For PR1284:

Implement the "part_set" intrinsic.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35938 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2007-04-12 02:48:46 +00:00
parent 78732c2d8a
commit f75b874957
4 changed files with 207 additions and 16 deletions

View File

@ -203,12 +203,15 @@ def int_siglongjmp : Intrinsic<[llvm_void_ty, llvm_ptr_ty, llvm_i32_ty]>;
// None of these intrinsics accesses memory at all.
let Properties = [IntrNoMem] in {
def int_part_select :
Intrinsic<[llvm_int_ty, llvm_int_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_bswap: Intrinsic<[llvm_int_ty, llvm_int_ty]>;
def int_ctpop: Intrinsic<[llvm_i32_ty, llvm_int_ty]>;
def int_ctlz : Intrinsic<[llvm_i32_ty, llvm_int_ty]>;
def int_cttz : Intrinsic<[llvm_i32_ty, llvm_int_ty]>;
def int_part_select :
Intrinsic<[llvm_int_ty, llvm_int_ty, llvm_i32_ty, llvm_i32_ty]>;
def int_part_set :
Intrinsic<[llvm_int_ty, llvm_int_ty, llvm_int_ty, llvm_i32_ty,
llvm_i32_ty]>;
}
//===------------------------ Debugger Intrinsics -------------------------===//

