Convert backward conversion of expression trees into a new more powerful bidirectional approach. Add transforms for more instructions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1121 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-11-04 20:21:12 +00:00
parent b7f06f46a1
commit f3b976e65f

View File

@ -220,10 +220,10 @@ static bool ExpressionConvertableToType(Value *V, const Type *Ty) {
case Instruction::Sub:
return ExpressionConvertableToType(I->getOperand(0), Ty) &&
ExpressionConvertableToType(I->getOperand(1), Ty);
case Instruction::Shl:
return ExpressionConvertableToType(I->getOperand(0), Ty);
case Instruction::Shr:
if (Ty->isSigned() != V->getType()->isSigned()) return false;
// FALL THROUGH
case Instruction::Shl:
return ExpressionConvertableToType(I->getOperand(0), Ty);
case Instruction::Load: {
@ -369,6 +369,286 @@ static Value *ConvertExpressionToType(Value *V, const Type *Ty) {
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty);
// RetValConvertableToType - Return true if it is possible
static bool RetValConvertableToType(Value *V, const Type *Ty) {
// It is safe to convert the specified value to the specified type IFF all of
// the uses of the value can be converted to accept the new typed value.
//
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
if (!OperandConvertableToType(*I, V, Ty))
return false;
return true;
}
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty) {
assert(V->getType() != Ty &&
"OperandConvertableToType: Operand is already right type!");
Instruction *I = dyn_cast<Instruction>(U);
if (I == 0) return false; // We can't convert!
switch (I->getOpcode()) {
case Instruction::Cast:
assert(I->getOperand(0) == V);
// We can convert the expr if the cast destination type is losslessly
// convertable to the requested type.
return losslessCastableTypes(Ty, I->getOperand(0)->getType());
case Instruction::Add:
case Instruction::Sub: {
Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
return ExpressionConvertableToType(OtherOp, Ty) &&
RetValConvertableToType(I, Ty);
}
case Instruction::SetEQ:
case Instruction::SetNE: {
Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
return ExpressionConvertableToType(OtherOp, Ty);
}
case Instruction::Shr:
if (Ty->isSigned() != V->getType()->isSigned()) return false;
// FALL THROUGH
case Instruction::Shl:
assert(I->getOperand(0) == V);
return RetValConvertableToType(I, Ty);
case Instruction::Load:
assert(I->getOperand(0) == V);
if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
LoadInst *LI = cast<LoadInst>(I);
if (LI->hasIndices() ||
TD.getTypeSize(PT->getValueType()) != TD.getTypeSize(LI->getType()))
return false;
return RetValConvertableToType(LI, PT->getValueType());
}
return false;
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(I);
if (SI->hasIndices()) return false;
if (V == I->getOperand(0)) {
// Can convert the store if we can convert the pointer operand to match
// the new value type...
return ExpressionConvertableToType(I->getOperand(1),PointerType::get(Ty));
} else if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
assert(V == I->getOperand(1));
// Must move the same amount of data...
if (TD.getTypeSize(PT->getValueType()) !=
TD.getTypeSize(I->getOperand(0)->getType())) return false;
// Can convert store if the incoming value is convertable...
return ExpressionConvertableToType(I->getOperand(0), PT->getValueType());
}
return false;
}
#if 0
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
// change the logical offset of the GEP, it is okay and fair to remove them.
// This can change this:
// %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
// %t2 = cast %List * * %t1 to %List *
// into
// %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
//
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) return false;
// Check to see if there are zero elements that we can remove from the
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
vector<ConstPoolVal*> Indices = GEP->getIndices();
const Type *BaseType = GEP->getPtrOperand()->getType();
while (Indices.size() &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices,
true);
if (ElTy == PTy->getValueType())
return true; // Found a match!!
}
break; // No match, maybe next time.
}
#endif
}
return false;
}
static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal);
// RetValConvertableToType - Return true if it is possible
static void ConvertUsersType(Value *V, Value *NewVal) {
// It is safe to convert the specified value to the specified type IFF all of
// the uses of the value can be converted to accept the new typed value.
