Introduce an AnalysisManager which is like a pass manager but with a lot

more smarts in it. This is where most of the interesting logic that used
to live in the implicit-scheduling-hackery of the old pass manager will
live.

Like the previous commits, note that this is a very early prototype!
I expect substantial changes before this is ready to use.

The core of the design is the following:

- We have an AnalysisManager which can be used across a series of
  passes over a module.
- The code setting up a pass pipeline registers the analyses available
  with the manager.
- Individual transform passes can check than an analysis manager
  provides the analyses they require in order to fail-fast.
- There is *no* implicit registration or scheduling.
- Analysis passes are different from other passes: they produce an
  analysis result that is cached and made available via the analysis
  manager.
- Cached results are invalidated automatically by the pass managers.
- When a transform pass requests an analysis result, either the analysis
  is run to produce the result or a cached result is provided.

There are a few aspects of this design that I *know* will change in
subsequent commits:
- Currently there is no "preservation" system, that needs to be added.
- All of the analysis management should move up to the analysis library.
- The analysis management needs to support at least SCC passes. Maybe
  loop passes. Living in the analysis library will facilitate this.
- Need support for analyses which are *both* module and function passes.
- Need support for pro-actively running module analyses to have cached
  results within a function pass manager.
- Need a clear design for "immutable" passes.
- Need support for requesting cached results when available and not
  re-running the pass even if that would be necessary.
- Need more thorough testing of all of this infrastructure.

There are other aspects that I view as open questions I'm hoping to
resolve as I iterate a bit on the infrastructure, and especially as
I start writing actual passes against this.
- Should we have separate management layers for function, module, and
  SCC analyses? I think "yes", but I'm not yet ready to switch the code.
  Adding SCC support will likely resolve this definitively.
- How should the 'require' functionality work? Should *that* be the only
  way to request results to ensure that passes always require things?
- How should preservation work?
- Probably some other things I'm forgetting. =]

Look forward to more patches in shorter order now that this is in place.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194538 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chandler Carruth 2013-11-13 01:12:08 +00:00
parent 0d833348c2
commit f348c9782c
4 changed files with 498 additions and 16 deletions

