode()); Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
} else { } else {
unsigned CondReg = getReg(Cond, MBB, IP); unsigned CondReg = getReg(Cond, MBB, IP);
BuildMI(*MBB, IP, PPC::CMPI, 2, PPC::CR0).addReg(CondReg).addSImm(0); BuildMI(*MBB, IP, PPC::CMPWI, 2, PPC::CR0).addReg(CondReg).addSImm(0);
Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE); Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
} }
unsigned TrueValue = getReg(TrueVal, BB, BB->end()); unsigned TrueValue = getReg(TrueVal, BB, BB->end());

View File

@ -1,700 +0,0 @@
//===-- PPC64AsmPrinter.cpp - Print machine instrs to PowerPC assembly ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
// the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asmprinter"
#include "PowerPC.h"
#include "PowerPCInstrInfo.h"
#include "PPC64TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <set>
namespace llvm {
namespace {
Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
struct Printer : public MachineFunctionPass {
/// Output stream on which we're printing assembly code.
///
std::ostream &O;
/// Target machine description which we query for reg. names, data
/// layout, etc.
///
PPC64TargetMachine &TM;
/// Name-mangler for global names.
///
Mangler *Mang;
/// Map for labels corresponding to global variables
///
std::map<const GlobalVariable*,std::string> GVToLabelMap;
Printer(std::ostream &o, TargetMachine &tm) : O(o),
TM(reinterpret_cast<PPC64TargetMachine&>(tm)), LabelNumber(0) {}
/// Cache of mangled name for current function. This is
/// recalculated at the beginning of each call to
/// runOnMachineFunction().
///
std::string CurrentFnName;
/// Unique incrementer for label values for referencing Global values.
///
unsigned LabelNumber;
virtual const char *getPassName() const {
return "PPC64 Assembly Printer";
}
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
void printImmOp(const MachineOperand &MO, unsigned ArgType);
void printConstantPool(MachineConstantPool *MCP);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
void emitGlobalConstant(const Constant* CV);
void emitConstantValueOnly(const Constant *CV);
};
} // end of anonymous namespace
/// createPPC64AsmPrinterPass - Returns a pass that prints the PPC
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description. This should work
/// regardless of whether the function is in SSA form or not.
///
FunctionPass *createPPC64AsmPrinter(std::ostream &o,TargetMachine &tm) {
return new Printer(o, tm);
}
/// isStringCompatible - Can we treat the specified array as a string?
/// Only if it is an array of ubytes or non-negative sbytes.
///
static bool isStringCompatible(const ConstantArray *CVA) {
const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
if (ETy == Type::UByteTy) return true;
if (ETy != Type::SByteTy) return false;
for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
return false;
return true;
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
// Possible states while outputting ASCII strings
namespace {
enum StringSection {
None,
Alpha,
Numeric
};
}
/// SwitchStringSection - manage the changes required to output bytes as
/// characters in a string vs. numeric decimal values
///
static inline void SwitchStringSection(std::ostream &O, StringSection NewSect,
StringSection &Current) {
if (Current == None) {
if (NewSect == Alpha)
O << "\t.byte \"";
else if (NewSect == Numeric)
O << "\t.byte ";
} else if (Current == Alpha) {
if (NewSect == None)
O << "\"";
else if (NewSect == Numeric)
O << "\"\n"
<< "\t.byte ";
} else if (Current == Numeric) {
if (NewSect == Alpha)
O << '\n'
<< "\t.byte \"";
else if (NewSect == Numeric)
O << ", ";
}
Current = NewSect;
}
/// getAsCString - Return the specified array as a C compatible
/// string, only if the predicate isStringCompatible is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
assert(isStringCompatible(CVA) && "Array is not string compatible!");
if (CVA->getNumOperands() == 0)
return;
StringSection Current = None;
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) {
unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
if (C == '"') {
SwitchStringSection(O, Alpha, Current);
O << "\"\"";
} else if (isprint(C)) {
SwitchStringSection(O, Alpha, Current);
O << C;
} else {
SwitchStringSection(O, Numeric, Current);
O << utostr((unsigned)C);
}
}
SwitchStringSection(O, None, Current);
O << '\n';
}
// Print out the specified constant, without a storage class. Only the
// constants valid in constant expressions can occur here.
void Printer::emitConstantValueOnly(const Constant *CV) {
if (CV->isNullValue())
O << "0";
else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
assert(CB == ConstantBool::True);
O << "1";
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
O << CI->getValue();
else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
O << CI->getValue();
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
// This is a constant address for a global variable or function. Use the
// name of the variable or function as the address value.
O << Mang->getValueName(GV);
else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData &TD = TM.getTargetData();
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
// generate a symbolic expression for the byte address
const Constant *ptrVal = CE->getOperand(0);
std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
O << "(";
emitConstantValueOnly(ptrVal);
O << ") + " << Offset;
} else {
emitConstantValueOnly(ptrVal);
}
break;
}
case Instruction::Cast: {
// Support only non-converting or widening casts for now, that is, ones
// that do not involve a change in value. This assertion is really gross,
// and may not even be a complete check.
Constant *Op = CE->getOperand(0);
const Type *OpTy = Op->getType(), *Ty = CE->getType();
// Remember, kids, pointers on x86 can be losslessly converted back and
// forth into 32-bit or wider integers, regardless of signedness. :-P
assert(((isa<PointerType>(OpTy)
&& (Ty == Type::LongTy || Ty == Type::ULongTy
|| Ty == Type::IntTy || Ty == Type::UIntTy))
|| (isa<PointerType>(Ty)
&& (OpTy == Type::LongTy || OpTy == Type::ULongTy
|| OpTy == Type::IntTy || OpTy == Type::UIntTy))
|| (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
&& OpTy->isLosslesslyConvertibleTo(Ty))))
&& "FIXME: Don't yet support this kind of constant cast expr");
O << "(";
emitConstantValueOnly(Op);
O << ")";
break;
}
case Instruction::Add:
O << "(";
emitConstantValueOnly(CE->getOperand(0));
O << ") + (";
emitConstantValueOnly(CE->getOperand(1));
O << ")";
break;
default:
assert(0 && "Unsupported operator!");
}
} else {
assert(0 && "Unknown constant value!");
}
}
// Print a constant value or values, with the appropriate storage class as a
// prefix.
void Printer::emitGlobalConstant(const Constant *CV) {
const TargetData &TD = TM.getTargetData();
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (isStringCompatible(CVA)) {
printAsCString(O, CVA);
} else { // Not a string. Print the values in successive locations
for (unsigned i=0, e = CVA->getNumOperands(); i != e; i++)
emitGlobalConstant(CVA->getOperand(i));
}
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
// Print the fields in successive locations. Pad to align if needed!
const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
unsigned sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
unsigned fieldSize = TD.getTypeSize(field->getType());
unsigned padSize = ((i == e-1? cvsLayout->StructSize
: cvsLayout->MemberOffsets[i+1])
- cvsLayout->MemberOffsets[i]) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value
emitGlobalConstant(field);
// Insert the field padding unless it's zero bytes...
if (padSize)
O << "\t.space\t " << padSize << "\n";
}
assert(sizeSoFar == cvsLayout->StructSize &&
"Layout of constant struct may be incorrect!");
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// FP Constants are printed as integer constants to avoid losing
// precision...
double Val = CFP->getValue();
switch (CFP->getType()->getTypeID()) {
default: assert(0 && "Unknown floating point type!");
case Type::FloatTyID: {
union FU { // Abide by C TBAA rules
float FVal;
unsigned UVal;
} U;
U.FVal = Val;
O << "\t.long " << U.UVal << "\t# float " << Val << "\n";
return;
}
case Type::DoubleTyID: {
union DU { // Abide by C TBAA rules
double FVal;
uint64_t UVal;
struct {
uint32_t MSWord;
uint32_t LSWord;
} T;
} U;
U.FVal = Val;
O << ".long " << U.T.MSWord << "\t# double most significant word "
<< Val << "\n";
O << ".long " << U.T.LSWord << "\t# double least significant word "
<< Val << "\n";
return;
}
}
} else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
union DU { // Abide by C TBAA rules
int64_t UVal;
struct {
uint32_t MSWord;
uint32_t LSWord;
} T;
} U;
U.UVal = CI->getRawValue();
O << ".long " << U.T.MSWord << "\t# Double-word most significant word "
<< U.UVal << "\n";
