From fbadcd0826c2e69ed21c2d535310ba958acb4359 Mon Sep 17 00:00:00 2001 From: Jim Grosbach Date: Tue, 21 Dec 2010 16:16:00 +0000 Subject: [PATCH] Tidy up a bit. Trailing whitespace, hard tabs and 80-columns. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122337 91177308-0d34-0410-b5e6-96231b3b80d8 --- utils/TableGen/CodeGenDAGPatterns.cpp | 530 +++++++++++++------------- utils/TableGen/DAGISelMatcher.cpp | 28 +- utils/TableGen/DAGISelMatcher.h | 320 ++++++++-------- utils/TableGen/DAGISelMatcherGen.cpp | 194 +++++----- 4 files changed, 536 insertions(+), 536 deletions(-) diff --git a/utils/TableGen/CodeGenDAGPatterns.cpp b/utils/TableGen/CodeGenDAGPatterns.cpp index 4a9ac2d53a8..cfe7ccd7097 100644 --- a/utils/TableGen/CodeGenDAGPatterns.cpp +++ b/utils/TableGen/CodeGenDAGPatterns.cpp @@ -56,11 +56,11 @@ EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { EEVT::TypeSet::TypeSet(const std::vector &VTList) { assert(!VTList.empty() && "empty list?"); TypeVec.append(VTList.begin(), VTList.end()); - + if (!VTList.empty()) assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && VTList[0] != MVT::fAny); - + // Verify no duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); @@ -72,9 +72,9 @@ bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, bool (*Pred)(MVT::SimpleValueType), const char *PredicateName) { assert(isCompletelyUnknown()); - const std::vector &LegalTypes = + const std::vector &LegalTypes = TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); - + for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) if (Pred == 0 || Pred(LegalTypes[i])) TypeVec.push_back(LegalTypes[i]); @@ -82,14 +82,14 @@ bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, // If we have nothing that matches the predicate, bail out. if (TypeVec.empty()) TP.error("Type inference contradiction found, no " + - std::string(PredicateName) + " types found"); + std::string(PredicateName) + " types found"); // No need to sort with one element. if (TypeVec.size() == 1) return true; // Remove duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); - + return true; } @@ -100,7 +100,7 @@ bool EEVT::TypeSet::hasIntegerTypes() const { if (isInteger(TypeVec[i])) return true; return false; -} +} /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or /// a floating point value type. @@ -109,7 +109,7 @@ bool EEVT::TypeSet::hasFloatingPointTypes() const { if (isFloatingPoint(TypeVec[i])) return true; return false; -} +} /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector /// value type. @@ -123,9 +123,9 @@ bool EEVT::TypeSet::hasVectorTypes() const { std::string EEVT::TypeSet::getName() const { if (TypeVec.empty()) return ""; - + std::string Result; - + for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { std::string VTName = llvm::getEnumName(TypeVec[i]); // Strip off MVT:: prefix if present. @@ -134,7 +134,7 @@ std::string EEVT::TypeSet::getName() const { if (i) Result += ':'; Result += VTName; } - + if (TypeVec.size() == 1) return Result; return "{" + Result + "}"; @@ -146,14 +146,14 @@ std::string EEVT::TypeSet::getName() const { bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ if (InVT.isCompletelyUnknown() || *this == InVT) return false; - + if (isCompletelyUnknown()) { *this = InVT; return true; } - + assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); - + // Handle the abstract cases, seeing if we can resolve them better. switch (TypeVec[0]) { default: break; @@ -163,26 +163,26 @@ bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ EEVT::TypeSet InCopy(InVT); InCopy.EnforceInteger(TP); InCopy.EnforceScalar(TP); - + if (InCopy.isConcrete()) { // If the RHS has one integer type, upgrade iPTR to i32. TypeVec[0] = InVT.TypeVec[0]; return true; } - + // If the input has multiple scalar integers, this doesn't add any info. if (!InCopy.isCompletelyUnknown()) return false; } break; } - + // If the input constraint is iAny/iPTR and this is an integer type list, // remove non-integer types from the list. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && hasIntegerTypes()) { bool MadeChange = EnforceInteger(TP); - + // If we're merging in iPTR/iPTRAny and the node currently has a list of // multiple different integer types, replace them with a single iPTR. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && @@ -191,10 +191,10 @@ bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ TypeVec[0] = InVT.TypeVec[0]; MadeChange = true; } - + return MadeChange; } - + // If this is a type list and the RHS is a typelist as well, eliminate entries // from this list that aren't in the other one. bool MadeChange = false; @@ -207,16 +207,16 @@ bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ InInVT = true; break; } - + if (InInVT) continue; TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } - + // If we removed all of our types, we have a type contradiction. if (!TypeVec.empty()) return MadeChange; - + // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, merging '" + InVT.getName() + "' into '" + InputSet.getName() + "'"); @@ -232,12 +232,12 @@ bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { return false; TypeSet InputSet(*this); - + // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isInteger(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be integer"); @@ -254,12 +254,12 @@ bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { return false; TypeSet InputSet(*this); - + // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isFloatingPoint(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be floating point"); @@ -276,12 +276,12 @@ bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { return false; TypeSet InputSet(*this); - + // Filter out all the vector types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isScalar(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be scalar"); @@ -296,14 +296,14 @@ bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { TypeSet InputSet(*this); bool MadeChange = false; - + // Filter out all the scalar types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isVector(TypeVec[i])) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } - + if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be a vector"); @@ -317,13 +317,13 @@ bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { // Both operands must be integer or FP, but we don't care which. bool MadeChange = false; - + if (isCompletelyUnknown()) MadeChange = FillWithPossibleTypes(TP); if (Other.isCompletelyUnknown()) MadeChange = Other.FillWithPossibleTypes(TP); - + // If one side is known to be integer or known to be FP but the other side has // no information, get at least the type integrality info in there. if (!hasFloatingPointTypes()) @@ -334,62 +334,62 @@ bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { MadeChange |= EnforceInteger(TP); else if (!Other.hasIntegerTypes()) MadeChange |= EnforceFloatingPoint(TP); - + assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && "Should have a type list now"); - + // If one contains vectors but the other doesn't pull vectors out. if (!hasVectorTypes()) MadeChange |= Other.EnforceScalar(TP); if (!hasVectorTypes()) MadeChange |= EnforceScalar(TP); - + // This code does not currently handle nodes which have multiple types, // where some types are integer, and some are fp. Assert that this is not // the case. assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); - + // Okay, find the smallest type from the current set and remove it from the // largest set. MVT::SimpleValueType Smallest = TypeVec[0]; for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) if (TypeVec[i] < Smallest) Smallest = TypeVec[i]; - + // If this is the only type in the large set, the constraint can never be // satisfied. if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest) TP.error("Type inference contradiction found, '" + Other.getName() + "' has nothing larger than '" + getName() +"'!"); - + SmallVector::iterator TVI = std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest); if (TVI != Other.TypeVec.end()) { Other.TypeVec.erase(TVI); MadeChange = true; } - + // Okay, find the largest type in the Other set and remove it from the // current set. MVT::SimpleValueType Largest = Other.TypeVec[0]; for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) if (Other.TypeVec[i] > Largest) Largest = Other.TypeVec[i]; - + // If this is the only type in the small set, the constraint can never be // satisfied. if (TypeVec.size() == 1 && TypeVec[0] == Largest) TP.error("Type inference contradiction found, '" + getName() + "' has nothing smaller than '" + Other.getName()+"'!"); - + TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest); if (TVI != TypeVec.end()) { TypeVec.erase(TVI); MadeChange = true; } - + return MadeChange; } @@ -406,7 +406,7 @@ bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, if (isConcrete()) { EVT IVT = getConcrete(); IVT = IVT.getVectorElementType(); - return MadeChange | + return MadeChange | VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); } @@ -414,11 +414,11 @@ bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, // disagree. if (!VTOperand.isConcrete()) return MadeChange; - + MVT::SimpleValueType VT = VTOperand.getConcrete(); - + TypeSet InputSet(*this); - + // Filter out all the types which don't have the right element type. for (unsigned i = 0; i != TypeVec.size(); ++i) { assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); @@ -427,7 +427,7 @@ bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, MadeChange = true; } } - + if (TypeVec.empty()) // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have a vector element"); @@ -505,7 +505,7 @@ static unsigned getPatternSize(const TreePatternNode *P, // e.g. (set R32:$dst, 0). if (P->isLeaf() && dynamic_cast(P->getLeafValue())) Size += 2; - + // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) @@ -514,12 +514,12 @@ static unsigned getPatternSize(const TreePatternNode *P, const ComplexPattern *AM = P->getComplexPatternInfo(CGP); if (AM) Size += AM->getNumOperands() * 3; - + // If this node has some predicate function that must match, it adds to the // complexity of this node. if (!P->getPredicateFns().empty()) ++Size; - + // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); @@ -527,7 +527,7 @@ static unsigned getPatternSize(const TreePatternNode *P, Child->getType(0) != MVT::Other) Size += getPatternSize(Child, CGP); else if (Child->isLeaf()) { - if (dynamic_cast(Child->getLeafValue())) + if (dynamic_cast(Child->getLeafValue())) Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). else if (Child->getComplexPatternInfo(CGP)) Size += getPatternSize(Child, CGP); @@ -535,7 +535,7 @@ static unsigned getPatternSize(const TreePatternNode *P, ++Size; } } - + return Size; } @@ -576,13 +576,13 @@ std::string PatternToMatch::getPredicateCheck() const { SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); - + if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); if (x.SDTCisVT_Info.VT == MVT::isVoid) throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); - + } else if (R->isSubClassOf("SDTCisPtrTy")) { ConstraintType = SDTCisPtrTy; } else if (R->isSubClassOf("SDTCisInt")) { @@ -596,11 +596,11 @@ SDTypeConstraint::SDTypeConstraint(Record *R) { x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; - x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = + x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { ConstraintType = SDTCisOpSmallerThanOp; - x.SDTCisOpSmallerThanOp_Info.BigOperandNum = + x.SDTCisOpSmallerThanOp_Info.BigOperandNum = R->getValueAsInt("BigOperandNum"); } else if (R->isSubClassOf("SDTCisEltOfVec")) { ConstraintType = SDTCisEltOfVec; @@ -621,11 +621,11 @@ static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, ResNo = OpNo; return N; } - + OpNo -= NumResults; - + if (OpNo >= N->getNumChildren()) { - errs() << "Invalid operand number in type constraint " + errs() << "Invalid operand number in type constraint " << (OpNo+NumResults) << " "; N->dump(); errs() << '\n'; @@ -644,7 +644,7 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, TreePattern &TP) const { unsigned ResNo = 0; // The result number being referenced. TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); - + switch (ConstraintType) { default: assert(0 && "Unknown constraint type!"); case SDTCisVT: @@ -679,9 +679,9 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, TP.error(N->getOperator()->getName() + " expects a VT operand!"); MVT::SimpleValueType VT = getValueType(static_cast(NodeToApply->getLeafValue())->getDef()); - + EEVT::TypeSet TypeListTmp(VT, TP); - + unsigned OResNo = 0; TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, @@ -702,13 +702,13 @@ bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, TreePatternNode *VecOperand = getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); - + // Filter vector types out of VecOperand that don't have the right element // type. return VecOperand->getExtType(VResNo). EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); } - } + } return false; } @@ -721,7 +721,7 @@ SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); - + // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); @@ -754,8 +754,8 @@ SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { exit(1); } } - - + + // Parse the type constraints. std::vector ConstraintList = TypeProfile->getValueAsListOfDefs("Constraints"); @@ -770,12 +770,12 @@ MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); assert(ResNo == 0 && "Only handles single result nodes so far"); - + for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { // Make sure that this applies to the correct node result. if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # continue; - + switch (TypeConstraints[i].ConstraintType) { default: break; case SDTypeConstraint::SDTCisVT: @@ -802,20 +802,20 @@ static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { if (Operator->getName() == "set" || Operator->getName() == "implicit") return 0; // All return nothing. - + if (Operator->isSubClassOf("Intrinsic")) return CDP.getIntrinsic(Operator).IS.RetVTs.size(); - + if (Operator->isSubClassOf("SDNode")) return CDP.getSDNodeInfo(Operator).getNumResults(); - + if (Operator->isSubClassOf("PatFrag")) { // If we've already parsed this pattern fragment, get it. Otherwise, handle // the forward reference case where one pattern fragment references another // before it is processed. if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) return PFRec->getOnlyTree()->getNumTypes(); - + // Get the result tree. DagInit *Tree = Operator->getValueAsDag("Fragment"); Record *Op = 0; @@ -824,22 +824,22 @@ static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { assert(Op && "Invalid Fragment"); return GetNumNodeResults(Op, CDP); } - + if (Operator->isSubClassOf("Instruction")) { CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); // FIXME: Should allow access to all the results here. unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; - + // Add on one implicit def if it has a resolvable type. if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) ++NumDefsToAdd; return NumDefsToAdd; } - + if (Operator->isSubClassOf("SDNodeXForm")) return 1; // FIXME: Generalize SDNodeXForm - + Operator->dump(); errs() << "Unhandled node in GetNumNodeResults\n"; exit(1); @@ -865,7 +865,7 @@ void TreePatternNode::print(raw_ostream &OS) const { } OS << ")"; } - + for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) OS << "<>"; if (TransformFn) @@ -903,7 +903,7 @@ bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, } return getLeafValue() == N->getLeafValue(); } - + if (N->getOperator() != getOperator() || N->getNumChildren() != getNumChildren()) return false; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) @@ -947,7 +947,7 @@ void TreePatternNode::RemoveAllTypes() { void TreePatternNode:: SubstituteFormalArguments(std::map &ArgMap) { if (isLeaf()) return; - + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { @@ -975,7 +975,7 @@ SubstituteFormalArguments(std::map &ArgMap) { TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); - + if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { @@ -994,7 +994,7 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); - + // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) TP.error("'" + Op->getName() + "' fragment requires " + @@ -1012,10 +1012,10 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { std::map ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); - + FragTree->SubstituteFormalArguments(ArgMap); } - + FragTree->setName(getName()); for (unsigned i = 0, e = Types.size(); i != e; ++i) FragTree->UpdateNodeType(i, getExtType(i), TP); @@ -1026,7 +1026,7 @@ TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! - + // The fragment we inlined could have recursive inlining that is needed. See // if there are any pattern fragments in it and inline them as needed. return FragTree->InlinePatternFragments(TP); @@ -1041,21 +1041,21 @@ static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, // Check to see if this is a register or a register class. if (R->isSubClassOf("RegisterClass")) { assert(ResNo == 0 && "Regclass ref only has one result!"); - if (NotRegisters) + if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); } - + if (R->isSubClassOf("PatFrag")) { assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); // Pattern fragment types will be resolved when they are inlined. return EEVT::TypeSet(); // Unknown. } - + if (R->isSubClassOf("Register")) { assert(ResNo == 0 && "Registers only produce one result!"); - if (NotRegisters) + if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterVTs(R)); @@ -1065,16 +1065,16 @@ static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); return EEVT::TypeSet(); } - + if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { assert(ResNo == 0 && "This node only has one result!"); // Using a VTSDNode or CondCodeSDNode. return EEVT::TypeSet(MVT::Other, TP); } - + if (R->isSubClassOf("ComplexPattern")) { assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); - if (NotRegisters) + if (NotRegisters) return EEVT::TypeSet(); // Unknown. return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), TP); @@ -1083,13 +1083,13 @@ static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, assert(ResNo == 0 && "Regclass can only have one result!"); return EEVT::TypeSet(MVT::iPTR, TP); } - + if (R->getName() == "node" || R->getName() == "srcvalue" || R->getName() == "zero_reg") { // Placeholder. return EEVT::TypeSet(); // Unknown. } - + TP.error("Unknown node flavor used in pattern: " + R->getName()); return EEVT::TypeSet(MVT::Other, TP); } @@ -1103,8 +1103,8 @@ getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { getOperator() != CDP.get_intrinsic_w_chain_sdnode() && getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) return 0; - - unsigned IID = + + unsigned IID = dynamic_cast(getChild(0)->getLeafValue())->getValue(); return &CDP.getIntrinsicInfo(IID); } @@ -1114,7 +1114,7 @@ getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { const ComplexPattern * TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { if (!isLeaf()) return 0; - + DefInit *DI = dynamic_cast(getLeafValue()); if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) return &CGP.getComplexPattern(DI->getDef()); @@ -1129,10 +1129,10 @@ bool TreePatternNode::NodeHasProperty(SDNP Property, return CP->hasProperty(Property); return false; } - + Record *Operator = getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; - + return CGP.getSDNodeInfo(Operator).hasProperty(Property); } @@ -1149,7 +1149,7 @@ bool TreePatternNode::TreeHasProperty(SDNP Property, if (getChild(i)->TreeHasProperty(Property, CGP)) return true; return false; -} +} /// isCommutativeIntrinsic - Return true if the node corresponds to a /// commutative intrinsic. @@ -1176,27 +1176,27 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { NotRegisters, TP), TP); return MadeChange; } - + if (IntInit *II = dynamic_cast(getLeafValue())) { assert(Types.size() == 1 && "Invalid IntInit"); - + // Int inits are always integers. :) bool MadeChange = Types[0].EnforceInteger(TP); - + if (!Types[0].isConcrete()) return MadeChange; - + MVT::SimpleValueType VT = getType(0); if (VT == MVT::iPTR || VT == MVT::iPTRAny) return MadeChange; - + unsigned Size = EVT(VT).getSizeInBits(); // Make sure that the value is representable for this type. if (Size >= 32) return MadeChange; - + int Val = (II->getValue() << (32-Size)) >> (32-Size); if (Val == II->getValue()) return MadeChange; - + // If sign-extended doesn't fit, does it fit as unsigned? unsigned ValueMask; unsigned UnsignedVal; @@ -1205,34 +1205,34 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { if ((ValueMask & UnsignedVal) == UnsignedVal) return MadeChange; - + TP.error("Integer value '" + itostr(II->getValue())+ "' is out of range for type '" + getEnumName(getType(0)) + "'!"); return MadeChange; } return false; } - + // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert(getNumTypes() == 0 && "Set doesn't produce a value"); assert(getNumChildren() >= 2 && "Missing RHS of a set?"); unsigned NC = getNumChildren(); - + TreePatternNode *SetVal = getChild(NC-1); bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); for (unsigned i = 0; i < NC-1; ++i) { TreePatternNode *Child = getChild(i); MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); - + // Types of operands must match. MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); } return MadeChange; } - + if (getOperator()->getName() == "implicit") { assert(getNumTypes() == 0 && "Node doesn't produce a value"); @@ -1241,15 +1241,15 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } - + if (getOperator()->getName() == "COPY_TO_REGCLASS") { bool MadeChange = false; MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); - + assert(getChild(0)->getNumTypes() == 1 && getChild(1)->getNumTypes() == 1 && "Unhandled case"); - + // child #1 of COPY_TO_REGCLASS should be a register class. We don't care // what type it gets, so if it didn't get a concrete type just give it the // first viable type from the reg class. @@ -1260,14 +1260,14 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { } return MadeChange; } - + if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { bool MadeChange = false; // Apply the result type to the node. unsigned NumRetVTs = Int->IS.RetVTs.size(); unsigned NumParamVTs = Int->IS.ParamVTs.size(); - + for (unsigned i = 0, e = NumRetVTs; i != e; ++i) MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); @@ -1278,37 +1278,37 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { // Apply type info to the intrinsic ID. MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); - + for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); - + MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); } return MadeChange; } - + if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); - + // Check that the number of operands is sane. Negative operands -> varargs. if (NI.getNumOperands() >= 0 && getNumChildren() != (unsigned)NI.getNumOperands()) TP.error(getOperator()->getName() + " node requires exactly " + itostr(NI.getNumOperands()) + " operands!"); - + bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } - + if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = CDP.getInstruction(getOperator()); CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(getOperator()); - + bool MadeChange = false; // Apply the result types to the node, these come from the things in the @@ -1317,7 +1317,7 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { Record *ResultNode = Inst.getResult(ResNo); - + if (ResultNode->isSubClassOf("PointerLikeRegClass")) { MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); } else if (ResultNode->getName() == "unknown") { @@ -1325,26 +1325,26 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { } else { assert(ResultNode->isSubClassOf("RegisterClass") && "Operands should be register classes!"); - const CodeGenRegisterClass &RC = + const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(ResultNode); MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); } } - + // If the instruction has implicit defs, we apply the first one as a result. // FIXME: This sucks, it should apply all implicit defs. if (!InstInfo.ImplicitDefs.empty()) { unsigned ResNo = NumResultsToAdd; - + // FIXME: Generalize to multiple possible types and multiple possible // ImplicitDefs. MVT::SimpleValueType VT = InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); - + if (VT != MVT::Other) MadeChange |= UpdateNodeType(ResNo, VT, TP); } - + // If this is an INSERT_SUBREG, constrain the source and destination VTs to // be the same. if (getOperator()->getName() == "INSERT_SUBREG") { @@ -1356,7 +1356,7 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { unsigned ChildNo = 0; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { Record *OperandNode = Inst.getOperand(i); - + // If the instruction expects a predicate or optional def operand, we // codegen this by setting the operand to it's default value if it has a // non-empty DefaultOps field. @@ -1364,18 +1364,18 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { OperandNode->isSubClassOf("OptionalDefOperand")) && !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) continue; - + // Verify that we didn't run out of provided operands. if (ChildNo >= getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' expects more operands than were provided."); - + MVT::SimpleValueType VT; TreePatternNode *Child = getChild(ChildNo++); unsigned ChildResNo = 0; // Instructions always use res #0 of their op. - + if (OperandNode->isSubClassOf("RegisterClass")) { - const CodeGenRegisterClass &RC = + const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(OperandNode); MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); } else if (OperandNode->isSubClassOf("Operand")) { @@ -1395,12 +1395,12 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { if (ChildNo != getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' was provided too many operands!"); - + return MadeChange; } - + assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); - + // Node transforms always take one operand. if (getNumChildren() != 1) TP.error("Node transform '" + getOperator()->getName() + @@ -1408,7 +1408,7 @@ bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); - + // If either the output or input of the xform does not have exact // type info. We assume they must be the same. Otherwise, it is perfectly // legal to transform from one type to a completely different type. @@ -1438,7 +1438,7 @@ static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { /// used as a sanity check for .td files (to prevent people from writing stuff /// that can never possibly work), and to prevent the pattern permuter from /// generating stuff that is useless. -bool TreePatternNode::canPatternMatch(std::string &Reason, +bool TreePatternNode::canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP) { if (isLeaf()) return true; @@ -1452,7 +1452,7 @@ bool TreePatternNode::canPatternMatch(std::string &Reason, // TODO: return true; } - + // If this node is a commutative operator, check that the LHS isn't an // immediate. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); @@ -1469,7 +1469,7 @@ bool TreePatternNode::canPatternMatch(std::string &Reason, } } } - + return true; } @@ -1509,7 +1509,7 @@ void TreePattern::ComputeNamedNodes() { void TreePattern::ComputeNamedNodes(TreePatternNode *N) { if (!N->getName().empty()) NamedNodes[N->getName()].push_back(N); - + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) ComputeNamedNodes(N->getChild(i)); } @@ -1518,7 +1518,7 @@ void TreePattern::ComputeNamedNodes(TreePatternNode *N) { TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ if (DefInit *DI = dynamic_cast(TheInit)) { Record *R = DI->getDef(); - + // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode if its own. For example: /// (foo GPR, imm) -> (foo GPR, (imm)) @@ -1526,7 +1526,7 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ return ParseTreePattern(new DagInit(DI, "", std::vector >()), OpName); - + // Input argument? TreePatternNode *Res = new TreePatternNode(DI, 1); if (R->getName() == "node" && !OpName.empty()) { @@ -1538,13 +1538,13 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ Res->setName(OpName); return Res; } - + if (IntInit *II = dynamic_cast(TheInit)) { if (!OpName.empty()) error("Constant int argument should not have a name!"); return new TreePatternNode(II, 1); } - + if (BitsInit *BI = dynamic_cast(TheInit)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(new IntRecTy()); @@ -1561,34 +1561,34 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ DefInit *OpDef = dynamic_cast(Dag->getOperator()); if (!OpDef) error("Pattern has unexpected operator type!"); Record *Operator = OpDef->getDef(); - + if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only takes one operand!"); - + TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); - + // Apply the type cast. assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); New->UpdateNodeType(0, getValueType(Operator), *this); - + if (!OpName.empty()) error("ValueType cast should not have a name!"); return New; } - + // Verify that this is something that makes sense for an operator. - if (!Operator->isSubClassOf("PatFrag") && + if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && - !Operator->isSubClassOf("Instruction") && + !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && !Operator->isSubClassOf("Intrinsic") && Operator->getName() != "set" && Operator->getName() != "implicit") error("Unrecognized node '" + Operator->getName() + "'!"); - + // Check to see if this is something that is illegal in an input pattern. if (isInputPattern) { if (Operator->isSubClassOf("Instruction") || @@ -1597,7 +1597,7 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ } else { if (Operator->isSubClassOf("Intrinsic")) error("Cannot use '" + Operator->getName() + "' in an output pattern!"); - + if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && Operator->getName() != "fpimm" && @@ -1612,15 +1612,15 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ Operator->getName() != "vt") error("Cannot use '" + Operator->getName() + "' in an output pattern!"); } - + std::vector Children; // Parse all the operands. for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); - + // If the operator is an intrinsic, then this is just syntactic sugar for for - // (intrinsic_* , ..children..). Pick the right intrinsic node, and + // (intrinsic_* , ..children..). Pick the right intrinsic node, and // convert the intrinsic name to a number. if (Operator->isSubClassOf("Intrinsic")) { const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); @@ -1635,15 +1635,15 @@ TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); else // Otherwise, no chain. Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); - + TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); Children.insert(Children.begin(), IIDNode); } - + unsigned NumResults = GetNumNodeResults(Operator, CDP); TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); Result->setName(OpName); - + if (!Dag->getName().empty()) { assert(Result->getName().empty()); Result->setName(Dag->getName()); @@ -1701,10 +1701,10 @@ InferAllTypes(const StringMap > *InNamedTypes) { } // If there are constraints on our named nodes, apply them. - for (StringMap >::iterator + for (StringMap >::iterator I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { SmallVectorImpl &Nodes = I->second; - + // If we have input named node types, propagate their types to the named // values here. if (InNamedTypes) { @@ -1727,7 +1727,7 @@ InferAllTypes(const StringMap > *InNamedTypes) { if (DI && DI->getDef()->isSubClassOf("RegisterClass")) continue; } - + assert(Nodes[i]->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); @@ -1735,7 +1735,7 @@ InferAllTypes(const StringMap > *InNamedTypes) { *this); } } - + // If there are multiple nodes with the same name, they must all have the // same type. if (I->second.size() > 1) { @@ -1743,14 +1743,14 @@ InferAllTypes(const StringMap > *InNamedTypes) { TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); - + MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); } } } } - + bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); @@ -1766,7 +1766,7 @@ void TreePattern::print(raw_ostream &OS) const { OS << ")"; } OS << ": "; - + if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { @@ -1785,7 +1785,7 @@ void TreePattern::dump() const { print(errs()); } // CodeGenDAGPatterns implementation // -CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : +CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R), Target(R) { Intrinsics = LoadIntrinsics(Records, false); @@ -1797,7 +1797,7 @@ CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : ParseDefaultOperands(); ParseInstructions(); ParsePatterns(); - + // Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. GenerateVariants(); @@ -1868,20 +1868,20 @@ void CodeGenDAGPatterns::ParseComplexPatterns() { /// void CodeGenDAGPatterns::ParsePatternFragments() { std::vector Fragments = Records.getAllDerivedDefinitions("PatFrag"); - + // First step, parse all of the fragments. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); PatternFragments[Fragments[i]] = P; - + // Validate the argument list, converting it to set, to discard duplicates. std::vector &Args = P->getArgList(); std::set OperandsSet(Args.begin(), Args.end()); - + if (OperandsSet.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); - + // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); DefInit *OpsOp = dynamic_cast(OpsList->getOperator()); @@ -1892,8 +1892,8 @@ void CodeGenDAGPatterns::ParsePatternFragments() { OpsOp->getDef()->getName() != "outs" && OpsOp->getDef()->getName() != "ins")) P->error("Operands list should start with '(ops ... '!"); - - // Copy over the arguments. + + // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!dynamic_cast(OpsList->getArg(j)) || @@ -1908,7 +1908,7 @@ void CodeGenDAGPatterns::ParsePatternFragments() { OperandsSet.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } - + if (!OperandsSet.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsSet.begin() + "'!"); @@ -1918,20 +1918,20 @@ void CodeGenDAGPatterns::ParsePatternFragments() { std::string Code = Fragments[i]->getValueAsCode("Predicate"); if (!Code.empty()) P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); - + // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } - + // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { TreePattern *ThePat = PatternFragments[Fragments[i]]; ThePat->InlinePatternFragments(); - + // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. try { @@ -1942,7 +1942,7 @@ void CodeGenDAGPatterns::ParsePatternFragments() { // actually used by instructions, the type consistency error will be // reported there. } - + // If debugging, print out the pattern fragment result. DEBUG(ThePat->dump()); } @@ -1956,11 +1956,11 @@ void CodeGenDAGPatterns::ParseDefaultOperands() { // Find some SDNode. assert(!SDNodes.empty() && "No SDNodes parsed?"); Init *SomeSDNode = new DefInit(SDNodes.begin()->first); - + for (unsigned iter = 0; iter != 2; ++iter) { for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); - + // Clone the DefaultInfo dag node, changing the operator from 'ops' to // SomeSDnode so that we can parse this. std::vector > Ops; @@ -1968,20 +1968,20 @@ void CodeGenDAGPatterns::ParseDefaultOperands() { Ops.push_back(std::make_pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op))); DagInit *DI = new DagInit(SomeSDNode, "", Ops); - + // Create a TreePattern to parse this. TreePattern P(DefaultOps[iter][i], DI, false, *this); assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); // Copy the operands over into a DAGDefaultOperand. DAGDefaultOperand DefaultOpInfo; - + TreePatternNode *T = P.getTree(0); for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { TreePatternNode *TPN = T->getChild(op); while (TPN->ApplyTypeConstraints(P, false)) /* Resolve all types */; - + if (TPN->ContainsUnresolvedType()) { if (iter == 0) throw "Value #" + utostr(i) + " of PredicateOperand '" + @@ -2038,7 +2038,7 @@ static bool HandleUse(TreePattern *I, TreePatternNode *Pat, assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } - + // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); @@ -2061,13 +2061,13 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, I->error("Cannot specify a transform function for a non-input value!"); return; } - + if (Pat->getOperator()->getName() == "implicit") { for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("implicitly defined value should be a register!"); - + DefInit *Val = dynamic_cast(Dest->getLeafValue()); if (!Val || !Val->getDef()->isSubClassOf("Register")) I->error("implicitly defined value should be a register!"); @@ -2075,7 +2075,7 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, } return; } - + if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. @@ -2085,30 +2085,30 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, InstImpResults); } - + // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = HandleUse(I, Pat, InstInputs); - + if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } - + // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); - + if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); - + // Check the set destinations. unsigned NumDests = Pat->getNumChildren()-1; for (unsigned i = 0; i != NumDests; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a register!"); - + DefInit *Val = dynamic_cast(Dest->getLeafValue()); if (!Val) I->error("set destination should be a register!"); @@ -2126,7 +2126,7 @@ FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, I->error("set destination should be a register!"); } } - + // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), InstInputs, InstResults, InstImpResults); @@ -2259,7 +2259,7 @@ static void InferFromPattern(const CodeGenInstruction &Inst, "which already inferred this.\n", Inst.TheDef->getName().c_str()); HasSideEffects = true; } - + if (Inst.Operands.isVariadic) IsVariadic = true; // Can warn if we want. } @@ -2269,20 +2269,20 @@ static void InferFromPattern(const CodeGenInstruction &Inst, /// resolved instructions. void CodeGenDAGPatterns::ParseInstructions() { std::vector Instrs = Records.getAllDerivedDefinitions("Instruction"); - + for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { ListInit *LI = 0; - + if (dynamic_cast(Instrs[i]->getValueInit("Pattern"))) LI = Instrs[i]->getValueAsListInit("Pattern"); - + // If there is no pattern, only collect minimal information about the // instruction for its operand list. We have to assume that there is one // result, as we have no detailed info. if (!LI || LI->getSize() == 0) { std::vector Results; std::vector Operands; - + CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); if (InstInfo.Operands.size() != 0) { @@ -2293,40 +2293,40 @@ void CodeGenDAGPatterns::ParseInstructions() { } else { // Assume the first operand is the result. Results.push_back(InstInfo.Operands[0].Rec); - + // The rest are inputs. for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) Operands.push_back(InstInfo.Operands[j].Rec); } } - + // Create and insert the instruction. std::vector ImpResults; - Instructions.insert(std::make_pair(Instrs[i], + Instructions.insert(std::make_pair(Instrs[i], DAGInstruction(0, Results, Operands, ImpResults))); continue; // no pattern. } - + // Parse the instruction. TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); - + // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); - - // InstInputs - Keep track of all of the inputs of the instruction, along + + // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map InstInputs; - + // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map InstResults; std::vector InstImpResults; - + // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { @@ -2357,25 +2357,25 @@ void CodeGenDAGPatterns::ParseInstructions() { I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); const std::string &OpName = CGI.Operands[i].Name; - + // Check that it exists in InstResults. TreePatternNode *RNode = InstResults[OpName]; if (RNode == 0) I->error("Operand $" + OpName + " does not exist in operand list!"); - + if (i == 0) Res0Node = RNode; Record *R = dynamic_cast(RNode->getLeafValue())->getDef(); if (R == 0) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); - + if (CGI.Operands[i].Rec != R) I->error("Operand $" + OpName + " class mismatch!"); - + // Remember the return type. Results.push_back(CGI.Operands[i].Rec); - + // Okay, this one checks out. InstResults.erase(OpName); } @@ -2408,7 +2408,7 @@ void CodeGenDAGPatterns::ParseInstructions() { } TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. - + if (InVal->isLeaf() && dynamic_cast(InVal->getLeafValue())) { Record *InRec = static_cast(InVal->getLeafValue())->getDef(); @@ -2417,13 +2417,13 @@ void CodeGenDAGPatterns::ParseInstructions() { " between the operand and pattern"); } Operands.push_back(Op.Rec); - + // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); - + // No predicate is useful on the result. OpNode->clearPredicateFns(); - + // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); @@ -2431,10 +2431,10 @@ void CodeGenDAGPatterns::ParseInstructions() { Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); } - + ResultNodeOperands.push_back(OpNode); } - + if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); @@ -2459,10 +2459,10 @@ void CodeGenDAGPatterns::ParseInstructions() { DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); - + DEBUG(I->dump()); } - + // If we can, convert the instructions to be patterns that are matched! for (std::map::iterator II = Instructions.begin(), @@ -2481,7 +2481,7 @@ void CodeGenDAGPatterns::ParseInstructions() { // Not a set (store or something?) SrcPattern = Pattern; } - + Record *Instr = II->first; AddPatternToMatch(I, PatternToMatch(Instr, @@ -2497,7 +2497,7 @@ void CodeGenDAGPatterns::ParseInstructions() { typedef std::pair NameRecord; -static void FindNames(const TreePatternNode *P, +static void FindNames(const TreePatternNode *P, std::map &Names, const TreePattern *PatternTop) { if (!P->getName().empty()) { @@ -2509,7 +2509,7 @@ static void FindNames(const TreePatternNode *P, PatternTop->error("repetition of value: $" + P->getName() + " where different uses have different types!"); } - + if (!P->isLeaf()) { for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) FindNames(P->getChild(i), Names, PatternTop); @@ -2522,7 +2522,7 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, std::string Reason; if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) Pattern->error("Pattern can never match: " + Reason); - + // If the source pattern's root is a complex pattern, that complex pattern // must specify the nodes it can potentially match. if (const ComplexPattern *CP = @@ -2530,8 +2530,8 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, if (CP->getRootNodes().empty()) Pattern->error("ComplexPattern at root must specify list of opcodes it" " could match"); - - + + // Find all of the named values in the input and output, ensure they have the // same type. std::map SrcNames, DstNames; @@ -2546,14 +2546,14 @@ void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, Pattern->error("Pattern has input without matching name in output: $" + I->first); } - + // Scan all of the named values in the source pattern, rejecting them if the // name isn't used in the dest, and isn't used to tie two values together. for (std::map::iterator I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) Pattern->error("Pattern has dead named input: $" + I->first); - + PatternsToMatch.push_back(PTM); } @@ -2582,7 +2582,7 @@ void CodeGenDAGPatterns::InferInstructionFlags() { static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { if (N->isLeaf()) return false; - + // Analyze children. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) if (ForceArbitraryInstResultType(N->getChild(i), TP)) @@ -2596,12 +2596,12 @@ static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) continue; - + // Otherwise, force its type to the first possibility (an arbitrary choice). if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) return true; } - + return false; } @@ -2615,20 +2615,20 @@ void CodeGenDAGPatterns::ParsePatterns() { // Inline pattern fragments into it. Pattern->InlinePatternFragments(); - + ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); if (LI->getSize() == 0) continue; // no pattern. - + // Parse the instruction. TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); - + // Inline pattern fragments into it. Result->InlinePatternFragments(); if (Result->getNumTrees() != 1) Result->error("Cannot handle instructions producing instructions " "with temporaries yet!"); - + bool IterateInference; bool InferredAllPatternTypes, InferredAllResultTypes; do { @@ -2636,14 +2636,14 @@ void CodeGenDAGPatterns::ParsePatterns() { // can never do anything with this pattern: report it to the user. InferredAllPatternTypes = Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); - + // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllResultTypes = Result->InferAllTypes(&Pattern->getNamedNodesMap()); IterateInference = false; - + // Apply the type of the result to the source pattern. This helps us // resolve cases where the input type is known to be a pointer type (which // is considered resolved), but the result knows it needs to be 32- or @@ -2656,7 +2656,7 @@ void CodeGenDAGPatterns::ParsePatterns() { IterateInference |= Result->getTree(0)-> UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); } - + // If our iteration has converged and the input pattern's types are fully // resolved but the result pattern is not fully resolved, we may have a // situation where we have two instructions in the result pattern and @@ -2671,7 +2671,7 @@ void CodeGenDAGPatterns::ParsePatterns() { IterateInference = ForceArbitraryInstResultType(Result->getTree(0), *Result); } while (IterateInference); - + // Verify that we inferred enough types that we can do something with the // pattern and result. If these fire the user has to add type casts. if (!InferredAllPatternTypes) @@ -2680,7 +2680,7 @@ void CodeGenDAGPatterns::ParsePatterns() { Pattern->dump(); Result->error("Could not infer all types in pattern result!"); } - + // Validate that the input pattern is correct. std::map InstInputs; std::map InstResults; @@ -2708,14 +2708,14 @@ void CodeGenDAGPatterns::ParsePatterns() { DstPattern = new TreePatternNode(DstPattern->getOperator(), ResultNodeOperands, DstPattern->getNumTypes()); - + for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); - + TreePattern Temp(Result->getRecord(), DstPattern, false, *this); Temp.InferAllTypes(); - + AddPatternToMatch(Pattern, PatternToMatch(CurPattern, CurPattern->getValueAsListInit("Predicates"), @@ -2728,7 +2728,7 @@ void CodeGenDAGPatterns::ParsePatterns() { /// CombineChildVariants - Given a bunch of permutations of each child of the /// 'operator' node, put them together in all possible ways. -static void CombineChildVariants(TreePatternNode *Orig, +static void CombineChildVariants(TreePatternNode *Orig, const std::vector > &ChildVariants, std::vector &OutVariants, CodeGenDAGPatterns &CDP, @@ -2737,7 +2737,7 @@ static void CombineChildVariants(TreePatternNode *Orig, for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) if (ChildVariants[i].empty()) return; - + // The end result is an all-pairs construction of the resultant pattern. std::vector Idxs; Idxs.resize(ChildVariants.size()); @@ -2758,21 +2758,21 @@ static void CombineChildVariants(TreePatternNode *Orig, NewChildren.push_back(ChildVariants[i][Idxs[i]]); TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, Orig->getNumTypes()); - + // Copy over properties. R->setName(Orig->getName()); R->setPredicateFns(Orig->getPredicateFns()); R->setTransformFn(Orig->getTransformFn()); for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) R->setType(i, Orig->getExtType(i)); - + // If this pattern cannot match, do not include it as a variant. std::string ErrString; if (!R->canPatternMatch(ErrString, CDP)) { delete R; } else { bool AlreadyExists = false; - + // Scan to see if this pattern has already been emitted. We can get // duplication due to things like commuting: // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) @@ -2782,13 +2782,13 @@ static void CombineChildVariants(TreePatternNode *Orig, AlreadyExists = true; break; } - + if (AlreadyExists) delete R; else OutVariants.push_back(R); } - + // Increment indices to the next permutation by incrementing the // indicies from last index backward, e.g., generate the sequence // [0, 0], [0, 1], [1, 0], [1, 1]. @@ -2805,7 +2805,7 @@ static void CombineChildVariants(TreePatternNode *Orig, /// CombineChildVariants - A helper function for binary operators. /// -static void CombineChildVariants(TreePatternNode *Orig, +static void CombineChildVariants(TreePatternNode *Orig, const std::vector &LHS, const std::vector &RHS, std::vector &OutVariants, @@ -2815,14 +2815,14 @@ static void CombineChildVariants(TreePatternNode *Orig, ChildVariants.push_back(LHS); ChildVariants.push_back(RHS); CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); -} +} static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, std::vector &Children) { assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); Record *Operator = N->getOperator(); - + // Only permit raw nodes. if (!N->getName().empty() || !N->getPredicateFns().empty() || N->getTransformFn()) { @@ -2859,7 +2859,7 @@ static void GenerateVariantsOf(TreePatternNode *N, // If this node is associative, re-associate. if (NodeInfo.hasProperty(SDNPAssociative)) { - // Re-associate by pulling together all of the linked operators + // Re-associate by pulling together all of the linked operators std::vector MaximalChildren; GatherChildrenOfAssociativeOpcode(N, MaximalChildren); @@ -2871,11 +2871,11 @@ static void GenerateVariantsOf(TreePatternNode *N, GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); - + // There are only two ways we can permute the tree: // (A op B) op C and A op (B op C) // Within these forms, we can also permute A/B/C. - + // Generate legal pair permutations of A/B/C. std::vector ABVariants; std::vector BAVariants; @@ -2908,7 +2908,7 @@ static void GenerateVariantsOf(TreePatternNode *N, return; } } - + // Compute permutations of all children. std::vector > ChildVariants; ChildVariants.resize(N->getNumChildren()); @@ -2960,7 +2960,7 @@ static void GenerateVariantsOf(TreePatternNode *N, // match multiple ways. Add them to PatternsToMatch as well. void CodeGenDAGPatterns::GenerateVariants() { DEBUG(errs() << "Generating instruction variants.