View File

@ -27,8 +27,12 @@
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/polymorphic_ptr.h"
#include "llvm/Support/type_traits.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include <list>
#include <vector>
namespace llvm {
@ -64,18 +68,17 @@ template <typename T, typename PassT> struct PassModel : PassConcept<T> {
}
class AnalysisManager;
class ModulePassManager {
public:
ModulePassManager(Module *M) : M(M) {}
ModulePassManager(Module *M, AnalysisManager *AM = 0) : M(M), AM(AM) {}
template <typename ModulePassT> void addPass(ModulePassT Pass) {
Passes.push_back(new ModulePassModel<ModulePassT>(llvm_move(Pass)));
}
void run() {
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx)
Passes[Idx]->run(M);
}
void run();
private:
// Pull in the concept type and model template specialized for modules.
@ -86,22 +89,19 @@ private:
};
Module *M;
AnalysisManager *AM;
std::vector<polymorphic_ptr<ModulePassConcept> > Passes;
};
class FunctionPassManager {
public:
FunctionPassManager(AnalysisManager *AM = 0) : AM(AM) {}
template <typename FunctionPassT> void addPass(FunctionPassT Pass) {
Passes.push_back(new FunctionPassModel<FunctionPassT>(llvm_move(Pass)));
}
bool run(Module *M) {
bool Changed = false;
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx)
Changed |= Passes[Idx]->run(I);
return Changed;
}
bool run(Module *M);
private:
// Pull in the concept type and model template specialized for functions.
@ -112,7 +112,289 @@ private:
: detail::PassModel<Function *, PassT>(Pass) {}
};
AnalysisManager *AM;
std::vector<polymorphic_ptr<FunctionPassConcept> > Passes;
};
/// \brief An analysis manager to coordinate and cache analyses run over
/// a module.
///
/// The analysis manager is typically used by passes in a pass pipeline
/// (consisting potentially of several individual pass managers) over a module
/// of IR. It provides registration of available analyses, declaring
/// requirements on support for specific analyses, running of an specific
/// analysis over a specific unit of IR to compute an analysis result, and
/// caching of the analysis results to reuse them across multiple passes.
///
/// It is the responsibility of callers to use the invalidation API to
/// invalidate analysis results when the IR they correspond to changes. The
/// \c ModulePassManager and \c FunctionPassManager do this automatically.
class AnalysisManager {
public:
AnalysisManager(Module *M) : M(M) {}
/// \brief Get the result of an analysis pass for this module.
///
/// If there is not a valid cached result in the manager already, this will
/// re-run the analysis to produce a valid result.
///
/// The module passed in must be the same module as the analysis manager was
/// constructed around.
template <typename PassT>
const typename PassT::Result &getResult(Module *M) {
const AnalysisResultConcept<Module> &ResultConcept =
getResultImpl(PassT::ID(), M);
typedef AnalysisResultModel<Module, typename PassT::Result> ResultModelT;
return static_cast<const ResultModelT &>(ResultConcept).Result;
}
/// \brief Get the result of an analysis pass for a function.
///
/// If there is not a valid cached result in the manager already, this will
/// re-run the analysis to produce a valid result.
template <typename PassT>
const typename PassT::Result &getResult(Function *F) {
const AnalysisResultConcept<Function> &ResultConcept =
getResultImpl(PassT::ID(), F);
typedef AnalysisResultModel<Function, typename PassT::Result> ResultModelT;
return static_cast<const ResultModelT &>(ResultConcept).Result;
}
/// \brief Register an analysis pass with the manager.
///
/// This provides an initialized and set-up analysis pass to the
/// analysis
/// manager. Whomever is setting up analysis passes must use this to
/// populate
/// the manager with all of the analysis passes available.
template <typename PassT> void registerAnalysisPass(PassT Pass) {
registerAnalysisPassImpl<PassT>(llvm_move(Pass));
}
/// \brief Require that a particular analysis pass is provided by the manager.
///
/// This allows transform passes to assert ther requirements during