View File

@ -236,14 +236,17 @@ static Value *LowerCTLZ(Value *V, Instruction *IP) {
return LowerCTPOP(V, IP);
}
/// Convert the llvm.bit.part_select.iX.iY.iZ intrinsic. This intrinsic takes
/// three integer operands of arbitrary bit width. The first operand is the
/// value from which to select the bits. The second and third operands define a
/// range of bits to select. The result is the bits selected and has a
/// corresponding width of Left-Right (second operand - third operand).
/// @see IEEE 1666-2005, System C, Section 7.2.6, pg 175.
/// @brief Lowering of llvm.bit.part_select intrinsic.
static Instruction *LowerBitPartSelect(CallInst *CI) {
/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
/// three integer arguments. The first argument is the Value from which the
/// bits will be selected. It may be of any bit width. The second and third
/// arguments specify a range of bits to select with the second argument
/// specifying the low bit and the third argument specifying the high bit. Both
/// must be type i32. The result is the corresponding selected bits from the
/// Value in the same width as the Value (first argument). If the low bit index
/// is higher than the high bit index then the inverse selection is done and
/// the bits are returned in inverse order.
/// @brief Lowering of llvm.part.select intrinsic.
static Instruction *LowerPartSelect(CallInst *CI) {
// Make sure we're dealing with a part select intrinsic here
Function *F = CI->getCalledFunction();
const FunctionType *FT = F->getFunctionType();
@ -268,8 +271,8 @@ static Instruction *LowerBitPartSelect(CallInst *CI) {
// Get the arguments to the function
Value* Val = F->getOperand(0);
Value* Left = F->getOperand(1);
Value* Right = F->getOperand(2);
Value* Right = F->getOperand(1);
Value* Left = F->getOperand(2);
// We want to select a range of bits here such that [Left, Right] is shifted
// down to the low bits. However, it is quite possible that Left is smaller
@ -406,6 +409,181 @@ static Instruction *LowerBitPartSelect(CallInst *CI) {
return new CallInst(F, Args, 3, CI->getName(), CI);
}
/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
/// The first two arguments can be any bit width. The result is the same width
/// as %Value. The operation replaces bits between %Low and %High with the value
/// in %Replacement. If %Replacement is not the same width, it is truncated or
/// zero extended as appropriate to fit the bits being replaced. If %Low is
/// greater than %High then the inverse set of bits are replaced.
/// @brief Lowering of llvm.bit.part.set intrinsic.
static Instruction *LowerPartSet(CallInst *CI) {
// Make sure we're dealing with a part select intrinsic here
Function *F = CI->getCalledFunction();
const FunctionType *FT = F->getFunctionType();
if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
!FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
!FT->getParamType(3)->isInteger())
return CI;
// Get the intrinsic implementation function by converting all the . to _
// in the intrinsic's function name and then reconstructing the function
// declaration.
std::string Name(F->getName());
for (unsigned i = 4; i < Name.length(); ++i)
if (Name[i] == '.')
Name[i] = '_';
Module* M = F->getParent();
F = cast<Function>(M->getOrInsertFunction(Name, FT));
F->setLinkage(GlobalValue::InternalLinkage);
// If we haven't defined the impl function yet, do so now
if (F->isDeclaration()) {
// Note: the following code is based on code generated by llvm2cpp with
// the following input. This is just *one* example of a generated function.
// The functions vary by bit width of result and first two arguments.
// The generated code has been changed to deal with any bit width not just
// the 32/64 bitwidths used in the above sample.
//
// define i64 @part_set(i64 %Val, i32 %Rep, i32 %Lo, i32 %Hi) {
// entry:
// %is_forward = icmp ult i32 %Lo, %Hi
// %Lo.pn = select i1 %is_forward, i32 %Hi, i32 %Lo
// %Hi.pn = select i1 %is_forward, i32 %Lo, i32 %Hi
// %iftmp.16.0 = sub i32 %Lo.pn, %Hi.pn
// icmp ult i32 %iftmp.16.0, 32
// br i1 %1, label %cond_true11, label %cond_next19
// cond_true11:
// %tmp13 = sub i32 32, %iftmp.16.0
// %tmp14 = lshr i32 -1, %tmp13
// %tmp16 = and i32 %tmp14, %Rep
// br label %cond_next19
// cond_next19:
// %iftmp.17.0 = phi i32 [ %tmp16, %cond_true11 ], [ %Rep, %entry ]
// %tmp2021 = zext i32 %iftmp.17.0 to i64
// icmp ugt i32 %Lo, %Hi
// br i1 %2, label %cond_next60, label %cond_true24
// cond_true24:
// %tmp25.cast = zext i32 %Hi to i64
// %tmp26 = lshr i64 -1, %tmp25.cast
// %tmp27.cast = zext i32 %Lo to i64
// %tmp28 = shl i64 %tmp26, %tmp27.cast
// %tmp28not = xor i64 %tmp28, -1
// %tmp31 = shl i64 %tmp2021, %tmp27.cast
// %tmp34 = and i64 %tmp28not, %Val
// %Val_addr.064 = or i64 %tmp31, %tmp34
// ret i64 %Val_addr.064
// cond_next60:
// %tmp39.cast = zext i32 %Lo to i64
// %tmp40 = shl i64 -1, %tmp39.cast
// %tmp41.cast = zext i32 %Hi to i64
// %tmp42 = shl i64 -1, %tmp41.cast
// %tmp45.demorgan = or i64 %tmp42, %tmp40
// %tmp45 = xor i64 %tmp45.demorgan, -1
// %tmp47 = and i64 %tmp45, %Val
// %tmp50 = shl i64 %tmp2021, %tmp39.cast
// %tmp52 = sub i32 32, %Hi