\n"); - + // Loop over all of the patterns we've collected, checking to see if we can // generate variants of the instruction, through the exploitation of // identities. This permits the target to provide aggressive matching without @@ -2996,7 +2996,7 @@ void CodeGenDAGPatterns::GenerateVariants() { DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); errs() << "\n"); - + // Scan to see if an instruction or explicit pattern already matches this. bool AlreadyExists = false; for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { diff --git a/utils/TableGen/DAGISelMatcher.cpp b/utils/TableGen/DAGISelMatcher.cpp index 9f12a686e4c..725ba954192 100644 --- a/utils/TableGen/DAGISelMatcher.cpp +++ b/utils/TableGen/DAGISelMatcher.cpp @@ -35,7 +35,7 @@ void Matcher::printOne(raw_ostream &OS) const { Matcher *Matcher::unlinkNode(Matcher *Other) { if (this == Other) return takeNext(); - + // Scan until we find the predecessor of Other. Matcher *Cur = this; for (; Cur && Cur->getNext() != Other; Cur = Cur->getNext()) @@ -67,11 +67,11 @@ bool Matcher::canMoveBeforeNode(const Matcher *Other) const { // We can move simple predicates before record nodes. if (isSimplePredicateNode()) return Other->isSimplePredicateOrRecordNode(); - + // We can move record nodes across simple predicates. if (isSimplePredicateOrRecordNode()) return isSimplePredicateNode(); - + // We can't move record nodes across each other etc. return false; } @@ -296,7 +296,7 @@ unsigned EmitMergeInputChainsMatcher::getHashImpl() const { bool CheckOpcodeMatcher::isEqualImpl(const Matcher *M) const { // Note: pointer equality isn't enough here, we have to check the enum names - // to ensure that the nodes are for the same opcode. + // to ensure that the nodes are for the same opcode. return cast(M)->Opcode.getEnumName() == Opcode.getEnumName(); } @@ -321,7 +321,7 @@ unsigned MarkFlagResultsMatcher::getHashImpl() const { } unsigned CompleteMatchMatcher::getHashImpl() const { - return HashUnsigneds(Results.begin(), Results.end()) ^ + return HashUnsigneds(Results.begin(), Results.end()) ^ ((unsigned)(intptr_t)&Pattern << 8); } @@ -332,15 +332,15 @@ static bool TypesAreContradictory(MVT::SimpleValueType T1, // If the two types are the same, then they are the same, so they don't // contradict. if (T1 == T2) return false; - + // If either type is about iPtr, then they don't conflict unless the other // one is not a scalar integer type. if (T1 == MVT::iPTR) return !MVT(T2).isInteger() || MVT(T2).isVector(); - + if (T2 == MVT::iPTR) return !MVT(T1).isInteger() || MVT(T1).isVector(); - + // Otherwise, they are two different non-iPTR types, they conflict. return true; } @@ -349,10 +349,10 @@ bool CheckOpcodeMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckOpcodeMatcher *COM = dyn_cast(M)) { // One node can't have two different opcodes! // Note: pointer equality isn't enough here, we have to check the enum names - // to ensure that the nodes are for the same opcode. + // to ensure that the nodes are for the same opcode. return COM->getOpcode().getEnumName() != getOpcode().getEnumName(); } - + // If the node has a known type, and if the type we're checking for is // different, then we know they contradict. For example, a check for // ISD::STORE will never be true at the same time a check for Type i32 is. @@ -360,12 +360,12 @@ bool CheckOpcodeMatcher::isContradictoryImpl(const Matcher *M) const { // If checking for a result the opcode doesn't have, it can't match. if (CT->getResNo() >= getOpcode().getNumResults()) return true; - + MVT::SimpleValueType NodeType = getOpcode().getKnownType(CT->getResNo()); if (NodeType != MVT::Other) return TypesAreContradictory(NodeType, CT->getType()); } - + return false; } @@ -381,12 +381,12 @@ bool CheckChildTypeMatcher::isContradictoryImpl(const Matcher *M) const { // conflict! if (CC->getChildNo() != getChildNo()) return false; - + return TypesAreContradictory(getType(), CC->getType()); } return false; } - + bool CheckIntegerMatcher::isContradictoryImpl(const Matcher *M) const { if (const CheckIntegerMatcher *CIM = dyn_cast(M)) return CIM->getValue() != getValue(); diff --git a/utils/TableGen/DAGISelMatcher.h b/utils/TableGen/DAGISelMatcher.h index d9b25d55643..b51cdd6f888 100644 --- a/utils/TableGen/DAGISelMatcher.h +++ b/utils/TableGen/DAGISelMatcher.h @@ -31,7 +31,7 @@ Matcher *OptimizeMatcher(Matcher *Matcher, const CodeGenDAGPatterns &CGP); void EmitMatcherTable(const Matcher *Matcher, const CodeGenDAGPatterns &CGP, raw_ostream &OS); - + /// Matcher - Base class for all the the DAG ISel Matcher representation /// nodes. class Matcher { @@ -48,7 +48,7 @@ public: CaptureFlagInput, // If the current node has an input flag, save it. MoveChild, // Move current node to specified child. MoveParent, // Move current node to parent. - + // Predicate checking. CheckSame, // Fail if not same as prev match. CheckPatternPredicate, @@ -65,7 +65,7 @@ public: CheckAndImm, CheckOrImm, CheckFoldableChainNode, - + // Node creation/emisssion. EmitInteger, // Create a TargetConstant EmitStringInteger, // Create a TargetConstant from a string. @@ -85,7 +85,7 @@ protected: Matcher(KindTy K) : Kind(K) {} public: virtual ~Matcher() {} - + KindTy getKind() const { return Kind; } Matcher *getNext() { return Next.get(); } @@ -94,25 +94,25 @@ public: Matcher *takeNext() { return Next.take(); } OwningPtr &getNextPtr() { return Next; } - + static inline bool classof(const Matcher *) { return true; } - + bool isEqual(const Matcher *M) const { if (getKind() != M->getKind()) return false; return isEqualImpl(M); } - + unsigned getHash() const { // Clear the high bit so we don't conflict with tombstones etc. return ((getHashImpl() << 4) ^ getKind()) & (~0U>>1); } - + /// isSafeToReorderWithPatternPredicate - Return true if it is safe to sink a /// PatternPredicate node past this one. virtual bool isSafeToReorderWithPatternPredicate() const { return false; } - + /// isSimplePredicateNode - Return true if this is a simple predicate that /// operates on the node or its children without potential side effects or a /// change of the current node. @@ -134,28 +134,28 @@ public: return true; } } - + /// isSimplePredicateOrRecordNode - Return true if this is a record node or /// a simple predicate. bool isSimplePredicateOrRecordNode() const { return isSimplePredicateNode() || getKind() == RecordNode || getKind() == RecordChild; } - + /// unlinkNode - Unlink the specified node from this chain. If Other == this, /// we unlink the next pointer and return it. Otherwise we unlink Other from /// the list and return this. Matcher *unlinkNode(Matcher *Other); - + /// canMoveBefore - Return true if this matcher is the same as Other, or if /// we can move this matcher past all of the nodes in-between Other and this /// node. Other must be equal to or before this. bool canMoveBefore(const Matcher *Other) const; - + /// canMoveBefore - Return true if it is safe to move the current matcher /// across the specified one. bool canMoveBeforeNode(const Matcher *Other) const; - + /// isContradictory - Return true of these two matchers could never match on /// the same node. bool isContradictory(const Matcher *Other) const { @@ -167,7 +167,7 @@ public: return isContradictoryImpl(Other); return Other->isContradictoryImpl(this); } - + void print(raw_ostream &OS, unsigned indent = 0) const; void printOne(raw_ostream &OS) const; void dump() const; @@ -177,7 +177,7 @@ protected: virtual unsigned getHashImpl() const = 0; virtual bool isContradictoryImpl(const Matcher *M) const { return false; } }; - + /// ScopeMatcher - This attempts to match each of its children to find the first /// one that successfully matches. If one child fails, it tries the next child. /// If none of the children match then this check fails. It never has a 'next'. @@ -188,12 +188,12 @@ public: : Matcher(Scope), Children(children, children+numchildren) { } virtual ~ScopeMatcher(); - + unsigned getNumChildren() const { return Children.size(); } - + Matcher *getChild(unsigned i) { return Children[i]; } const Matcher *getChild(unsigned i) const { return Children[i]; } - + void resetChild(unsigned i, Matcher *N) { delete Children[i]; Children[i] = N; @@ -204,7 +204,7 @@ public: Children[i] = 0; return Res; } - + void setNumChildren(unsigned NC) { if (NC < Children.size()) { // delete any children we're about to lose pointers to. @@ -217,7 +217,7 @@ public: static inline bool classof(const Matcher *N) { return N->getKind() == Scope; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { return false; } @@ -229,38 +229,38 @@ class RecordMatcher : public Matcher { /// WhatFor - This is a string indicating why we're recording this. This /// should only be used for comment generation not anything semantic. std::string WhatFor; - + /// ResultNo - The slot number in the RecordedNodes vector that this will be, /// just printed as a comment. unsigned ResultNo; public: RecordMatcher(const std::string &whatfor, unsigned resultNo) : Matcher(RecordNode), WhatFor(whatfor), ResultNo(resultNo) {} - + const std::string &getWhatFor() const { return WhatFor; } unsigned getResultNo() const { return ResultNo; } - + static inline bool classof(const Matcher *N) { return N->getKind() == RecordNode; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { return true; } virtual unsigned getHashImpl() const { return 0; } }; - + /// RecordChildMatcher - Save a numbered child of the current node, or fail /// the match if it doesn't exist. This is logically equivalent to: /// MoveChild N + RecordNode + MoveParent. class RecordChildMatcher : public Matcher { unsigned ChildNo; - + /// WhatFor - This is a string indicating why we're recording this. This /// should only be used for comment generation not anything semantic. std::string WhatFor; - + /// ResultNo - The slot number in the RecordedNodes vector that this will be, /// just printed as a comment. unsigned ResultNo; @@ -269,7 +269,7 @@ public: unsigned resultNo) : Matcher(RecordChild), ChildNo(childno), WhatFor(whatfor), ResultNo(resultNo) {} - + unsigned getChildNo() const { return ChildNo; } const std::string &getWhatFor() const { return WhatFor; } unsigned getResultNo() const { return ResultNo; } @@ -277,7 +277,7 @@ public: static inline bool classof(const Matcher *N) { return N->getKind() == RecordChild; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -287,16 +287,16 @@ private: } virtual unsigned getHashImpl() const { return getChildNo(); } }; - + /// RecordMemRefMatcher - Save the current node's memref. class