//
while (!V->use_empty()) {
unsigned OldSize = V->use_size();
ConvertOperandToType(V->use_back(), V, NewVal);
assert(V->use_size() != OldSize && "Use didn't detatch from value!");
}
}
static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal) {
Instruction *I = cast<Instruction>(U); // Only Instructions convertable
BasicBlock *BB = I->getParent();
BasicBlock::InstListType &BIL = BB->getInstList();
string Name = I->getName(); if (!Name.empty()) I->setName("");
Instruction *Res; // Result of conversion
//cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl;
switch (I->getOpcode()) {
case Instruction::Cast:
assert(I->getOperand(0) == OldVal);
Res = new CastInst(NewVal, I->getType(), Name);
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::SetEQ:
case Instruction::SetNE: {
unsigned OtherIdx = (OldVal == I->getOperand(0)) ? 1 : 0;
Value *OtherOp = I->getOperand(OtherIdx);
Value *NewOther = ConvertExpressionToType(OtherOp, NewVal->getType());
Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
OtherIdx == 0 ? NewOther : NewVal,
OtherIdx == 1 ? NewOther : NewVal,
Name);
break;
}
case Instruction::Shl:
case Instruction::Shr:
assert(I->getOperand(0) == OldVal);
Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(), NewVal,
I->getOperand(1), Name);
break;
case Instruction::Load:
assert(I->getOperand(0) == OldVal);
Res = new LoadInst(NewVal, Name);
break;
case Instruction::Store: {
if (I->getOperand(0) == OldVal) { // Replace the source value
Value *NewPtr =
ConvertExpressionToType(I->getOperand(1),
PointerType::get(NewVal->getType()));
Res = new StoreInst(NewVal, NewPtr);
} else { // Replace the source pointer
const Type *ValType =cast<PointerType>(NewVal->getType())->getValueType();
Value *NewV = ConvertExpressionToType(I->getOperand(0), ValType);
Res = new StoreInst(NewV, NewVal);
}
break;
}
#if 0
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
// change the logical offset of the GEP, it is okay and fair to remove them.
// This can change this:
// %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
// %t2 = cast %List * * %t1 to %List *
// into
// %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
//
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
// Check to see if there are zero elements that we can remove from the
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
vector<ConstPoolVal*> Indices = GEP->getIndices();
const Type *BaseType = GEP->getPtrOperand()->getType();
const Type *PVTy = cast<PointerType>(Ty)->getValueType();
Res = 0;
while (Indices.size() &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
if (Indices.size() == 0) {
Res = new CastInst(GEP->getPtrOperand(), BaseType); // NOOP
} else {
Res = new GetElementPtrInst(GEP->getPtrOperand(), Indices, Name);
}
break;
}
}
assert(Res && "Didn't find match!");
break; // No match, maybe next time.
}
#endif
default:
assert(0 && "Expression convertable, but don't know how to convert?");
return;
}
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
assert(It != BIL.end() && "Instruction not in own basic block??");
BIL.insert(It, Res); // Keep It pointing to old instruction
cerr << "In: " << I << "Out: " << Res;
//cerr << "RInst: " << Res << "BB After: " << BB << endl << endl;
if (I->getType() != Res->getType())
ConvertUsersType(I, Res);
else
I->replaceAllUsesWith(Res);
// Now we just need to remove the old instruction so we don't get infinite
// loops. Note that we cannot use DCE because DCE won't remove a store
// instruction, for example.
assert(I->use_size() == 0 && "Uses of Instruction remain!!!");
It = find(BIL.begin(), BIL.end(), I);
assert(It != BIL.end() && "Instruction no longer in basic block??");
delete BIL.remove(It);
}
// DoInsertArrayCast - If the argument value has a pointer type, and if the
// argument value is used as an array, insert a cast before the specified
// basic block iterator that casts the value to an array pointer. Return the
@ -573,8 +853,8 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) {
CI->replaceAllUsesWith(Src);
if (!Src->hasName() && CI->hasName()) {
string Name = CI->getName();
CI->setName(""); Src->setName(Name,
BB->getParent()->getSymbolTable());
CI->setName("");
Src->setName(Name, BB->getParent()->getSymbolTable());
}
return true;
}
@ -601,13 +881,19 @@ static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) {
// Check to see if it's a cast of an instruction that does not depend on the
// specific type of the operands to do it's job.
if (!isReinterpretingCast(CI) &&
ExpressionConvertableToType(Src, DestTy)) {
PRINT_PEEPHOLE2("EXPR-CONV:in ", CI, Src);
CI->setOperand(0, ConvertExpressionToType(Src, DestTy));
BI = BB->begin(); // Rescan basic block. BI might be invalidated.
PRINT_PEEPHOLE2("EXPR-CONV:out", CI, CI->getOperand(0));
return true;
if (!isReinterpretingCast(CI)) {
if (RetValConvertableToType(CI, Src->getType())) {
PRINT_PEEPHOLE2("EXPR-CONV:in ", CI, Src);
ConvertUsersType(CI, Src);
if (!Src->hasName() && CI->hasName()) {
string Name = CI->getName(); CI->setName("");
Src->setName(Name, BB->getParent()->getSymbolTable());
}
BI = BB->begin(); // Rescan basic block. BI might be invalidated.
PRINT_PEEPHOLE1("EXPR-CONV:out", I);
return true;
}
}
// Check to see if we are casting from a structure pointer to a pointer to