// %tmp52.cast = zext i32 %tmp52 to i64
// %tmp54 = lshr i64 %tmp2021, %tmp52.cast
// %tmp57 = or i64 %tmp50, %tmp47
// %Val_addr.0 = or i64 %tmp57, %tmp54
// ret i64 %Val_addr.0
// }
// Get the arguments for the function.
Function::arg_iterator args = F->arg_begin();
Value* Val = args++; Val->setName("Val");
Value* Rep = args++; Rep->setName("Rep");
Value* Lo = args++; Lo->setName("Lo");
Value* Hi = args++; Hi->setName("Hi");
// Get some types we need
const IntegerType* ValTy = cast<IntegerType>(Val->getType());
const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
uint32_t ValBits = ValTy->getBitWidth();
uint32_t RepBits = RepTy->getBitWidth();
// Constant Definitions
ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
BasicBlock* entry = new BasicBlock("entry",F,0);
BasicBlock* large = new BasicBlock("large",F,0);
BasicBlock* small = new BasicBlock("small",F,0);
BasicBlock* forward = new BasicBlock("cond_true24",F,0);
BasicBlock* reverse = new BasicBlock("cond_next60",F,0);
// Block entry (entry)
// First, convert Lo and Hi to ValTy bit width
if (ValBits > 32) {
Hi = new ZExtInst(Hi, ValTy, "", entry);
Lo = new ZExtInst(Lo, ValTy, "", entry);
} else if (ValBits < 32) {
Hi = new TruncInst(Hi, ValTy, "", entry);
Lo = new TruncInst(Lo, ValTy, "", entry);
}
ICmpInst* is_forward =
new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
SelectInst* Lo_pn = new SelectInst(is_forward, Hi, Lo, "", entry);
SelectInst* Hi_pn = new SelectInst(is_forward, Lo, Hi, "", entry);
BinaryOperator* NumBits = BinaryOperator::createSub(Lo_pn, Hi_pn, "",entry);
ICmpInst* is_large =
new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
new BranchInst(large, small, is_large, entry);
// Block "large"
BinaryOperator* MaskBits =
BinaryOperator::createSub(RepBitWidth, NumBits, "", large);
BinaryOperator* Mask1 =
BinaryOperator::createLShr(RepMask, MaskBits, "", large);
BinaryOperator* Rep2 = BinaryOperator::createAnd(Mask1, Rep, "", large);
new BranchInst(small, large);
// Block "small"
PHINode* Rep3 = new PHINode(RepTy, "", small);
Rep3->reserveOperandSpace(2);
Rep3->addIncoming(Rep2, small);
Rep3->addIncoming(Rep, entry);
CastInst* Rep4 = new ZExtInst(Rep3, ValTy, "", small);
ICmpInst* is_reverse =
new ICmpInst(ICmpInst::ICMP_UGT, Lo, Hi, "", small);
new BranchInst(reverse, forward, is_reverse, small);
// Block "forward"
Value* t1 = BinaryOperator::createLShr(ValMask, Hi, "", forward);
Value* t2 = BinaryOperator::createShl(t1, Lo, "", forward);
Value* nott2 = BinaryOperator::createXor(t2, ValMask, "", forward);
Value* t3 = BinaryOperator::createShl(Rep4, Lo, "", forward);
Value* t4 = BinaryOperator::createAnd(nott2, Val, "", forward);
Value* FRslt = BinaryOperator::createOr(t3, t4, "", forward);
new ReturnInst(FRslt, forward);
// Block "reverse"
Value* t5 = BinaryOperator::createShl(ValMask, Lo, "", reverse);
Value* t6 = BinaryOperator::createShl(ValMask, Hi, "", reverse);
Value* t7 = BinaryOperator::createOr(t6, t5, "", reverse);
Value* t8 = BinaryOperator::createXor(t7, ValMask, "", reverse);
Value* t9 = BinaryOperator::createAnd(t8, Val, "", reverse);
Value* t10 = BinaryOperator::createShl(Rep4, Lo, "", reverse);
Value* t11 = BinaryOperator::createSub(RepBitWidth, Hi, "", reverse);
Value* t12 = new ZExtInst(t11, ValTy, "", reverse);
Value* t13 = BinaryOperator::createLShr(Rep4, t12, "",reverse);
Value* t14 = BinaryOperator::createOr(t10, t9, "", reverse);
Value* RRslt = BinaryOperator::createOr(t14, t13, "", reverse);
new ReturnInst(RRslt, reverse);
}
// Return a call to the implementation function
Value *Args[3];
Args[0] = CI->getOperand(0);
Args[1] = CI->getOperand(1);
Args[2] = CI->getOperand(2);
Args[3] = CI->getOperand(3);
return new CallInst(F, Args, 4, CI->getName(), CI);
}
void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
Function *Callee = CI->getCalledFunction();
@ -476,7 +654,11 @@ void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
}
case Intrinsic::part_select:
CI->replaceAllUsesWith(LowerBitPartSelect(CI));
CI->replaceAllUsesWith(LowerPartSelect(CI));
break;
case Intrinsic::part_set:
CI->replaceAllUsesWith(LowerPartSet(CI));
break;
case Intrinsic::stacksave:

View File

@ -2691,7 +2691,12 @@ SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::part_select: {
// Currently not implemented: just abort
assert(0 && "bit_part_select intrinsic not implemented");
assert(0 && "part_select intrinsic not implemented");
abort();
}
case Intrinsic::part_set: {
// Currently not implemented: just abort
assert(0 && "part_set intrinsic not implemented");
abort();
}
case Intrinsic::bswap:

View File

@ -1028,13 +1028,14 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, ...) {
if (GotBits < 16 || GotBits % 16 != 0)
CheckFailed("Intrinsic requires even byte width argument", F);
/* FALL THROUGH */
case Intrinsic::part_set:
case Intrinsic::part_select:
if (ArgNo == 1) {
unsigned ResultBits =
cast<IntegerType>(FTy->getReturnType())->getBitWidth();
if (GotBits != ResultBits)
CheckFailed("Intrinsic requires parameter and result bit "
"widths to match", F);
CheckFailed("Intrinsic requires the bit widths of the first "
"parameter and the result to match", F);
}
break;
}