O << ".long " << U.T.LSWord << "\t# Double-word least significant word "
<< U.UVal << "\n";
return;
}
}
const Type *type = CV->getType();
O << "\t";
switch (type->getTypeID()) {
case Type::UByteTyID: case Type::SByteTyID:
O << "\t.byte";
break;
case Type::UShortTyID: case Type::ShortTyID:
O << "\t.short";
break;
case Type::BoolTyID:
case Type::PointerTyID:
case Type::UIntTyID: case Type::IntTyID:
O << "\t.long";
break;
case Type::ULongTyID: case Type::LongTyID:
assert (0 && "Should have already output double-word constant.");
case Type::FloatTyID: case Type::DoubleTyID:
assert (0 && "Should have already output floating point constant.");
default:
if (CV == Constant::getNullValue(type)) { // Zero initializer?
O << "\t.space " << TD.getTypeSize(type) << "\n";
return;
}
std::cerr << "Can't handle printing: " << *CV;
abort();
break;
}
O << ' ';
emitConstantValueOnly(CV);
O << '\n';
}
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void Printer::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.const\n";
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
<< "\n";
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
}
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool Printer::runOnMachineFunction(MachineFunction &MF) {
CurrentFnName = MF.getFunction()->getName();
// Print out constants referenced by the function
printConstantPool(MF.getConstantPool());
// Print out header for the function.
O << "\t.csect .text[PR]\n"
<< "\t.align 2\n"
<< "\t.globl " << CurrentFnName << '\n'
<< "\t.globl ." << CurrentFnName << '\n'
<< "\t.csect " << CurrentFnName << "[DS],3\n"
<< CurrentFnName << ":\n"
<< "\t.llong ." << CurrentFnName << ", TOC[tc0], 0\n"
<< "\t.csect .text[PR]\n"
<< '.' << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << "LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
<< I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
++LabelNumber;
O << "LT.." << CurrentFnName << ":\n"
<< "\t.long 0\n"
<< "\t.byte 0,0,32,65,128,0,0,0\n"
<< "\t.long LT.." << CurrentFnName << "-." << CurrentFnName << '\n'
<< "\t.short 3\n"
<< "\t.byte \"" << CurrentFnName << "\"\n"
<< "\t.align 2\n";
// We didn't modify anything.
return false;
}
void Printer::printOp(const MachineOperand &MO,
bool elideOffsetKeyword /* = false */) {
const MRegisterInfo &RI = *TM.getRegisterInfo();
int new_symbol;
switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister:
if (Value *V = MO.getVRegValueOrNull()) {
O << "<" << V->getName() << ">";
return;
}
// FALLTHROUGH
case MachineOperand::MO_MachineRegister:
case MachineOperand::MO_CCRegister: {
// On AIX, do not print out the 'R' (GPR) or 'F' (FPR) in reg names
const char *regName = RI.get(MO.getReg()).Name;
if (regName[0] == 'R' || regName[0] == 'F')
O << &regName[1];
else
O << regName;
return;
}
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
std::cerr << "printOp() does not handle immediate values\n";
abort();
return;
case MachineOperand::MO_PCRelativeDisp:
std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
abort();
return;
case MachineOperand::MO_MachineBasicBlock: {
MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
<< "_" << MBBOp->getNumber() << "\t# "
<< MBBOp->getBasicBlock()->getName();
return;
}
case MachineOperand::MO_ConstantPoolIndex:
O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex();
return;
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
return;
case MachineOperand::MO_GlobalAddress:
if (!elideOffsetKeyword) {
GlobalValue *GV = MO.getGlobal();
if (Function *F = dyn_cast<Function>(GV)) {
O << Mang->getValueName(F);
} else if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
// output the label name
O << GVToLabelMap[GVar];
}
}
return;
default:
O << "<unknown operand type: " << MO.getType() << ">";
return;
}
}
void Printer::printImmOp(const MachineOperand &MO, unsigned ArgType) {
int Imm = MO.getImmedValue();
if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
O << (short)Imm;
} else {
O << Imm;
}
}
/// printMachineInstruction -- Print out a single PPC LLVM instruction
/// MI in Darwin syntax to the current output stream.
///
void Printer::printMachineInstruction(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
const TargetInstrInfo &TII = *TM.getInstrInfo();
const TargetInstrDescriptor &Desc = TII.get(Opcode);
unsigned i;
unsigned ArgCount = MI->getNumOperands();
unsigned ArgType[] = {
(Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
};
assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
"Instruction requires VMX support");
++EmittedInsts;
// CALLpcrel and CALLindirect are handled specially here to print only the
// appropriate number of args that the assembler expects. This is because
// may have many arguments appended to record the uses of registers that are
// holding arguments to the called function.
if (Opcode == PPC::COND_BRANCH) {
std::cerr << "Error: untranslated conditional branch psuedo instruction!\n";
abort();
} else if (Opcode == PPC::IMPLICIT_DEF) {
O << "# IMPLICIT DEF ";
printOp(MI->getOperand(0));
O << "\n";
return;
} else if (Opcode == PPC::CALLpcrel) {
O << TII.getName(Opcode) << " ";
printOp(MI->getOperand(0));
O << "\n";
return;
} else if (Opcode == PPC::CALLindirect) {
O << TII.getName(Opcode) << " ";
printImmOp(MI->getOperand(0), ArgType[0]);
O << ", ";
printImmOp(MI->getOperand(1), ArgType[0]);
O << "\n";
return;
} else if (Opcode == PPC::MovePCtoLR) {
// FIXME: should probably be converted to cout.width and cout.fill
O << "bl \"L0000" << LabelNumber << "$pb\"\n";
O << "\"L0000" << LabelNumber << "$pb\":\n";
O << "\tmflr ";
printOp(MI->getOperand(0));
O << "\n";
return;
}
O << LowercaseString(TII.getName(Opcode)) << " ";
if (Opcode == PPC::BLR || Opcode == PPC::NOP) {
O << "\n";
} else if (ArgCount == 3 &&
(ArgType[1] == PPCII::Disimm16 || ArgType[1] == PPCII::Disimm14)) {
printOp(MI->getOperand(0));
O << ", ";
MachineOperand MO = MI->getOperand(1);
if (MO.isImmediate())
printImmOp(MO, ArgType[1]);
else
printOp(MO);
O << "(";
printOp(MI->getOperand(2));
O << ")\n";
} else {
for (i = 0; i < ArgCount; ++i) {
// addi and friends
if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
MI->getOperand(1).hasAllocatedReg() &&
MI->getOperand(1).getReg() == PPC::R0) {
O << "0";
// for long branch support, bc $+8
} else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
TII.isBranch(MI->getOpcode())) {
O << "$+8";
assert(8 == MI->getOperand(i).getImmedValue()
&& "branch off PC not to pc+8?");
//printOp(MI->getOperand(i));
} else if (MI->getOperand(i).isImmediate()) {
printImmOp(MI->getOperand(i), ArgType[i]);
} else {
printOp(MI->getOperand(i));
}
if (ArgCount - 1 == i)
O << "\n";
else
O << ", ";
}
}
}
// SwitchSection - Switch to the specified section of the executable if we are
// not already in it!
//
static void SwitchSection(std::ostream &OS, std::string &CurSection,
const char *NewSection) {
if (CurSection != NewSection) {
CurSection = NewSection;
if (!CurSection.empty())
OS << "\t" << NewSection << "\n";
}
}
bool Printer::doInitialization(Module &M) {
const TargetData &TD = TM.getTargetData();
std::string CurSection;
O << "\t.machine \"ppc64\"\n"
<< "\t.toc\n"
<< "\t.csect .text[PR]\n";
// Print out module-level global variables
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
if (!I->hasInitializer())
continue;
std::string Name = I->getName();
Constant *C = I->getInitializer();
// N.B.: We are defaulting to writable strings
if (I->hasExternalLinkage()) {
O << "\t.globl " << Name << '\n'
<< "\t.csect .data[RW],3\n";
} else {
O << "\t.csect _global.rw_c[RW],3\n";
}
O << Name << ":\n";
emitGlobalConstant(C);
}
// Output labels for globals
if (M.gbegin() != M.gend()) O << "\t.toc\n";
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
const GlobalVariable *GV = I;
// Do not output labels for unused variables
if (GV->isExternal() && GV->use_begin() == GV->use_end())
continue;
std::string Name = GV->getName();
std::string Label = "LC.." + utostr(LabelNumber++);
GVToLabelMap[GV] = Label;
O << Label << ":\n"
<< "\t.tc " << Name << "[TC]," << Name;
if (GV->isExternal()) O << "[RW]";
O << '\n';
}
Mang = new Mangler(M, ".");
return false; // success
}
bool Printer::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData();
// Print out module-level global variables
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
if (I->hasInitializer() || I->hasExternalLinkage())
continue;
std::string Name = I->getName();
if (I->hasInternalLinkage()) {
O << "\t.lcomm " << Name << ",16,_global.bss_c";
} else {
O << "\t.comm " << Name << "," << TD.getTypeSize(I->getType())
<< "," << log2((unsigned)TD.getTypeAlignment(I->getType()));
}
O << "\t\t# ";
WriteAsOperand(O, I, true, true, &M);
O << "\n";
}
O << "_section_.text:\n"
<< "\t.csect .data[RW],3\n"
<< "\t.llong _section_.text\n";
delete Mang;
return false; // success
}
} // End llvm namespace