/// construction and fail fast if the analysis manager doesn't provide the
/// needed facilities.
///
/// We force the analysis manager to have these passes explicitly registered
/// first to ensure that there is exactly one place in the code responsible
/// for adding an analysis pass to the manager as all transforms will share
/// a single pass within the manager and each may not be the canonical place
/// to initialize such a pass.
template <typename PassT> void requireAnalysisPass() {
requireAnalysisPassImpl<PassT>();
}
/// \brief Invalidate a specific analysis pass for an IR module.
///
/// Note that the analysis result can disregard invalidation.
template <typename PassT> void invalidate(Module *M) {
invalidateImpl(PassT::ID(), M);
}
/// \brief Invalidate a specific analysis pass for an IR function.
///
/// Note that the analysis result can disregard invalidation.
template <typename PassT> void invalidate(Function *F) {
invalidateImpl(PassT::ID(), F);
}
/// \brief Invalidate analyses cached for an IR Module.
///
/// Note that specific analysis results can disregard invalidation by
/// overriding their invalidate method.
///
/// The module must be the module this analysis manager was constructed
/// around.
void invalidateAll(Module *M);
/// \brief Invalidate analyses cached for an IR Function.
///
/// Note that specific analysis results can disregard invalidation by
/// overriding the invalidate method.
void invalidateAll(Function *F);
private:
/// \brief Abstract concept of an analysis result.
///
/// This concept is parameterized over the IR unit that this result pertains
/// to.
template <typename IRUnitT> struct AnalysisResultConcept {
virtual ~AnalysisResultConcept() {}
virtual AnalysisResultConcept *clone() = 0;
/// \brief Method to try and mark a result as invalid.
///
/// When the outer \c AnalysisManager detects a change in some underlying
/// unit of the IR, it will call this method on all of the results cached.
///
/// \returns true if the result should indeed be invalidated (the default).
virtual bool invalidate(IRUnitT *IR) = 0;
};
/// \brief Wrapper to model the analysis result concept.
///
/// Can wrap any type which implements a suitable invalidate member and model
/// the AnalysisResultConcept for the AnalysisManager.
template <typename IRUnitT, typename ResultT>
struct AnalysisResultModel : AnalysisResultConcept<IRUnitT> {
AnalysisResultModel(ResultT Result) : Result(llvm_move(Result)) {}
virtual AnalysisResultModel *clone() {
return new AnalysisResultModel(Result);
}
/// \brief The model delegates to the \c ResultT method.
virtual bool invalidate(IRUnitT *IR) { return Result.invalidate(IR); }
ResultT Result;
};
/// \brief Abstract concept of an analysis pass.
///
/// This concept is parameterized over the IR unit that it can run over and
/// produce an analysis result.
template <typename IRUnitT> struct AnalysisPassConcept {
virtual ~AnalysisPassConcept() {}
virtual AnalysisPassConcept *clone() = 0;
/// \brief Method to run this analysis over a unit of IR.
/// \returns The analysis result object to be queried by users, the caller
/// takes ownership.
virtual AnalysisResultConcept<IRUnitT> *run(IRUnitT *IR) = 0;
};
/// \brief Wrapper to model the analysis pass concept.
///
/// Can wrap any type which implements a suitable \c run method. The method
/// must accept the IRUnitT as an argument and produce an object which can be
/// wrapped in a \c AnalysisResultModel.
template <typename PassT>
struct AnalysisPassModel : AnalysisPassConcept<typename PassT::IRUnitT> {
AnalysisPassModel(PassT Pass) : Pass(llvm_move(Pass)) {}
virtual AnalysisPassModel *clone() { return new AnalysisPassModel(Pass); }
// FIXME: Replace PassT::IRUnitT with type traits when we use C++11.
typedef typename PassT::IRUnitT IRUnitT;
// FIXME: Replace PassT::Result with type traits when we use C++11.
typedef AnalysisResultModel<IRUnitT, typename PassT::Result> ResultModelT;
/// \brief The model delegates to the \c PassT::run method.
///
/// The return is wrapped in an \c AnalysisResultModel.
virtual ResultModelT *run(IRUnitT *IR) {
