mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-13 04:38:24 +00:00
Rework the routines that convert AP[S]Int into a string. Now, instead of
returning an std::string by value, it fills in a SmallString/SmallVector passed in. This significantly reduces string thrashing in some cases. More specifically, this: - Adds an operator<< and a print method for APInt that allows you to directly send them to an ostream. - Reimplements APInt::toString to be much simpler and more efficient algorithmically in addition to not thrashing strings quite as much. This speeds up llvm-dis on kc++ by 7%, and may also slightly speed up the asmprinter. This also fixes a bug I introduced into the asmwriter in a previous patch w.r.t. alias printing. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54873 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -15,14 +15,13 @@
|
||||
#define DEBUG_TYPE "apint"
|
||||
#include "llvm/ADT/APInt.h"
|
||||
#include "llvm/ADT/FoldingSet.h"
|
||||
#include "llvm/ADT/SmallString.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include <math.h>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <cstring>
|
||||
#include <cstdlib>
|
||||
#include <iomanip>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
/// This enumeration just provides for internal constants used in this
|
||||
@ -1478,12 +1477,14 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
|
||||
// is 2^31 so we just set it to -1u.
|
||||
uint64_t b = uint64_t(1) << 32;
|
||||
|
||||
#if 0
|
||||
DEBUG(cerr << "KnuthDiv: m=" << m << " n=" << n << '\n');
|
||||
DEBUG(cerr << "KnuthDiv: original:");
|
||||
DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
|
||||
DEBUG(cerr << " by");
|
||||
DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
|
||||
DEBUG(cerr << '\n');
|
||||
#endif
|
||||
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
|
||||
// u and v by d. Note that we have taken Knuth's advice here to use a power
|
||||
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
|
||||
@ -1508,11 +1509,13 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
|
||||
}
|
||||
}
|
||||
u[m+n] = u_carry;
|
||||
#if 0
|
||||
DEBUG(cerr << "KnuthDiv: normal:");
|
||||
DEBUG(for (int i = m+n; i >=0; i--) cerr << " " << std::setbase(16) << u[i]);
|
||||
DEBUG(cerr << " by");
|
||||
DEBUG(for (int i = n; i >0; i--) cerr << " " << std::setbase(16) << v[i-1]);
|
||||
DEBUG(cerr << '\n');
|
||||
#endif
|
||||
|
||||
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
|
||||
int j = m;
|
||||
@ -1636,7 +1639,9 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
|
||||
}
|
||||
DEBUG(cerr << '\n');
|
||||
}
|
||||
#if 0
|
||||
DEBUG(cerr << std::setbase(10) << '\n');
|
||||
#endif
|
||||
}
|
||||
|
||||
void APInt::divide(const APInt LHS, uint32_t lhsWords,
|
||||
@ -2001,114 +2006,112 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
|
||||
}
|
||||
}
|
||||
|
||||
std::string APInt::toString(uint8_t radix, bool wantSigned) const {
|
||||
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
|
||||
void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
|
||||
bool Signed) const {
|
||||
assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
|
||||
"Radix should be 2, 8, 10, or 16!");
|
||||
static const char *const digits[] = {
|
||||
"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
|
||||
};
|
||||
std::string result;
|
||||
uint32_t bits_used = getActiveBits();
|
||||
|
||||
// First, check for a zero value and just short circuit the logic below.
|
||||
if (*this == 0) {
|
||||
Str.push_back('0');
|
||||
return;
|
||||
}
|
||||
|
||||
static const char Digits[] = "0123456789ABCDEF";
|
||||
|
||||
if (isSingleWord()) {
|
||||
char buf[65];
|
||||
const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
|
||||
(radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
|
||||
if (format) {
|
||||
if (wantSigned) {
|
||||
int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
|
||||
(APINT_BITS_PER_WORD-BitWidth);
|
||||
sprintf(buf, format, sextVal);
|
||||
} else
|
||||
sprintf(buf, format, VAL);
|
||||
char Buffer[65];
|
||||
char *BufPtr = Buffer+65;
|
||||
|
||||
uint64_t N;
|
||||
if (Signed) {
|
||||
int64_t I = getSExtValue();
|
||||
if (I < 0) {
|
||||
Str.push_back('-');
|
||||
I = -I;
|
||||
}
|
||||
N = I;
|
||||
} else {
|
||||
memset(buf, 0, 65);
|
||||
uint64_t v = VAL;
|
||||
while (bits_used) {
|
||||
uint32_t bit = (uint32_t)v & 1;
|
||||
bits_used--;
|
||||
buf[bits_used] = digits[bit][0];
|
||||
v >>=1;
|
||||
}
|
||||
N = getZExtValue();
|
||||
}
|
||||
result = buf;
|
||||
return result;
|
||||
|
||||
while (N) {
|
||||
*--BufPtr = Digits[N % Radix];
|
||||
N /= Radix;
|
||||
}
|
||||
Str.append(BufPtr, Buffer+65);
|
||||
return;
|
||||
}
|
||||
|
||||
if (radix != 10) {
|
||||
// For the 2, 8 and 16 bit cases, we can just shift instead of divide
|
||||
// because the number of bits per digit (1,3 and 4 respectively) divides
|
||||
// equaly. We just shift until there value is zero.
|
||||
|
||||
// First, check for a zero value and just short circuit the logic below.