View File

@ -1,4 +1,4 @@
//===-- PPC32AsmPrinter.cpp - Print machine instrs to PowerPC assembly ----===// //===-- PowerPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //
@ -18,7 +18,7 @@
#define DEBUG_TYPE "asmprinter" #define DEBUG_TYPE "asmprinter"
#include "PowerPC.h" #include "PowerPC.h"
#include "PPC32TargetMachine.h" #include "PowerPCTargetMachine.h"
#include "llvm/Constants.h" #include "llvm/Constants.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "llvm/Module.h" #include "llvm/Module.h"
@ -44,24 +44,18 @@ namespace {
std::set<std::string> Strings; std::set<std::string> Strings;
PPC32AsmPrinter(std::ostream &O, TargetMachine &TM) PPC32AsmPrinter(std::ostream &O, TargetMachine &TM)
: AsmPrinter(O, TM), LabelNumber(0) { : AsmPrinter(O, TM), LabelNumber(0) {}
CommentString = ";";
GlobalPrefix = "_";
ZeroDirective = "\t.space\t"; // ".space N" emits N zeros.
Data64bitsDirective = 0; // we can't emit a 64-bit unit
AlignmentIsInBytes = false; // Alignment is by power of 2.
}
/// Unique incrementer for label values for referencing Global values. /// Unique incrementer for label values for referencing Global values.
/// ///
unsigned LabelNumber; unsigned LabelNumber;
virtual const char *getPassName() const { virtual const char *getPassName() const {
return "PPC32 Assembly Printer"; return "PowerPC Assembly Printer";
} }
PPC32TargetMachine &getTM() { PowerPCTargetMachine &getTM() {
return static_cast<PPC32TargetMachine&>(TM); return static_cast<PowerPCTargetMachine&>(TM);
} }
/// printInstruction - This method is automatically generated by tablegen /// printInstruction - This method is automatically generated by tablegen
@ -72,7 +66,6 @@ namespace {
void printMachineInstruction(const MachineInstr *MI); void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO, bool LoadAddrOp = false); void printOp(const MachineOperand &MO, bool LoadAddrOp = false);
void printImmOp(const MachineOperand &MO, unsigned ArgType);
void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){ void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){
const MachineOperand &MO = MI->getOperand(OpNo); const MachineOperand &MO = MI->getOperand(OpNo);
@ -98,13 +91,24 @@ namespace {
assert(value <= 63 && "Invalid u6imm argument!"); assert(value <= 63 && "Invalid u6imm argument!");
O << (unsigned int)value; O << (unsigned int)value;
} }
void printS16ImmOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
O << (short)MI->getOperand(OpNo).getImmedValue();
}
void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo, void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
O << (unsigned short)MI->getOperand(OpNo).getImmedValue(); O << (unsigned short)MI->getOperand(OpNo).getImmedValue();
} }
void printBranchOperand(const MachineInstr *MI, unsigned OpNo, void printBranchOperand(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
printOp(MI->getOperand(OpNo));
// Branches can take an immediate operand. This is used by the branch
// selection pass to print $+8, an eight byte displacement from the PC.
if (MI->getOperand(OpNo).isImmediate()) {
O << "$+" << MI->getOperand(OpNo).getImmedValue() << '\n';
} else {
printOp(MI->getOperand(OpNo));
}
} }
void printPICLabel(const MachineInstr *MI, unsigned OpNo, void printPICLabel(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) { MVT::ValueType VT) {
@ -112,80 +116,195 @@ namespace {
O << "\"L0000" << LabelNumber << "$pb\"\n"; O << "\"L0000" << LabelNumber << "$pb\"\n";
O << "\"L0000" << LabelNumber << "$pb\":"; O << "\"L0000" << LabelNumber << "$pb\":";
} }
void printSymbolHi(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
O << "ha16(";
printOp(MI->getOperand(OpNo), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")";
}
void printSymbolLo(const MachineInstr *MI, unsigned OpNo,
MVT::ValueType VT) {
// FIXME: Because LFS, LFD, and LWZ can be used either with a s16imm or
// a lo16 of a global or constant pool operand, we must handle both here.
// this isn't a great design, but it works for now.
if (MI->getOperand(OpNo).isImmediate()) {
O << (short)MI->getOperand(OpNo).getImmedValue();
} else {
O << "lo16(";
printOp(MI->getOperand(OpNo), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")";
}
}
virtual void printConstantPool(MachineConstantPool *MCP) = 0;
virtual bool runOnMachineFunction(MachineFunction &F) = 0;
virtual bool doFinalization(Module &M) = 0;
};
//
//
struct DarwinAsmPrinter : public PPC32AsmPrinter {
DarwinAsmPrinter(std::ostream &O, TargetMachine &TM)
: PPC32AsmPrinter(O, TM) {
CommentString = ";";
GlobalPrefix = "_";
ZeroDirective = "\t.space\t"; // ".space N" emits N zeros.
Data64bitsDirective = 0; // we can't emit a 64-bit unit
AlignmentIsInBytes = false; // Alignment is by power of 2.
}
virtual const char *getPassName() const {
return "Darwin PPC Assembly Printer";
}
void printConstantPool(MachineConstantPool *MCP); void printConstantPool(MachineConstantPool *MCP);
bool runOnMachineFunction(MachineFunction &F); bool runOnMachineFunction(MachineFunction &F);
bool doFinalization(Module &M); bool doFinalization(Module &M);
}; };
//
//
struct AIXAsmPrinter : public PPC32AsmPrinter {
/// Map for labels corresponding to global variables
///
std::map<const GlobalVariable*,std::string> GVToLabelMap;
AIXAsmPrinter(std::ostream &O, TargetMachine &TM)
: PPC32AsmPrinter(O, TM) {
CommentString = "#";
GlobalPrefix = "_";
ZeroDirective = "\t.space\t"; // ".space N" emits N zeros.
Data64bitsDirective = 0; // we can't emit a 64-bit unit
AlignmentIsInBytes = false; // Alignment is by power of 2.
}
virtual const char *getPassName() const {
return "AIX PPC Assembly Printer";
}
void printConstantPool(MachineConstantPool *MCP);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
} // end of anonymous namespace } // end of anonymous namespace
/// createPPC32AsmPrinterPass - Returns a pass that prints the PPC // SwitchSection - Switch to the specified section of the executable if we are
/// assembly code for a MachineFunction to the given output stream, // not already in it!
/// using the given target machine description. This should work //
/// regardless of whether the function is in SSA form or not. static void SwitchSection(std::ostream &OS, std::string &CurSection,
const char *NewSection) {
if (CurSection != NewSection) {
CurSection = NewSection;
if (!CurSection.empty())
OS << "\t" << NewSection << "\n";
}
}
/// isStringCompatible - Can we treat the specified array as a string?
/// Only if it is an array of ubytes or non-negative sbytes.
/// ///
FunctionPass *llvm::createPPC32AsmPrinter(std::ostream &o, TargetMachine &tm) { static bool isStringCompatible(const ConstantArray *CVA) {
return new PPC32AsmPrinter(o, tm); const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
if (ETy == Type::UByteTy) return true;
if (ETy != Type::SByteTy) return false;
for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
return false;
return true;
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
// Possible states while outputting ASCII strings
namespace {
enum StringSection {
None,
Alpha,
Numeric
};
}
/// SwitchStringSection - manage the changes required to output bytes as
/// characters in a string vs. numeric decimal values
///
static inline void SwitchStringSection(std::ostream &O, StringSection NewSect,
StringSection &Current) {
if (Current == None) {
if (NewSect == Alpha)
O << "\t.byte \"";
else if (NewSect == Numeric)
O << "\t.byte ";
} else if (Current == Alpha) {
if (NewSect == None)
O << "\"";
else if (NewSect == Numeric)
O << "\"\n"
<< "\t.byte ";
} else if (Current == Numeric) {
if (NewSect == Alpha)
O << '\n'
<< "\t.byte \"";
else if (NewSect == Numeric)
O << ", ";
}
Current = NewSect;
}
/// getAsCString - Return the specified array as a C compatible
/// string, only if the predicate isStringCompatible is true.
///
static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
assert(isStringCompatible(CVA) && "Array is not string compatible!");
if (CVA->getNumOperands() == 0)
return;
StringSection Current = None;
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) {
unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
if (C == '"') {
SwitchStringSection(O, Alpha, Current);
O << "\"\"";
} else if (isprint(C)) {
SwitchStringSection(O, Alpha, Current);
O << C;
} else {
SwitchStringSection(O, Numeric, Current);
O << utostr((unsigned)C);
}
}
SwitchStringSection(O, None, Current);
O << '\n';
}
/// createDarwinAsmPrinterPass - Returns a pass that prints the PPC assembly
/// code for a MachineFunction to the given output stream, in a format that the
/// Darwin assembler can deal with.
///
FunctionPass *llvm::createDarwinAsmPrinter(std::ostream &o, TargetMachine &tm) {
return new DarwinAsmPrinter(o, tm);
}
/// createAIXAsmPrinterPass - Returns a pass that prints the PPC assembly code
/// for a MachineFunction to the given output stream, in a format that the
/// AIX 5L assembler can deal with.
///
FunctionPass *llvm::createAIXAsmPrinter(std::ostream &o, TargetMachine &tm) {
return new AIXAsmPrinter(o, tm);
} }
// Include the auto-generated portion of the assembly writer // Include the auto-generated portion of the assembly writer
#include "PowerPCGenAsmWriter.inc" #include "PowerPCGenAsmWriter.inc"