return new ResultModelT(Pass.run(IR));
}
PassT Pass;
};
/// \brief Get a module pass result, running the pass if necessary.
const AnalysisResultConcept<Module> &getResultImpl(void *PassID, Module *M);
/// \brief Get a function pass result, running the pass if necessary.
const AnalysisResultConcept<Function> &getResultImpl(void *PassID,
Function *F);
/// \brief Invalidate a module pass result.
void invalidateImpl(void *PassID, Module *M);
/// \brief Invalidate a function pass result.
void invalidateImpl(void *PassID, Function *F);
/// \brief Module pass specific implementation of registration.
template <typename PassT>
typename enable_if<is_same<typename PassT::IRUnitT, Module> >::type
registerAnalysisPassImpl(PassT Pass) {
assert(!ModuleAnalysisPasses.count(PassT::ID()) &&
"Registered the same analysis pass twice!");
ModuleAnalysisPasses[PassT::ID()] =
new AnalysisPassModel<PassT>(llvm_move(Pass));
}
/// \brief Function pass specific implementation of registration.
template <typename PassT>
typename enable_if<is_same<typename PassT::IRUnitT, Function> >::type
registerAnalysisPassImpl(PassT Pass) {
assert(!FunctionAnalysisPasses.count(PassT::ID()) &&
"Registered the same analysis pass twice!");
FunctionAnalysisPasses[PassT::ID()] =
new AnalysisPassModel<PassT>(llvm_move(Pass));
}
/// \brief Module pass specific implementation of requirement declaration.
template <typename PassT>
typename enable_if<is_same<typename PassT::IRUnitT, Module> >::type
requireAnalysisPassImpl() {
assert(ModuleAnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being required");
}
/// \brief Function pass specific implementation of requirement declaration.
template <typename PassT>
typename enable_if<is_same<typename PassT::IRUnitT, Function> >::type
requireAnalysisPassImpl() {
assert(FunctionAnalysisPasses.count(PassT::ID()) &&
"This analysis pass was not registered prior to being required");
}
/// \brief Map type from module analysis pass ID to pass concept pointer.
typedef DenseMap<void *, polymorphic_ptr<AnalysisPassConcept<Module> > >
ModuleAnalysisPassMapT;
/// \brief Collection of module analysis passes, indexed by ID.
ModuleAnalysisPassMapT ModuleAnalysisPasses;
/// \brief Map type from module analysis pass ID to pass result concept pointer.
typedef DenseMap<void *, polymorphic_ptr<AnalysisResultConcept<Module> > >
ModuleAnalysisResultMapT;
/// \brief Cache of computed module analysis results for this module.
ModuleAnalysisResultMapT ModuleAnalysisResults;
/// \brief Map type from function analysis pass ID to pass concept pointer.
typedef DenseMap<void *, polymorphic_ptr<AnalysisPassConcept<Function> > >
FunctionAnalysisPassMapT;
/// \brief Collection of function analysis passes, indexed by ID.
FunctionAnalysisPassMapT FunctionAnalysisPasses;
/// \brief List of function analysis pass IDs and associated concept pointers.
///
/// Requires iterators to be valid across appending new entries and arbitrary
/// erases. Provides both the pass ID and concept pointer such that it is
/// half of a bijection and provides storage for the actual result concept.
typedef std::list<
std::pair<void *, polymorphic_ptr<AnalysisResultConcept<Function> > > >
FunctionAnalysisResultListT;
/// \brief Map type from function pointer to our custom list type.
typedef DenseMap<Function *, FunctionAnalysisResultListT> FunctionAnalysisResultListMapT;
/// \brief Map from function to a list of function analysis results.
///
/// Provides linear time removal of all analysis results for a function and
/// the ultimate storage for a particular cached analysis result.
FunctionAnalysisResultListMapT FunctionAnalysisResultLists;
/// \brief Map type from a pair of analysis ID and function pointer to an
/// iterator into a particular result list.
typedef DenseMap<std::pair<void *, Function *>,
FunctionAnalysisResultListT::iterator>
FunctionAnalysisResultMapT;
/// \brief Map from an analysis ID and function to a particular cached
/// analysis result.
FunctionAnalysisResultMapT FunctionAnalysisResults;
/// \brief Module handle for the \c AnalysisManager.
Module *M;
};
}