RecordMemRefMatcher : public Matcher { public: RecordMemRefMatcher() : Matcher(RecordMemRef) {} - + static inline bool classof(const Matcher *N) { return N->getKind() == RecordMemRef; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -305,17 +305,17 @@ private: virtual unsigned getHashImpl() const { return 0; } }; - + /// CaptureFlagInputMatcher - If the current record has a flag input, record /// it so that it is used as an input to the generated code. class CaptureFlagInputMatcher : public Matcher { public: CaptureFlagInputMatcher() : Matcher(CaptureFlagInput) {} - + static inline bool classof(const Matcher *N) { return N->getKind() == CaptureFlagInput; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -323,20 +323,20 @@ private: virtual bool isEqualImpl(const Matcher *M) const { return true; } virtual unsigned getHashImpl() const { return 0; } }; - + /// MoveChildMatcher - This tells the interpreter to move into the /// specified child node. class MoveChildMatcher : public Matcher { unsigned ChildNo; public: MoveChildMatcher(unsigned childNo) : Matcher(MoveChild), ChildNo(childNo) {} - + unsigned getChildNo() const { return ChildNo; } - + static inline bool classof(const Matcher *N) { return N->getKind() == MoveChild; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -346,17 +346,17 @@ private: } virtual unsigned getHashImpl() const { return getChildNo(); } }; - + /// MoveParentMatcher - This tells the interpreter to move to the parent /// of the current node. class MoveParentMatcher : public Matcher { public: MoveParentMatcher() : Matcher(MoveParent) {} - + static inline bool classof(const Matcher *N) { return N->getKind() == MoveParent; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -373,13 +373,13 @@ class CheckSameMatcher : public Matcher { public: CheckSameMatcher(unsigned matchnumber) : Matcher(CheckSame), MatchNumber(matchnumber) {} - + unsigned getMatchNumber() const { return MatchNumber; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckSame; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -389,7 +389,7 @@ private: } virtual unsigned getHashImpl() const { return getMatchNumber(); } }; - + /// CheckPatternPredicateMatcher - This checks the target-specific predicate /// to see if the entire pattern is capable of matching. This predicate does /// not take a node as input. This is used for subtarget feature checks etc. @@ -398,13 +398,13 @@ class CheckPatternPredicateMatcher : public Matcher { public: CheckPatternPredicateMatcher(StringRef predicate) : Matcher(CheckPatternPredicate), Predicate(predicate) {} - + StringRef getPredicate() const { return Predicate; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckPatternPredicate; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -414,7 +414,7 @@ private: } virtual unsigned getHashImpl() const; }; - + /// CheckPredicateMatcher - This checks the target-specific predicate to /// see if the node is acceptable. class CheckPredicateMatcher : public Matcher { @@ -422,13 +422,13 @@ class CheckPredicateMatcher : public Matcher { public: CheckPredicateMatcher(StringRef predname) : Matcher(CheckPredicate), PredName(predname) {} - + StringRef getPredicateName() const { return PredName; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckPredicate; } - + // TODO: Ok? //virtual bool isSafeToReorderWithPatternPredicate() const { return true; } @@ -439,8 +439,8 @@ private: } virtual unsigned getHashImpl() const; }; - - + + /// CheckOpcodeMatcher - This checks to see if the current node has the /// specified opcode, if not it fails to match. class CheckOpcodeMatcher : public Matcher { @@ -448,13 +448,13 @@ class CheckOpcodeMatcher : public Matcher { public: CheckOpcodeMatcher(const SDNodeInfo &opcode) : Matcher(CheckOpcode), Opcode(opcode) {} - + const SDNodeInfo &getOpcode() const { return Opcode; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckOpcode; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -478,19 +478,19 @@ public: static inline bool classof(const Matcher *N) { return N->getKind() == SwitchOpcode; } - + unsigned getNumCases() const { return Cases.size(); } - + const SDNodeInfo &getCaseOpcode(unsigned i) const { return *Cases[i].first; } Matcher *getCaseMatcher(unsigned i) { return Cases[i].second; } const Matcher *getCaseMatcher(unsigned i) const { return Cases[i].second; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { return false; } virtual unsigned getHashImpl() const { return 4123; } }; - + /// CheckTypeMatcher - This checks to see if the current node has the /// specified type at the specified result, if not it fails to match. class CheckTypeMatcher : public Matcher { @@ -499,14 +499,14 @@ class CheckTypeMatcher : public Matcher { public: CheckTypeMatcher(MVT::SimpleValueType type, unsigned resno) : Matcher(CheckType), Type(type), ResNo(resno) {} - + MVT::SimpleValueType getType() const { return Type; } unsigned getResNo() const { return ResNo; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckType; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -517,7 +517,7 @@ private: virtual unsigned getHashImpl() const { return Type; } virtual bool isContradictoryImpl(const Matcher *M) const; }; - + /// SwitchTypeMatcher - Switch based on the current node's type, dispatching /// to one matcher per case. If the type doesn't match any of the cases, /// then the match fails. This is semantically equivalent to a Scope node where @@ -528,24 +528,24 @@ public: SwitchTypeMatcher(const std::pair *cases, unsigned numcases) : Matcher(SwitchType), Cases(cases, cases+numcases) {} - + static inline bool classof(const Matcher *N) { return N->getKind() == SwitchType; } - + unsigned getNumCases() const { return Cases.size(); } - + MVT::SimpleValueType getCaseType(unsigned i) const { return Cases[i].first; } Matcher *getCaseMatcher(unsigned i) { return Cases[i].second; } const Matcher *getCaseMatcher(unsigned i) const { return Cases[i].second; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { return false; } virtual unsigned getHashImpl() const { return 4123; } }; - - + + /// CheckChildTypeMatcher - This checks to see if a child node has the /// specified type, if not it fails to match. class CheckChildTypeMatcher : public Matcher { @@ -554,14 +554,14 @@ class CheckChildTypeMatcher : public Matcher { public: CheckChildTypeMatcher(unsigned childno, MVT::SimpleValueType type) : Matcher(CheckChildType), ChildNo(childno), Type(type) {} - + unsigned getChildNo() const { return ChildNo; } MVT::SimpleValueType getType() const { return Type; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckChildType; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -573,7 +573,7 @@ private: virtual unsigned getHashImpl() const { return (Type << 3) | ChildNo; } virtual bool isContradictoryImpl(const Matcher *M) const; }; - + /// CheckIntegerMatcher - This checks to see if the current node is a /// ConstantSDNode with the specified integer value, if not it fails to match. @@ -582,13 +582,13 @@ class CheckIntegerMatcher : public Matcher { public: CheckIntegerMatcher(int64_t value) : Matcher(CheckInteger), Value(value) {} - + int64_t getValue() const { return Value; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckInteger; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -599,7 +599,7 @@ private: virtual unsigned getHashImpl() const { return Value; } virtual bool isContradictoryImpl(const Matcher *M) const; }; - + /// CheckCondCodeMatcher - This checks to see if the current node is a /// CondCodeSDNode with the specified condition, if not it fails to match. class CheckCondCodeMatcher : public Matcher { @@ -607,13 +607,13 @@ class CheckCondCodeMatcher : public Matcher { public: CheckCondCodeMatcher(StringRef condcodename) : Matcher(CheckCondCode), CondCodeName(condcodename) {} - + StringRef getCondCodeName() const { return CondCodeName; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckCondCode; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -623,7 +623,7 @@ private: } virtual unsigned getHashImpl() const; }; - + /// CheckValueTypeMatcher - This checks to see if the current node is a /// VTSDNode with the specified type, if not it fails to match. class CheckValueTypeMatcher : public Matcher { @@ -631,13 +631,13 @@ class CheckValueTypeMatcher : public Matcher { public: CheckValueTypeMatcher(StringRef type_name) : Matcher(CheckValueType), TypeName(type_name) {} - + StringRef getTypeName() const { return TypeName; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckValueType; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -648,21 +648,21 @@ private: virtual unsigned getHashImpl() const; bool isContradictoryImpl(const Matcher *M) const; }; - - - + + + /// CheckComplexPatMatcher - This node runs the specified ComplexPattern on /// the current node. class CheckComplexPatMatcher : public Matcher { const ComplexPattern &Pattern; - - /// MatchNumber - This is the recorded nodes slot that contains the node we want to - /// match against. + + /// MatchNumber - This is the recorded nodes slot that contains the node we + /// want to match against. unsigned MatchNumber; - + /// Name - The name of the node we're matching, for comment emission. std::string Name; - + /// FirstResult - This is the first slot in the RecordedNodes list that the /// result of the match populates. unsigned FirstResult; @@ -671,17 +671,17 @@ public: const std::string &name, unsigned firstresult) : Matcher(CheckComplexPat), Pattern(pattern), MatchNumber(matchnumber), Name(name), FirstResult(firstresult) {} - + const ComplexPattern &getPattern() const { return Pattern; } unsigned getMatchNumber() const { return MatchNumber; } - + const std::string getName() const { return Name; } unsigned getFirstResult() const { return FirstResult; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckComplexPat; } - + // Not safe to move a pattern predicate past a complex pattern. virtual bool isSafeToReorderWithPatternPredicate() const { return false; } @@ -695,7 +695,7 @@ private: return (unsigned)(intptr_t)&Pattern ^ MatchNumber; } }; - + /// CheckAndImmMatcher - This checks to see if the current node is an 'and' /// with something equivalent to the specified immediate. class CheckAndImmMatcher : public Matcher { @@ -703,13 +703,13 @@ class