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void PPC32AsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.const\n";
emitAlignment(TD.getTypeAlignmentShift(CP[i]->getType()));
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t" << CommentString
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
}
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool PPC32AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
setupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
printConstantPool(MF.getConstantPool());
// Print out labels for the function.
O << "\t.text\n";
emitAlignment(2);
O << "\t.globl\t" << CurrentFnName << "\n";
O << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t"
<< CommentString << " " << I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
++LabelNumber;
// We didn't modify anything.
return false;
}
void PPC32AsmPrinter::printOp(const MachineOperand &MO, void PPC32AsmPrinter::printOp(const MachineOperand &MO,
bool LoadAddrOp /* = false */) { bool LoadAddrOp /* = false */) {
const MRegisterInfo &RI = *TM.getRegisterInfo(); const MRegisterInfo &RI = *TM.getRegisterInfo();
@ -268,15 +387,6 @@ void PPC32AsmPrinter::printOp(const MachineOperand &MO,
} }
} }
void PPC32AsmPrinter::printImmOp(const MachineOperand &MO, unsigned ArgType) {
int Imm = MO.getImmedValue();
if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) {
O << (short)Imm;
} else {
O << Imm;
}
}
/// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to /// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream. /// the current output stream.
/// ///
@ -285,99 +395,67 @@ void PPC32AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
if (printInstruction(MI)) if (printInstruction(MI))
return; // Printer was automatically generated return; // Printer was automatically generated
unsigned Opcode = MI->getOpcode(); assert(0 && "Unhandled instruction in asm writer!");
const TargetInstrInfo &TII = *TM.getInstrInfo(); abort();
const TargetInstrDescriptor &Desc = TII.get(Opcode);
unsigned i;
unsigned ArgCount = MI->getNumOperands();
unsigned ArgType[] = {
(Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask,
(Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask
};
assert(((Desc.TSFlags & PPCII::VMX) == 0) &&
"Instruction requires VMX support");
assert(((Desc.TSFlags & PPCII::PPC64) == 0) &&
"Instruction requires 64 bit support");
O << TII.getName(Opcode) << " ";
if (Opcode == PPC::LOADHiAddr) {
printOp(MI->getOperand(0));
O << ", ";
if (MI->getOperand(1).getReg() == PPC::R0)
O << "0";
else
printOp(MI->getOperand(1));
O << ", ha16(" ;
printOp(MI->getOperand(2), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")\n";
} else if (ArgCount == 3 && (MI->getOperand(2).isConstantPoolIndex()
|| MI->getOperand(2).isGlobalAddress())) {
printOp(MI->getOperand(0));
O << ", lo16(";
printOp(MI->getOperand(2), true /* LoadAddrOp */);
O << "-\"L0000" << LabelNumber << "$pb\")";
O << "(";
if (MI->getOperand(1).getReg() == PPC::R0)
O << "0";
else
printOp(MI->getOperand(1));
O << ")\n";
} else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) {
printOp(MI->getOperand(0));
O << ", ";
printImmOp(MI->getOperand(1), ArgType[1]);
O << "(";
if (MI->getOperand(2).hasAllocatedReg() &&
MI->getOperand(2).getReg() == PPC::R0)
O << "0";
else
printOp(MI->getOperand(2));
O << ")\n";
} else {
for (i = 0; i < ArgCount; ++i) {
// addi and friends
if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 &&
MI->getOperand(1).hasAllocatedReg() &&
MI->getOperand(1).getReg() == PPC::R0) {
O << "0";
// for long branch support, bc $+8
} else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() &&
TII.isBranch(MI->getOpcode())) {
O << "$+8";
assert(8 == MI->getOperand(i).getImmedValue()
&& "branch off PC not to pc+8?");
//printOp(MI->getOperand(i));
} else if (MI->getOperand(i).isImmediate()) {
printImmOp(MI->getOperand(i), ArgType[i]);
} else {
printOp(MI->getOperand(i));
}
if (ArgCount - 1 == i)
O << "\n";
else
O << ", ";
}
}
return; return;
} }
// SwitchSection - Switch to the specified section of the executable if we are /// runOnMachineFunction - This uses the printMachineInstruction()
// not already in it! /// method to print assembly for each instruction.
// ///
static void SwitchSection(std::ostream &OS, std::string &CurSection, bool DarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
const char *NewSection) { setupMachineFunction(MF);
if (CurSection != NewSection) { O << "\n\n";
CurSection = NewSection;
if (!CurSection.empty()) // Print out constants referenced by the function
OS << "\t" << NewSection << "\n"; printConstantPool(MF.getConstantPool());
// Print out labels for the function.
O << "\t.text\n";
emitAlignment(2);
O << "\t.globl\t" << CurrentFnName << "\n";
O << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t"
<< CommentString << " " << I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
++LabelNumber;
// We didn't modify anything.
return false;
}
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void DarwinAsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.const\n";
emitAlignment(TD.getTypeAlignmentShift(CP[i]->getType()));
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t" << CommentString
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
} }
} }
bool PPC32AsmPrinter::doFinalization(Module &M) { bool DarwinAsmPrinter::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData(); const TargetData &TD = TM.getTargetData();
std::string CurSection; std::string CurSection;
@ -487,3 +565,145 @@ bool PPC32AsmPrinter::doFinalization(Module &M) {
AsmPrinter::doFinalization(M); AsmPrinter::doFinalization(M);
return false; // success return false; // success
} }
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool AIXAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
CurrentFnName = MF.getFunction()->getName();
// Print out constants referenced by the function
printConstantPool(MF.getConstantPool());
// Print out header for the function.
O << "\t.csect .text[PR]\n"
<< "\t.align 2\n"
<< "\t.globl " << CurrentFnName << '\n'
<< "\t.globl ." << CurrentFnName << '\n'
<< "\t.csect " << CurrentFnName << "[DS],3\n"
<< CurrentFnName << ":\n"
<< "\t.llong ." << CurrentFnName << ", TOC[tc0], 0\n"
<< "\t.csect .text[PR]\n"
<< '.' << CurrentFnName << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
O << "LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
<< I->getBasicBlock()->getName() << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printMachineInstruction(II);
}
}
++LabelNumber;
O << "LT.." << CurrentFnName << ":\n"
<< "\t.long 0\n"
<< "\t.byte 0,0,32,65,128,0,0,0\n"
<< "\t.long LT.." << CurrentFnName << "-." << CurrentFnName << '\n'
<< "\t.short 3\n"
<< "\t.byte \"" << CurrentFnName << "\"\n"
<< "\t.align 2\n";
// We didn't modify anything.
return false;
}
/// printConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AIXAsmPrinter::printConstantPool(MachineConstantPool *MCP) {
const std::vector<Constant*> &CP = MCP->getConstants();
const TargetData &TD = TM.getTargetData();
if (CP.empty()) return;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
O << "\t.const\n";
O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
<< "\n";
O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;"
<< *CP[i] << "\n";
emitGlobalConstant(CP[i]);
}
}
bool AIXAsmPrinter::doInitialization(Module &M) {
const TargetData &TD = TM.getTargetData();
std::string CurSection;
O << "\t.machine \"ppc64\"\n"
<< "\t.toc\n"
<< "\t.csect .text[PR]\n";
// Print out module-level global variables
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
if (!I->hasInitializer())
continue;
std::string Name = I->getName();
Constant *C = I->getInitializer();
// N.B.: We are defaulting to writable strings
if (I->hasExternalLinkage()) {
O << "\t.globl " << Name << '\n'
<< "\t.csect .data[RW],3\n";
} else {
O << "\t.csect _global.rw_c[RW],3\n";
}
O << Name << ":\n";
emitGlobalConstant(C);
}
// Output labels for globals
if (M.gbegin() != M.gend()) O << "\t.toc\n";
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
const GlobalVariable *GV = I;
// Do not output labels for unused variables
if (GV->isExternal() && GV->use_begin() == GV->use_end())
continue;
std::string Name = GV->getName();
std::string Label = "LC.." + utostr(LabelNumber++);
GVToLabelMap[GV] = Label;
O << Label << ":\n"
<< "\t.tc " << Name << "[TC]," << Name;
if (GV->isExternal()) O << "[RW]";
O << '\n';
}
Mang = new Mangler(M, ".");
return false; // success
}
bool AIXAsmPrinter::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData();
// Print out module-level global variables
for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
if (I->hasInitializer() || I->hasExternalLinkage())
continue;
std::string Name = I->getName();
if (I->hasInternalLinkage()) {
O << "\t.lcomm " << Name << ",16,_global.bss_c";
} else {
O << "\t.comm " << Name << "," << TD.getTypeSize(I->getType())
<< "," << log2((unsigned)TD.getTypeAlignment(I->getType()));
}
O << "\t\t# ";
WriteAsOperand(O, I, true, true, &M);
O << "\n";
}
O << "_section_.text:\n"
<< "\t.csect .data[RW],3\n"
<< "\t.llong _section_.text\n";
delete Mang;
return false; // success
}