View File

@ -27,6 +27,7 @@ add_llvm_library(LLVMCore
Metadata.cpp
Module.cpp
Pass.cpp
PassManager.cpp
PassRegistry.cpp
PrintModulePass.cpp
Type.cpp

155
lib/IR/PassManager.cpp Normal file
View File

@ -0,0 +1,155 @@
//===- PassManager.h - Infrastructure for managing & running IR passes ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/PassManager.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
void ModulePassManager::run() {
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx)
if (Passes[Idx]->run(M))
if (AM) AM->invalidateAll(M);
}
bool FunctionPassManager::run(Module *M) {
bool Changed = false;
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx)
if (Passes[Idx]->run(I)) {
Changed = true;
if (AM) AM->invalidateAll(I);
}
return Changed;
}
void AnalysisManager::invalidateAll(Function *F) {
assert(F->getParent() == M && "Invalidating a function from another module!");
// First invalidate any module results we still have laying about.
// FIXME: This is a total hack based on the fact that erasure doesn't
// invalidate iteration for DenseMap.
for (ModuleAnalysisResultMapT::iterator I = ModuleAnalysisResults.begin(),
E = ModuleAnalysisResults.end();
I != E; ++I)
if (I->second->invalidate(M))
ModuleAnalysisResults.erase(I);
// Now clear all the invalidated results associated specifically with this
// function.
SmallVector<void *, 8> InvalidatedPassIDs;
FunctionAnalysisResultListT &ResultsList = FunctionAnalysisResultLists[F];
for (FunctionAnalysisResultListT::iterator I = ResultsList.begin(),
E = ResultsList.end();
I != E; ++I)
if (I->second->invalidate(F)) {
FunctionAnalysisResultListT::iterator Old = I--;
InvalidatedPassIDs.push_back(Old->first);
ResultsList.erase(Old);
}
while (!InvalidatedPassIDs.empty())
FunctionAnalysisResults.erase(
std::make_pair(InvalidatedPassIDs.pop_back_val(), F));
}
void AnalysisManager::invalidateAll(Module *M) {
// First invalidate any module results we still have laying about.
// FIXME: This is a total hack based on the fact that erasure doesn't
// invalidate iteration for DenseMap.
for (ModuleAnalysisResultMapT::iterator I = ModuleAnalysisResults.begin(),
E = ModuleAnalysisResults.end();
I != E; ++I)
if (I->second->invalidate(M))
ModuleAnalysisResults.erase(I);
// Now walk all of the functions for which there are cached results, and
// attempt to invalidate each of those as the entire module may have changed.
// FIXME: How do we handle functions which have been deleted or RAUWed?
SmallVector<void *, 8> InvalidatedPassIDs;
for (FunctionAnalysisResultListMapT::iterator
FI = FunctionAnalysisResultLists.begin(),
FE = FunctionAnalysisResultLists.end();
FI != FE; ++FI) {
Function *F = FI->first;
FunctionAnalysisResultListT &ResultsList = FI->second;
for (FunctionAnalysisResultListT::iterator I = ResultsList.begin(),
E = ResultsList.end();
I != E; ++I)
if (I->second->invalidate(F)) {
FunctionAnalysisResultListT::iterator Old = I--;
InvalidatedPassIDs.push_back(Old->first);
ResultsList.erase(Old);
}
while (!InvalidatedPassIDs.empty())
FunctionAnalysisResults.erase(
std::make_pair(InvalidatedPassIDs.pop_back_val(), F));
}
}
const AnalysisManager::AnalysisResultConcept<Module> &
AnalysisManager::getResultImpl(void *PassID, Module *M) {
assert(M == this->M && "Wrong module used when querying the AnalysisManager");
ModuleAnalysisResultMapT::iterator RI;
bool Inserted;
llvm::tie(RI, Inserted) = ModuleAnalysisResults.insert(std::make_pair(
PassID, polymorphic_ptr<AnalysisResultConcept<Module> >()));
if (Inserted) {
// We don't have a cached result for this result. Look up the pass and run
// it to produce a result, which we then add to the cache.
ModuleAnalysisPassMapT::const_iterator PI =
ModuleAnalysisPasses.find(PassID);
assert(PI != ModuleAnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
RI->second = PI->second->run(M);
}
return *RI->second;
}
const AnalysisManager::AnalysisResultConcept<Function> &
AnalysisManager::getResultImpl(void *PassID, Function *F) {
assert(F->getParent() == M && "Analyzing a function from another module!");
FunctionAnalysisResultMapT::iterator RI;
bool Inserted;
llvm::tie(RI, Inserted) = FunctionAnalysisResults.insert(std::make_pair(
std::make_pair(PassID, F), FunctionAnalysisResultListT::iterator()));
if (Inserted) {
// We don't have a cached result for this result. Look up the pass and run
// it to produce a result, which we then add to the cache.
FunctionAnalysisPassMapT::const_iterator PI =
FunctionAnalysisPasses.find(PassID);
assert(PI != FunctionAnalysisPasses.end() &&
"Analysis passes must be registered prior to being queried!");
FunctionAnalysisResultListT &ResultList = FunctionAnalysisResultLists[F];
ResultList.push_back(std::make_pair(PassID, PI->second->run(F)));
RI->second = llvm::prior(ResultList.end());
}
return *RI->second->second;
}
void AnalysisManager::invalidateImpl(void *PassID, Module *M) {
assert(M == this->M && "Invalidating a pass over a different module!");
ModuleAnalysisResults.erase(PassID);
}
void AnalysisManager::invalidateImpl(void *PassID, Function *F) {
assert(F->getParent() == M &&
"Invalidating a pass over a function from another module!");
FunctionAnalysisResultMapT::iterator RI = FunctionAnalysisResults.find(std::make_pair(PassID, F));
if (RI == FunctionAnalysisResults.end())
return;
FunctionAnalysisResultLists[F].erase(RI->second);
}