|
||||
if (*this == 0)
|
||||
result = "0";
|
||||
else {
|
||||
APInt tmp(*this);
|
||||
size_t insert_at = 0;
|
||||
if (wantSigned && this->isNegative()) {
|
||||
// They want to print the signed version and it is a negative value
|
||||
// Flip the bits and add one to turn it into the equivalent positive
|
||||
// value and put a '-' in the result.
|
||||
tmp.flip();
|
||||
tmp++;
|
||||
result = "-";
|
||||
insert_at = 1;
|
||||
}
|
||||
// Just shift tmp right for each digit width until it becomes zero
|
||||
uint32_t shift = (radix == 16 ? 4 : (radix == 8 ? 3 : 1));
|
||||
uint64_t mask = radix - 1;
|
||||
APInt zero(tmp.getBitWidth(), 0);
|
||||
while (tmp.ne(zero)) {
|
||||
unsigned digit =
|
||||
(unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask);
|
||||
result.insert(insert_at, digits[digit]);
|
||||
tmp = tmp.lshr(shift);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
APInt tmp(*this);
|
||||
APInt divisor(4, radix);
|
||||
APInt zero(tmp.getBitWidth(), 0);
|
||||
size_t insert_at = 0;
|
||||
if (wantSigned && tmp[BitWidth-1]) {
|
||||
APInt Tmp(*this);
|
||||
|
||||
if (Signed && isNegative()) {
|
||||
// They want to print the signed version and it is a negative value
|
||||
// Flip the bits and add one to turn it into the equivalent positive
|
||||
// value and put a '-' in the result.
|
||||
tmp.flip();
|
||||
tmp++;
|
||||
result = "-";
|
||||
insert_at = 1;
|
||||
Tmp.flip();
|
||||
Tmp++;
|
||||
Str.push_back('-');
|
||||
}
|
||||
if (tmp == zero)
|
||||
result = "0";
|
||||
else while (tmp.ne(zero)) {
|
||||
APInt APdigit(1,0);
|
||||
APInt tmp2(tmp.getBitWidth(), 0);
|
||||
divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
|
||||
&APdigit);
|
||||
uint32_t digit = (uint32_t)APdigit.getZExtValue();
|
||||
assert(digit < radix && "divide failed");
|
||||
result.insert(insert_at,digits[digit]);
|
||||
tmp = tmp2;
|
||||
|
||||
// We insert the digits backward, then reverse them to get the right order.
|
||||
unsigned StartDig = Str.size();
|
||||
|
||||
// For the 2, 8 and 16 bit cases, we can just shift instead of divide
|
||||
// because the number of bits per digit (1, 3 and 4 respectively) divides
|
||||
// equaly. We just shift until the value is zero.
|
||||
if (Radix != 10) {
|
||||
// Just shift tmp right for each digit width until it becomes zero
|
||||
unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
|
||||
unsigned MaskAmt = Radix - 1;
|
||||
|
||||
while (Tmp != 0) {
|
||||
unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
|
||||
Str.push_back(Digits[Digit]);
|
||||
Tmp = Tmp.lshr(ShiftAmt);
|
||||
}
|
||||
} else {
|
||||
APInt divisor(4, 10);
|
||||
while (Tmp != 0) {
|
||||
APInt APdigit(1, 0);
|
||||
APInt tmp2(Tmp.getBitWidth(), 0);
|
||||
divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
|
||||
&APdigit);
|
||||
uint32_t Digit = (uint32_t)APdigit.getZExtValue();
|
||||
assert(Digit < Radix && "divide failed");
|
||||
Str.push_back(Digits[Digit]);
|
||||
Tmp = tmp2;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
|
||||
// Reverse the digits before returning.
|
||||
std::reverse(Str.begin()+StartDig, Str.end());
|
||||
}
|
||||
|
||||
void APInt::dump() const
|
||||
{
|
||||
cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
|
||||
if (isSingleWord())
|
||||
cerr << VAL;
|
||||
else for (unsigned i = getNumWords(); i > 0; i--) {
|
||||
cerr << pVal[i-1] << " ";
|
||||
}
|
||||
cerr << " U(" << this->toStringUnsigned(10) << ") S("
|
||||
<< this->toStringSigned(10) << ")" << std::setbase(10);
|
||||
/// toString - This returns the APInt as a std::string. Note that this is an
|
||||
/// inefficient method. It is better to pass in a SmallVector/SmallString
|
||||
/// to the methods above.
|
||||
std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
|
||||
SmallString<40> S;
|
||||
toString(S, Radix, Signed);
|
||||
return S.c_str();
|
||||
}
|
||||
|
||||
|
||||
void APInt::dump() const {
|
||||
SmallString<40> S, U;
|
||||
this->toStringUnsigned(U);
|
||||
this->toStringSigned(S);
|
||||
fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
|
||||
}
|
||||
|
||||
void APInt::print(std::ostream &OS, bool isSigned) const {
|
||||
SmallString<40> S;
|
||||
this->toString(S, 10, isSigned);
|
||||
OS << S.c_str();
|
||||
}
|
||||
|
||||
|
||||
// This implements a variety of operations on a representation of
|
||||
// arbitrary precision, two's-complement, bignum integer values.
|
||||
|
||||
|
Reference in New Issue
Block a user