View File

@ -42,7 +42,8 @@ def Imm6 : Format<23>;
// //
// PowerPC instruction formats // PowerPC instruction formats
class I<string name, bits<6> opcode, bit ppc64, bit vmx> : Instruction { class I<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: Instruction {
field bits<32> Inst; field bits<32> Inst;
bits<3> ArgCount; bits<3> ArgCount;
@ -54,14 +55,16 @@ class I<string name, bits<6> opcode, bit ppc64, bit vmx> : Instruction {
bit PPC64 = ppc64; bit PPC64 = ppc64;
bit VMX = vmx; bit VMX = vmx;
let Name = name; let Name = "";
let Namespace = "PPC"; let Namespace = "PPC";
let Inst{0-5} = opcode; let Inst{0-5} = opcode;
let OperandList = OL;
let AsmString = asmstr;
} }
// 1.7.1 I-Form // 1.7.1 I-Form
class IForm<bits<6> opcode, bit aa, bit lk, bit ppc64, bit vmx, class IForm<bits<6> opcode, bit aa, bit lk, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<24> LI; field bits<24> LI;
let ArgCount = 1; let ArgCount = 1;
@ -74,13 +77,11 @@ class IForm<bits<6> opcode, bit aa, bit lk, bit ppc64, bit vmx,
let Inst{6-29} = LI; let Inst{6-29} = LI;
let Inst{30} = aa; let Inst{30} = aa;
let Inst{31} = lk; let Inst{31} = lk;
let OperandList = OL;
let AsmString = asmstr;
} }
// 1.7.2 B-Form // 1.7.2 B-Form
class BForm<string name, bits<6> opcode, bit aa, bit lk, bit ppc64, bit vmx> class BForm<bits<6> opcode, bit aa, bit lk, bit ppc64, bit vmx,
: I<name, opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> BO; field bits<5> BO;
field bits<5> BI; field bits<5> BI;
field bits<14> BD; field bits<14> BD;
@ -99,9 +100,9 @@ class BForm<string name, bits<6> opcode, bit aa, bit lk, bit ppc64, bit vmx>
let Inst{31} = lk; let Inst{31} = lk;
} }
class BForm_ext<string name, bits<6> opcode, bit aa, bit lk, bits<5> bo, class BForm_ext<bits<6> opcode, bit aa, bit lk, bits<5> bo, bits<5> bi,
bits<5> bi, bit ppc64, bit vmx> bit ppc64, bit vmx, dag OL, string asmstr>
: BForm<name, opcode, aa, lk, ppc64, vmx> { : BForm<opcode, aa, lk, ppc64, vmx, OL, asmstr> {
let ArgCount = 2; let ArgCount = 2;
let Arg2Type = Imm5.Value; let Arg2Type = Imm5.Value;
let Arg1Type = PCRelimm14.Value; let Arg1Type = PCRelimm14.Value;
@ -111,8 +112,8 @@ class BForm_ext<string name, bits<6> opcode, bit aa, bit lk, bits<5> bo,
} }
// 1.7.4 D-Form // 1.7.4 D-Form
class DForm_base<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_base<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: I<name, opcode, ppc64, vmx> { : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> A; field bits<5> A;
field bits<5> B; field bits<5> B;
field bits<16> C; field bits<16> C;
@ -129,32 +130,41 @@ class DForm_base<string name, bits<6> opcode, bit ppc64, bit vmx>
let Inst{16-31} = C; let Inst{16-31} = C;
} }
class DForm_1<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_1<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: DForm_base<name, opcode, ppc64, vmx> { : DForm_base<opcode, ppc64, vmx, OL, asmstr> {
let Arg1Type = Disimm16.Value; let Arg1Type = Disimm16.Value;
let Arg2Type = Gpr0.Value; let Arg2Type = Gpr.Value;
} }
class DForm_2<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_2<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: DForm_base<name, opcode, ppc64, vmx>; : DForm_base<opcode, ppc64, vmx, OL, asmstr>;
class DForm_2_r0<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_2_r0<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: DForm_base<name, opcode, ppc64, vmx> { : I<opcode, ppc64, vmx, OL, asmstr> {
let Arg1Type = Gpr0.Value; field bits<5> A;
field bits<16> B;
let ArgCount = 2;
let Arg0Type = Gpr.Value;
let Arg1Type = Simm16.Value;
let Arg2Type = 0;
let Arg3Type = 0;
let Arg4Type = 0;
let Inst{6-10} = A;
let Inst{11-15} = 0;
let Inst{16-31} = B;
} }
// Currently we make the use/def reg distinction in ISel, not tablegen // Currently we make the use/def reg distinction in ISel, not tablegen
class DForm_3<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_3<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: DForm_1<name, opcode, ppc64, vmx>; : DForm_1<opcode, ppc64, vmx, OL, asmstr>;
class DForm_4<bits<6> opcode, bit ppc64, bit vmx, class DForm_4<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
dag OL, string asmstr> : DForm_base<"", opcode, ppc64, vmx> { : DForm_base<opcode, ppc64, vmx, OL, asmstr>;
let OperandList = OL;
let AsmString = asmstr;
}
class DForm_4_zero<string name, bits<6> opcode, bit ppc64, bit vmx, class DForm_4_zero<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
dag OL, string asmstr> : DForm_1<"", opcode, ppc64, vmx> { : DForm_1<opcode, ppc64, vmx, OL, asmstr> {
let ArgCount = 0; let ArgCount = 0;
let Arg0Type = 0; let Arg0Type = 0;
let Arg1Type = 0; let Arg1Type = 0;
@ -162,12 +172,10 @@ class DForm_4_zero<string name, bits<6> opcode, bit ppc64, bit vmx,
let A = 0; let A = 0;
let B = 0; let B = 0;
let C = 0; let C = 0;
let OperandList = OL;
let AsmString = asmstr;
} }
class DForm_5<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_5<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: I<name, opcode, ppc64, vmx> { : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<3> BF; field bits<3> BF;
field bits<1> L; field bits<1> L;
field bits<5> RA; field bits<5> RA;
@ -187,8 +195,8 @@ class DForm_5<string name, bits<6> opcode, bit ppc64, bit vmx>
let Inst{16-31} = I; let Inst{16-31} = I;
} }
class DForm_5_ext<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_5_ext<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: DForm_5<name, opcode, ppc64, vmx> { : DForm_5<opcode, ppc64, vmx, OL, asmstr> {
let L = ppc64; let L = ppc64;
let ArgCount = 3; let ArgCount = 3;
let Arg0Type = Imm3.Value; let Arg0Type = Imm3.Value;
@ -197,15 +205,10 @@ class DForm_5_ext<string name, bits<6> opcode, bit ppc64, bit vmx>
let Arg3Type = 0; let Arg3Type = 0;
} }
class DForm_6<bits<6> opcode, bit ppc64, bit vmx, class DForm_6<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
dag OL, string asmstr> : DForm_5<opcode, ppc64, vmx, OL, asmstr>;
: DForm_5<"", opcode, ppc64, vmx> {
let OperandList = OL;
let AsmString = asmstr;
}
class DForm_6_ext<bits<6> opcode, bit ppc64, bit vmx, class DForm_6_ext<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
dag OL, string asmstr>
: DForm_6<opcode, ppc64, vmx, OL, asmstr> { : DForm_6<opcode, ppc64, vmx, OL, asmstr> {
let L = ppc64; let L = ppc64;
let ArgCount = 3; let ArgCount = 3;
@ -215,24 +218,19 @@ class DForm_6_ext<bits<6> opcode, bit ppc64, bit vmx,
let Arg3Type = 0; let Arg3Type = 0;
} }
class DForm_7<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_8<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: DForm_base<name, opcode, ppc64, vmx> { : DForm_1<opcode, ppc64, vmx, OL, asmstr> {
let Arg1Type = Imm5.Value;
}
class DForm_8<string name, bits<6> opcode, bit ppc64, bit vmx>
: DForm_1<name, opcode, ppc64, vmx> {
let Arg0Type = Fpr.Value; let Arg0Type = Fpr.Value;
} }
class DForm_9<string name, bits<6> opcode, bit ppc64, bit vmx> class DForm_9<bits<6> opcode, bit ppc64, bit vmx, dag OL, string asmstr>
: DForm_1<name, opcode, ppc64, vmx> { : DForm_1<opcode, ppc64, vmx, OL, asmstr> {
let Arg0Type = Fpr.Value; let Arg0Type = Fpr.Value;
} }
// 1.7.5 DS-Form // 1.7.5 DS-Form
class DSForm_1<string name, bits<6> opcode, bits<2> xo, bit ppc64, bit vmx> class DSForm_1<bits<6> opcode, bits<2> xo, bit ppc64, bit vmx,
: I<name, opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> RST; field bits<5> RST;
field bits<14> DS; field bits<14> DS;
field bits<5> RA; field bits<5> RA;
@ -250,12 +248,14 @@ class DSForm_1<string name, bits<6> opcode, bits<2> xo, bit ppc64, bit vmx>
let Inst{30-31} = xo; let Inst{30-31} = xo;
} }
class DSForm_2<string name, bits<6> opcode, bits<2> xo, bit ppc64, bit vmx> class DSForm_2<bits<6> opcode, bits<2> xo, bit ppc64, bit vmx,
: DSForm_1<name, opcode, xo, ppc64, vmx>; dag OL, string asmstr>
: DSForm_1<opcode, xo, ppc64, vmx, OL, asmstr>;