View File

@ -19,6 +19,36 @@ using namespace llvm;
namespace {
class TestAnalysisPass {
public:
typedef Function IRUnitT;
struct Result {
Result(int Count) : InstructionCount(Count) {}
bool invalidate(Function *) { return true; }
int InstructionCount;
};
/// \brief Returns an opaque, unique ID for this pass type.
static void *ID() { return (void *)&PassID; }
/// \brief Run the analysis pass over the function and return a result.
Result run(Function *F) {
int Count = 0;
for (Function::iterator BBI = F->begin(), BBE = F->end(); BBI != BBE; ++BBI)
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
++II)
++Count;
return Result(Count);
}
private:
/// \brief Private static data to provide unique ID.
static char PassID;
};
char TestAnalysisPass::PassID;
struct TestModulePass {
TestModulePass(int &RunCount) : RunCount(RunCount) {}
@ -31,14 +61,23 @@ struct TestModulePass {
};
struct TestFunctionPass {
TestFunctionPass(int &RunCount) : RunCount(RunCount) {}
TestFunctionPass(AnalysisManager &AM, int &RunCount, int &AnalyzedInstrCount)
: AM(AM), RunCount(RunCount), AnalyzedInstrCount(AnalyzedInstrCount) {
AM.requireAnalysisPass<TestAnalysisPass>();
}
bool run(Function *F) {
++RunCount;
const TestAnalysisPass::Result &AR = AM.getResult<TestAnalysisPass>(F);
AnalyzedInstrCount += AR.InstructionCount;
return true;
}
AnalysisManager &AM;
int &RunCount;
int &AnalyzedInstrCount;
};
Module *parseIR(const char *IR) {
@ -68,8 +107,11 @@ public:
};
TEST_F(PassManagerTest, Basic) {
ModulePassManager MPM(M.get());
FunctionPassManager FPM;
AnalysisManager AM(M.get());
AM.registerAnalysisPass(TestAnalysisPass());
ModulePassManager MPM(M.get(), &AM);
FunctionPassManager FPM(&AM);
// Count the runs over a module.
int ModulePassRunCount = 0;
@ -77,12 +119,14 @@ TEST_F(PassManagerTest, Basic) {
// Count the runs over a Function.
int FunctionPassRunCount = 0;
FPM.addPass(TestFunctionPass(FunctionPassRunCount));
int AnalyzedInstrCount = 0;
FPM.addPass(TestFunctionPass(AM, FunctionPassRunCount, AnalyzedInstrCount));
MPM.addPass(FPM);
MPM.run();
EXPECT_EQ(1, ModulePassRunCount);
EXPECT_EQ(3, FunctionPassRunCount);
EXPECT_EQ(5, AnalyzedInstrCount);
}
}