// 1.7.6 X-Form // 1.7.6 X-Form
class XForm_base_r3xo<bits<6> opcode, bits<10> xo, bit rc, bit ppc64, bit vmx, class XForm_base_r3xo<bits<6> opcode, bits<10> xo, bit rc, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr>
: I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> RST; field bits<5> RST;
field bits<5> A; field bits<5> A;
field bits<5> B; field bits<5> B;
@ -272,8 +272,6 @@ class XForm_base_r3xo<bits<6> opcode, bits<10> xo, bit rc, bit ppc64, bit vmx,
let Inst{16-20} = B; let Inst{16-20} = B;
let Inst{21-30} = xo; let Inst{21-30} = xo;
let Inst{31} = rc; let Inst{31} = rc;
let OperandList = OL;
let AsmString = asmstr;
} }
@ -314,7 +312,7 @@ class XForm_11<bits<6> opcode, bits<10> xo, bit rc, bit ppc64, bit vmx,
} }
class XForm_16<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx, class XForm_16<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<3> BF; field bits<3> BF;
field bits<1> L; field bits<1> L;
field bits<5> RA; field bits<5> RA;
@ -334,8 +332,6 @@ class XForm_16<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
let Inst{16-20} = RB; let Inst{16-20} = RB;
let Inst{21-30} = xo; let Inst{21-30} = xo;
let Inst{31} = 0; let Inst{31} = 0;
let OperandList = OL;
let AsmString = asmstr;
} }
class XForm_16_ext<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx, class XForm_16_ext<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
@ -349,7 +345,7 @@ class XForm_16_ext<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
} }
class XForm_17<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx, class XForm_17<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<3> BF; field bits<3> BF;
field bits<5> FRA; field bits<5> FRA;
field bits<5> FRB; field bits<5> FRB;
@ -367,8 +363,6 @@ class XForm_17<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
let Inst{16-20} = FRB; let Inst{16-20} = FRB;
let Inst{21-30} = xo; let Inst{21-30} = xo;
let Inst{31} = 0; let Inst{31} = 0;
let OperandList = OL;
let AsmString = asmstr;
} }
class XForm_25<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx, class XForm_25<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
@ -405,7 +399,7 @@ class XLForm_1<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
} }
class XLForm_2<bits<6> opcode, bits<10> xo, bit lk, bit ppc64, bit vmx, class XLForm_2<bits<6> opcode, bits<10> xo, bit lk, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> BO; field bits<5> BO;
field bits<5> BI; field bits<5> BI;
field bits<2> BH; field bits<2> BH;
@ -423,8 +417,6 @@ class XLForm_2<bits<6> opcode, bits<10> xo, bit lk, bit ppc64, bit vmx,
let Inst{19-20} = BH; let Inst{19-20} = BH;
let Inst{21-30} = xo; let Inst{21-30} = xo;
let Inst{31} = lk; let Inst{31} = lk;
let OperandList = OL;
let AsmString = asmstr;
} }
class XLForm_2_ext<bits<6> opcode, bits<10> xo, bits<5> bo, class XLForm_2_ext<bits<6> opcode, bits<10> xo, bits<5> bo,
@ -442,7 +434,7 @@ class XLForm_2_ext<bits<6> opcode, bits<10> xo, bits<5> bo,
// 1.7.8 XFX-Form // 1.7.8 XFX-Form
class XFXForm_1<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx, class XFXForm_1<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> ST; field bits<5> ST;
field bits<10> SPR; field bits<10> SPR;
@ -457,8 +449,6 @@ class XFXForm_1<bits<6> opcode, bits<10> xo, bit ppc64, bit vmx,
let Inst{11-20} = SPR; let Inst{11-20} = SPR;
let Inst{21-30} = xo; let Inst{21-30} = xo;
let Inst{31} = 0; let Inst{31} = 0;
let OperandList = OL;
let AsmString = asmstr;
} }
class XFXForm_1_ext<bits<6> opcode, bits<10> xo, bits<10> spr, bit ppc64, class XFXForm_1_ext<bits<6> opcode, bits<10> xo, bits<10> spr, bit ppc64,
@ -485,7 +475,7 @@ class XFXForm_7_ext<bits<6> opcode, bits<10> xo, bits<10> spr,
// 1.7.10 XS-Form // 1.7.10 XS-Form
class XSForm_1<bits<6> opcode, bits<9> xo, bit rc, bit ppc64, bit vmx, class XSForm_1<bits<6> opcode, bits<9> xo, bit rc, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> RS; field bits<5> RS;
field bits<5> A; field bits<5> A;
field bits<6> SH; field bits<6> SH;
@ -503,13 +493,11 @@ class XSForm_1<bits<6> opcode, bits<9> xo, bit rc, bit ppc64, bit vmx,
let Inst{21-29} = xo; let Inst{21-29} = xo;
let Inst{30} = SH{0}; let Inst{30} = SH{0};
let Inst{31} = rc; let Inst{31} = rc;
let OperandList = OL;
let AsmString = asmstr;
} }
// 1.7.11 XO-Form // 1.7.11 XO-Form
class XOForm_1<bits<6> opcode, bits<9> xo, bit oe, bit rc, bit ppc64, bit vmx, class XOForm_1<bits<6> opcode, bits<9> xo, bit oe, bit rc, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
field bits<5> RT; field bits<5> RT;
field bits<5> RA; field bits<5> RA;
field bits<5> RB; field bits<5> RB;
@ -527,8 +515,6 @@ class XOForm_1<bits<6> opcode, bits<9> xo, bit oe, bit rc, bit ppc64, bit vmx,
let Inst{21} = oe; let Inst{21} = oe;
let Inst{22-30} = xo; let Inst{22-30} = xo;
let Inst{31} = rc; let Inst{31} = rc;
let OperandList = OL;
let AsmString = asmstr;
} }
class XOForm_1r<bits<6> opcode, bits<9> xo, bit oe, bit rc, bit ppc64, bit vmx, class XOForm_1r<bits<6> opcode, bits<9> xo, bit oe, bit rc, bit ppc64, bit vmx,
@ -547,7 +533,7 @@ class XOForm_3<bits<6> opcode, bits<9> xo, bit oe, bit rc, bit ppc64, bit vmx,
// 1.7.12 A-Form // 1.7.12 A-Form
class AForm_1<bits<6> opcode, bits<5> xo, bit rc, bit ppc64, bit vmx, class AForm_1<bits<6> opcode, bits<5> xo, bit rc, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
let ArgCount = 4; let ArgCount = 4;
field bits<5> FRT; field bits<5> FRT;
field bits<5> FRA; field bits<5> FRA;
@ -566,8 +552,6 @@ class AForm_1<bits<6> opcode, bits<5> xo, bit rc, bit ppc64, bit vmx,
let Inst{21-25} = FRC; let Inst{21-25} = FRC;
let Inst{26-30} = xo; let Inst{26-30} = xo;
let Inst{31} = rc; let Inst{31} = rc;
let OperandList = OL;
let AsmString = asmstr;
} }
class AForm_2<bits<6> opcode, bits<5> xo, bit rc, bit ppc64, bit vmx, dag OL, class AForm_2<bits<6> opcode, bits<5> xo, bit rc, bit ppc64, bit vmx, dag OL,
@ -588,7 +572,7 @@ class AForm_3<bits<6> opcode, bits<5> xo, bit rc, bit ppc64, bit vmx, dag OL,
// 1.7.13 M-Form // 1.7.13 M-Form
class MForm_1<bits<6> opcode, bit rc, bit ppc64, bit vmx, class MForm_1<bits<6> opcode, bit rc, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
let ArgCount = 5; let ArgCount = 5;
field bits<5> RS; field bits<5> RS;
field bits<5> RA; field bits<5> RA;
@ -608,8 +592,6 @@ class MForm_1<bits<6> opcode, bit rc, bit ppc64, bit vmx,
let Inst{21-25} = MB; let Inst{21-25} = MB;
let Inst{26-30} = ME; let Inst{26-30} = ME;
let Inst{31} = rc; let Inst{31} = rc;
let OperandList = OL;
let AsmString = asmstr;
} }
class MForm_2<bits<6> opcode, bit rc, bit ppc64, bit vmx, class MForm_2<bits<6> opcode, bit rc, bit ppc64, bit vmx,
@ -620,7 +602,7 @@ class MForm_2<bits<6> opcode, bit rc, bit ppc64, bit vmx,
// 1.7.14 MD-Form // 1.7.14 MD-Form
class MDForm_1<bits<6> opcode, bits<3> xo, bit rc, bit ppc64, bit vmx, class MDForm_1<bits<6> opcode, bits<3> xo, bit rc, bit ppc64, bit vmx,
dag OL, string asmstr> : I<"", opcode, ppc64, vmx> { dag OL, string asmstr> : I<opcode, ppc64, vmx, OL, asmstr> {
let ArgCount = 4; let ArgCount = 4;
field bits<5> RS; field bits<5> RS;
field bits<5> RA; field bits<5> RA;
@ -640,13 +622,11 @@ class MDForm_1<bits<6> opcode, bits<3> xo, bit rc, bit ppc64, bit vmx,
let Inst{27-29} = xo; let Inst{27-29} = xo;
let Inst{30} = SH{0}; let Inst{30} = SH{0};
let Inst{31} = rc; let Inst{31} = rc;
let OperandList = OL;
let AsmString = asmstr;
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
class Pseudo<dag OL, string asmstr> : I<"", 0, 0, 0> { class Pseudo<dag OL, string asmstr> : I<0, 0, 0, OL, asmstr> {
let ArgCount = 0; let ArgCount = 0;
let PPC64 = 0; let PPC64 = 0;
let VMX = 0; let VMX = 0;
@ -658,6 +638,4 @@ class Pseudo<dag OL, string asmstr> : I<"", 0, 0, 0> {
let Arg4Type = 0; let Arg4Type = 0;
let Inst{31-0} = 0; let Inst{31-0} = 0;
let OperandList = OL;
let AsmString = asmstr;
} }

View File

@ -23,6 +23,9 @@ def u5imm : Operand<i8> {
def u6imm : Operand<i8> { def u6imm : Operand<i8> {
let PrintMethod = "printU6ImmOperand"; let PrintMethod = "printU6ImmOperand";
} }
def s16imm : Operand<i16> {
let PrintMethod = "printS16ImmOperand";
}
def u16imm : Operand<i16> { def u16imm : Operand<i16> {
let PrintMethod = "printU16ImmOperand"; let PrintMethod = "printU16ImmOperand";
} }
@ -32,6 +35,12 @@ def target : Operand<i32> {
def piclabel: Operand<i32> { def piclabel: Operand<i32> {
let PrintMethod = "printPICLabel"; let PrintMethod = "printPICLabel";
} }
def symbolHi: Operand<i32> {
let PrintMethod = "printSymbolHi";
}
def symbolLo: Operand<i32> {
let PrintMethod = "printSymbolLo";
}
// Pseudo-instructions: // Pseudo-instructions:
def PHI : Pseudo<(ops), "; PHI">; def PHI : Pseudo<(ops), "; PHI">;
@ -45,12 +54,18 @@ let isBranch = 1, isTerminator = 1 in {
def B : IForm<18, 0, 0, 0, 0, (ops target:$func), "b $func">; def B : IForm<18, 0, 0, 0, 0, (ops target:$func), "b $func">;
// FIXME: 4*CR# needs to be added to the BI field! // FIXME: 4*CR# needs to be added to the BI field!
// This will only work for CR0 as it stands now // This will only work for CR0 as it stands now
def BLT : BForm_ext<"blt", 16, 0, 0, 12, 0, 0, 0>; def BLT : BForm_ext<16, 0, 0, 12, 0, 0, 0, (ops CRRC:$crS, target:$block),
def BLE : BForm_ext<"ble", 16, 0, 0, 4, 1, 0, 0>; "blt $block">;
def BEQ : BForm_ext<"beq", 16, 0, 0, 12, 2, 0, 0>; def BLE : BForm_ext<16, 0, 0, 4, 1, 0, 0, (ops CRRC:$crS, target:$block),
def BGE : BForm_ext<"bge", 16, 0, 0, 4, 0, 0, 0>; "ble $block">;
def BGT : BForm_ext<"bgt", 16, 0, 0, 12, 1, 0, 0>; def BEQ : BForm_ext<16, 0, 0, 12, 2, 0, 0, (ops CRRC:$crS, target:$block),
def BNE : BForm_ext<"bne", 16, 0, 0, 4, 2, 0, 0>; "beq $block">;
def BGE : BForm_ext<16, 0, 0, 4, 0, 0, 0, (ops CRRC:$crS, target:$block),
"bge $block">;
def BGT : BForm_ext<16, 0, 0, 12, 1, 0, 0, (ops CRRC:$crS, target:$block),
"bgt $block">;
def BNE : BForm_ext<16, 0, 0, 4, 2, 0, 0, (ops CRRC:$crS, target:$block),
"bne $block">;
} }
let isBranch = 1, isTerminator = 1, isCall = 1, let isBranch = 1, isTerminator = 1, isCall = 1,
@ -64,46 +79,55 @@ let isBranch = 1, isTerminator = 1, isCall = 1,
def CALLindirect : XLForm_2_ext<19, 528, 20, 31, 1, 0, 0, (ops), "bctrl">; def CALLindirect : XLForm_2_ext<19, 528, 20, 31, 1, 0, 0, (ops), "bctrl">;
} }
def LA : DForm_2<"la", 14, 0, 0>;
def LOADHiAddr : DForm_2_r0<"addis", 15, 0, 0>;
def LBZ : DForm_1<"lbz", 35, 0, 0>;
def LHA : DForm_1<"lha", 42, 0, 0>;
def LHZ : DForm_1<"lhz", 40, 0, 0>;
def LMW : DForm_1<"lmw", 46, 0, 0>;
def LWZ : DForm_1<"lwz", 32, 0, 0>;
def ADDI : DForm_2<"addi", 14, 0, 0>;
def ADDIC : DForm_2<"addic", 12, 0, 0>;
def ADDICo : DForm_2<"addic.", 13, 0, 0>;
def ADDIS : DForm_2<"addis", 15, 0, 0>;
def MULLI : DForm_2<"mulli", 7, 0, 0>;
def SUBFIC : DForm_2<"subfic", 8, 0, 0>;
def SUBI : DForm_2<"subi", 14, 0, 0>;
def LI : DForm_2_r0<"li", 14, 0, 0>;
def LIS : DForm_2_r0<"lis", 15, 0, 0>;
def STMW : DForm_3<"stmw", 47, 0, 0>;
def STB : DForm_3<"stb", 38, 0, 0>;
def STBU : DForm_3<"stbu", 39, 0, 0>;
def STH : DForm_3<"sth", 44, 0, 0>;
def STHU : DForm_3<"sthu", 45, 0, 0>;
def STW : DForm_3<"stw", 36, 0, 0>;
def STWU : DForm_3<"stwu", 37, 0, 0>;
def CMPI : DForm_5<"cmpi", 11, 0, 0>;
def CMPWI : DForm_5_ext<"cmpwi", 11, 0, 0>;
def CMPDI : DForm_5_ext<"cmpdi", 11, 1, 0>;
def LFS : DForm_8<"lfs", 48, 0, 0>;
def LFD : DForm_8<"lfd", 50, 0, 0>;
def STFS : DForm_9<"stfs", 52, 0, 0>;
def STFD : DForm_9<"stfd", 54, 0, 0>;
def LWA : DSForm_1<"lwa", 58, 2, 1, 0>;
def LD : DSForm_2<"ld", 58, 0, 1, 0>;
def STD : DSForm_2<"std", 62, 0, 1, 0>;
def STDU : DSForm_2<"stdu", 62, 1, 1, 0>;
// D-Form instructions. Most instructions that perform an operation on a // D-Form instructions. Most instructions that perform an operation on a
// register and an immediate are of this type. // register and an immediate are of this type.
// //
def LBZ : DForm_1<35, 0, 0, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA),
"lbz $rD, $disp($rA)">;
def LHA : DForm_1<42, 0, 0, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA),
"lha $rD, $disp($rA)">;
def LHZ : DForm_1<40, 0, 0, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA),
"lhz $rD, $disp($rA)">;
def LMW : DForm_1<46, 0, 0, (ops GPRC:$rD, s16imm:$disp, GPRC:$rA),
"lmw $rD, $disp($rA)">;
def LWZ : DForm_1<32, 0, 0, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lwz $rD, $disp($rA)">;
def ADDI : DForm_2<14, 0, 0, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"addi $rD, $rA, $imm">;
def ADDIC : DForm_2<12, 0, 0, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"addic $rD, $rA, $imm">;
def ADDICo : DForm_2<13, 0, 0, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"addic. $rD, $rA, $imm">;
def ADDIS : DForm_2<15, 0, 0, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"addis $rD, $rA, $imm">;
def LA : DForm_2<14, 0, 0, (ops GPRC:$rD, symbolLo:$sym, GPRC:$rA),
"la $rD, $sym($rA)">;
def LOADHiAddr : DForm_2<15, 0, 0, (ops GPRC:$rD, GPRC:$rA, symbolHi:$sym),
"addis $rD, $rA, $sym">;
def MULLI : DForm_2< 7, 0, 0, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"mulli $rD, $rA, $imm">;
def SUBFIC : DForm_2< 8, 0, 0, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"subfic $rD, $rA, $imm">;
def SUBI : DForm_2<14, 0, 0, (ops GPRC:$rD, GPRC:$rA, s16imm:$imm),
"subi $rD, $rA, $imm">;
def LI : DForm_2_r0<14, 0, 0, (ops GPRC:$rD, s16imm:$imm),
"li $rD, $imm">;
def LIS : DForm_2_r0<15, 0, 0, (ops GPRC:$rD, s16imm:$imm),
"lis $rD, $imm">;
def STMW : DForm_3<47, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stmw $rS, $disp($rA)">;
def STB : DForm_3<38, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stb $rS, $disp($rA)">;
def STBU : DForm_3<39, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stbu $rS, $disp($rA)">;
def STH : DForm_3<44, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"sth $rS, $disp($rA)">;
def STHU : DForm_3<45, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"sthu $rS, $disp($rA)">;
def STW : DForm_3<36, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stw $rS, $disp($rA)">;
def STWU : DForm_3<37, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stwu $rS, $disp($rA)">;
def ANDIo : DForm_4<28, 0, 0, def ANDIo : DForm_4<28, 0, 0,
(ops GPRC:$dst, GPRC:$src1, u16imm:$src2), (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"andi. $dst, $src1, $src2">; "andi. $dst, $src1, $src2">;
@ -119,16 +143,42 @@ def XORI : DForm_4<26, 0, 0,
def XORIS : DForm_4<27, 0, 0, def XORIS : DForm_4<27, 0, 0,
(ops GPRC:$dst, GPRC:$src1, u16imm:$src2), (ops GPRC:$dst, GPRC:$src1, u16imm:$src2),
"xoris $dst, $src1, $src2">; "xoris $dst, $src1, $src2">;
def NOP : DForm_4_zero<"nop", 24, 0, 0, (ops), "nop">; def NOP : DForm_4_zero<24, 0, 0, (ops), "nop">;
def CMPI : DForm_5<11, 0, 0, (ops CRRC:$crD, i1imm:$L, GPRC:$rA, s16imm:$imm),
"cmpi $crD, $L, $rA, $imm">;
def CMPWI : DForm_5_ext<11, 0, 0, (ops CRRC:$crD, GPRC:$rA, s16imm:$imm),
"cmpwi $crD, $rA, $imm">;
def CMPDI : DForm_5_ext<11, 1, 0, (ops CRRC:$crD, GPRC:$rA, s16imm:$imm),
"cmpdi $crD, $rA, $imm">;
def CMPLI : DForm_6<10, 0, 0, def CMPLI : DForm_6<10, 0, 0,
(ops CRRC:$dst, i1imm:$size, GPRC:$src1, u16imm:$src2), (ops CRRC:$dst, i1imm:$size, GPRC:$src1, u16imm:$src2),
"cmpli $dst, $size, $src1, $src2">; "cmpli $dst, $size, $src1, $src2">;
def CMPLWI : DForm_6_ext<10, 0, 0, def CMPLWI : DForm_6_ext<10, 0, 0,
(ops CRRC:$dst, GPRC:$src1, u16imm:$src2), (ops CRRC:$dst, GPRC:$src1, u16imm:$src2),
"cmplwi $dst, $src1, $src2">; "cmplwi $dst, $src1, $src2">;
def CMPLDI : DForm_6_ext<10, 1, 0, def CMPLDI : DForm_6_ext<10, 1, 0,
(ops CRRC:$dst, GPRC:$src1, u16imm:$src2), (ops CRRC:$dst, GPRC:$src1, u16imm:$src2),
"cmpldi $dst, $src1, $src2">; "cmpldi $dst, $src1, $src2">;
def LFS : DForm_8<48, 0, 0, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lfs $rD, $disp($rA)">;
def LFD : DForm_8<50, 0, 0, (ops GPRC:$rD, symbolLo:$disp, GPRC:$rA),
"lfd $rD, $disp($rA)">;
def STFS : DForm_9<52, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stfs $rS, $disp($rA)">;
def STFD : DForm_9<54, 0, 0, (ops GPRC:$rS, s16imm:$disp, GPRC:$rA),
"stfd $rS, $disp($rA)">;
// DS-Form instructions. Load/Store instructions available in PPC-64
//
def LWA : DSForm_1<58, 2, 1, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"lwa $rT, $DS($rA)">;
def LD : DSForm_2<58, 0, 1, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"ld $rT, $DS($rA)">;
def STD : DSForm_2<62, 0, 1, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"std $rT, $DS($rA)">;
def STDU : DSForm_2<62, 1, 1, 0, (ops GPRC:$rT, s16imm:$DS, GPRC:$rA),
"stdu $rT, $DS($rA)">;
// X-Form instructions. Most instructions that perform an operation on a // X-Form instructions. Most instructions that perform an operation on a
// register and another register are of this type. // register and another register are of this type.

View File

@ -105,9 +105,9 @@ bool PowerPCTargetMachine::addPassesToEmitAssembly(PassManager &PM,
PM.add(createPPCBranchSelectionPass()); PM.add(createPPCBranchSelectionPass());
if (AIX) if (AIX)
PM.add(createPPC64AsmPrinter(Out, *this)); PM.add(createAIXAsmPrinter(Out, *this));
else else
PM.add(createPPC32AsmPrinter(Out, *this)); PM.add(createDarwinAsmPrinter(Out, *this));
PM.add(createMachineCodeDeleter()); PM.add(createMachineCodeDeleter());
return false; return false;

View File

@ -17,11 +17,9 @@
#include "PowerPCTargetMachine.h" #include "PowerPCTargetMachine.h"
#include "PPC32InstrInfo.h" #include "PPC32InstrInfo.h"
#include "llvm/PassManager.h" #include "llvm/PassManager.h"
#include <set>
namespace llvm { namespace llvm {
class GlobalValue;
class IntrinsicLowering; class IntrinsicLowering;
class PPC32TargetMachine : public PowerPCTargetMachine { class PPC32TargetMachine : public PowerPCTargetMachine {
@ -38,11 +36,6 @@ public:
bool addPassesToEmitMachineCode(FunctionPassManager &PM, bool addPassesToEmitMachineCode(FunctionPassManager &PM,
MachineCodeEmitter &MCE); MachineCodeEmitter &MCE);
// Two shared sets between the instruction selector and the printer allow for
// correct linkage on Darwin
std::set<GlobalValue*> CalledFunctions;
std::set<GlobalValue*> AddressTaken;
}; };
} // end namespace llvm } // end namespace llvm

View File

@ -18,6 +18,7 @@
#include "PowerPCJITInfo.h" #include "PowerPCJITInfo.h"
#include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetMachine.h"
#include "llvm/PassManager.h" #include "llvm/PassManager.h"
#include <set>
namespace llvm { namespace llvm {
@ -41,6 +42,11 @@ public:
static unsigned getJITMatchQuality(); static unsigned getJITMatchQuality();
virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out); virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
// Two shared sets between the instruction selector and the printer allow for
// correct linkage on Darwin
std::set<GlobalValue*> CalledFunctions;
std::set<GlobalValue*> AddressTaken;
}; };
} // end namespace llvm } // end namespace llvm

View File

@ -1,5 +1,5 @@
TODO: TODO:
* switch to auto-generated asm writer * implement not-R0 register GPR class
* fix rlwimi generation to be use-and-def * fix rlwimi generation to be use-and-def
* implement scheduling info * implement scheduling info
* implement powerpc-64 for darwin * implement powerpc-64 for darwin