CheckAndImmMatcher : public Matcher { public: CheckAndImmMatcher(int64_t value) : Matcher(CheckAndImm), Value(value) {} - + int64_t getValue() const { return Value; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckAndImm; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -727,13 +727,13 @@ class CheckOrImmMatcher : public Matcher { public: CheckOrImmMatcher(int64_t value) : Matcher(CheckOrImm), Value(value) {} - + int64_t getValue() const { return Value; } static inline bool classof(const Matcher *N) { return N->getKind() == CheckOrImm; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -750,11 +750,11 @@ class CheckFoldableChainNodeMatcher : public Matcher { public: CheckFoldableChainNodeMatcher() : Matcher(CheckFoldableChainNode) {} - + static inline bool classof(const Matcher *N) { return N->getKind() == CheckFoldableChainNode; } - + virtual bool isSafeToReorderWithPatternPredicate() const { return true; } private: @@ -770,14 +770,14 @@ class EmitIntegerMatcher : public Matcher { public: EmitIntegerMatcher(int64_t val, MVT::SimpleValueType vt) : Matcher(EmitInteger), Val(val), VT(vt) {} - + int64_t getValue() const { return Val; } MVT::SimpleValueType getVT() const { return VT; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitInteger; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { @@ -795,14 +795,14 @@ class EmitStringIntegerMatcher : public Matcher { public: EmitStringIntegerMatcher(const std::string &val, MVT::SimpleValueType vt) : Matcher(EmitStringInteger), Val(val), VT(vt) {} - + const std::string &getValue() const { return Val; } MVT::SimpleValueType getVT() const { return VT; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitStringInteger; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { @@ -811,7 +811,7 @@ private: } virtual unsigned getHashImpl() const; }; - + /// EmitRegisterMatcher - This creates a new TargetConstant. class EmitRegisterMatcher : public Matcher { /// Reg - The def for the register that we're emitting. If this is null, then @@ -821,14 +821,14 @@ class EmitRegisterMatcher : public Matcher { public: EmitRegisterMatcher(Record *reg, MVT::SimpleValueType vt) : Matcher(EmitRegister), Reg(reg), VT(vt) {} - + Record *getReg() const { return Reg; } MVT::SimpleValueType getVT() const { return VT; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitRegister; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { @@ -848,13 +848,13 @@ class EmitConvertToTargetMatcher : public Matcher { public: EmitConvertToTargetMatcher(unsigned slot) : Matcher(EmitConvertToTarget), Slot(slot) {} - + unsigned getSlot() const { return Slot; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitConvertToTarget; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { @@ -862,7 +862,7 @@ private: } virtual unsigned getHashImpl() const { return Slot; } }; - + /// EmitMergeInputChainsMatcher - Emit a node that merges a list of input /// chains together with a token factor. The list of nodes are the nodes in the /// matched pattern that have chain input/outputs. This node adds all input @@ -872,18 +872,18 @@ class EmitMergeInputChainsMatcher : public Matcher { public: EmitMergeInputChainsMatcher(const unsigned *nodes, unsigned NumNodes) : Matcher(EmitMergeInputChains), ChainNodes(nodes, nodes+NumNodes) {} - + unsigned getNumNodes() const { return ChainNodes.size(); } - + unsigned getNode(unsigned i) const { assert(i < ChainNodes.size()); return ChainNodes[i]; - } - + } + static inline bool classof(const Matcher *N) { return N->getKind() == EmitMergeInputChains; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { @@ -891,7 +891,7 @@ private: } virtual unsigned getHashImpl() const; }; - + /// EmitCopyToRegMatcher - Emit a CopyToReg node from a value to a physreg, /// pushing the chain and flag results. /// @@ -901,27 +901,27 @@ class EmitCopyToRegMatcher : public Matcher { public: EmitCopyToRegMatcher(unsigned srcSlot, Record *destPhysReg) : Matcher(EmitCopyToReg), SrcSlot(srcSlot), DestPhysReg(destPhysReg) {} - + unsigned getSrcSlot() const { return SrcSlot; } Record *getDestPhysReg() const { return DestPhysReg; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitCopyToReg; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { return cast(M)->SrcSlot == SrcSlot && - cast(M)->DestPhysReg == DestPhysReg; + cast(M)->DestPhysReg == DestPhysReg; } virtual unsigned getHashImpl() const { return SrcSlot ^ ((unsigned)(intptr_t)DestPhysReg << 4); } }; - - - + + + /// EmitNodeXFormMatcher - Emit an operation that runs an SDNodeXForm on a /// recorded node and records the result. class EmitNodeXFormMatcher : public Matcher { @@ -930,25 +930,25 @@ class EmitNodeXFormMatcher : public Matcher { public: EmitNodeXFormMatcher(unsigned slot, Record *nodeXForm) : Matcher(EmitNodeXForm), Slot(slot), NodeXForm(nodeXForm) {} - + unsigned getSlot() const { return Slot; } Record *getNodeXForm() const { return NodeXForm; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitNodeXForm; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { return cast(M)->Slot == Slot && - cast(M)->NodeXForm == NodeXForm; + cast(M)->NodeXForm == NodeXForm; } virtual unsigned getHashImpl() const { return Slot ^ ((unsigned)(intptr_t)NodeXForm << 4); } }; - + /// EmitNodeMatcherCommon - Common class shared between EmitNode and /// MorphNodeTo. class EmitNodeMatcherCommon : public Matcher { @@ -956,7 +956,7 @@ class EmitNodeMatcherCommon : public Matcher { const SmallVector VTs; const SmallVector Operands; bool HasChain, HasInFlag, HasOutFlag, HasMemRefs; - + /// NumFixedArityOperands - If this is a fixed arity node, this is set to -1. /// If this is a varidic node, this is set to the number of fixed arity /// operands in the root of the pattern. The rest are appended to this node. @@ -972,9 +972,9 @@ public: VTs(vts, vts+numvts), Operands(operands, operands+numops), HasChain(hasChain), HasInFlag(hasInFlag), HasOutFlag(hasOutFlag), HasMemRefs(hasmemrefs), NumFixedArityOperands(numfixedarityoperands) {} - + const std::string &getOpcodeName() const { return OpcodeName; } - + unsigned getNumVTs() const { return VTs.size(); } MVT::SimpleValueType getVT(unsigned i) const { assert(i < VTs.size()); @@ -986,27 +986,27 @@ public: assert(i < Operands.size()); return Operands[i]; } - + const SmallVectorImpl &getVTList() const { return VTs; } const SmallVectorImpl &getOperandList() const { return Operands; } - + bool hasChain() const { return HasChain; } bool hasInFlag() const { return HasInFlag; } bool hasOutFlag() const { return HasOutFlag; } bool hasMemRefs() const { return HasMemRefs; } int getNumFixedArityOperands() const { return NumFixedArityOperands; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitNode || N->getKind() == MorphNodeTo; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const; virtual unsigned getHashImpl() const; }; - + /// EmitNodeMatcher - This signals a successful match and generates a node. class EmitNodeMatcher : public EmitNodeMatcherCommon { unsigned FirstResultSlot; @@ -1021,15 +1021,15 @@ public: hasInFlag, hasOutFlag, hasmemrefs, numfixedarityoperands, false), FirstResultSlot(firstresultslot) {} - + unsigned getFirstResultSlot() const { return FirstResultSlot; } - + static inline bool classof(const Matcher *N) { return N->getKind() == EmitNode; } - + }; - + class MorphNodeToMatcher : public EmitNodeMatcherCommon { const PatternToMatch &Pattern; public: @@ -1044,14 +1044,14 @@ public: numfixedarityoperands, true), Pattern(pattern) { } - + const PatternToMatch &getPattern() const { return Pattern; } static inline bool classof(const Matcher *N) { return N->getKind() == MorphNodeTo; } }; - + /// MarkFlagResultsMatcher - This node indicates which non-root nodes in the /// pattern produce flags. This allows CompleteMatchMatcher to update them /// with the output flag of the resultant code. @@ -1060,18 +1060,18 @@ class MarkFlagResultsMatcher : public Matcher { public: MarkFlagResultsMatcher(const unsigned *nodes, unsigned NumNodes) : Matcher(MarkFlagResults), FlagResultNodes(nodes, nodes+NumNodes) {} - + unsigned getNumNodes() const { return FlagResultNodes.size(); } - + unsigned getNode(unsigned i) const { assert(i < FlagResultNodes.size()); return FlagResultNodes[i]; - } - + } + static inline bool classof(const Matcher *N) { return N->getKind() == MarkFlagResults; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { @@ -1095,11 +1095,11 @@ public: unsigned getNumResults() const { return Results.size(); } unsigned getResult(unsigned R) const { return Results[R]; } const PatternToMatch &getPattern() const { return Pattern; } - + static inline bool classof(const Matcher *N) { return N->getKind() == CompleteMatch; } - + private: virtual void printImpl(raw_ostream &OS, unsigned indent) const; virtual bool isEqualImpl(const Matcher *M) const { @@ -1108,7 +1108,7 @@ private: } virtual unsigned getHashImpl() const; }; - + } // end namespace llvm #endif diff --git a/utils/TableGen/DAGISelMatcherGen.cpp b/utils/TableGen/DAGISelMatcherGen.cpp index d3fe716d338..2c0d5e8f81e 100644 --- a/utils/TableGen/DAGISelMatcherGen.cpp +++ b/utils/TableGen/DAGISelMatcherGen.cpp @@ -25,12 +25,12 @@ static MVT::SimpleValueType getRegisterValueType(Record *R, MVT::SimpleValueType VT = MVT::Other; const std::vector &RCs = T.getRegisterClasses(); std::vector::const_iterator Element; - + for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RCs[rc]; if (!std::count(RC.Elements.begin(), RC.Elements.end(), R)) continue; - + if (!FoundRC) { FoundRC = true; VT = RC.getValueTypeNum(0); @@ -48,22 +48,22 @@ namespace { class MatcherGen { const PatternToMatch &Pattern; const CodeGenDAGPatterns &CGP; - + /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts /// out with all of the types removed. This allows us to insert type checks /// as we scan the tree. TreePatternNode *PatWithNoTypes; - + /// VariableMap - A map from variable names ('$dst') to the recorded operand /// number that they were captured as. These are biased by 1 to make /// insertion easier. StringMap VariableMap; - + /// NextRecordedOperandNo - As we emit opcodes to record matched values in /// the RecordedNodes array, this keeps track of which slot will be next to /// record into. unsigned NextRecordedOperandNo; - + /// MatchedChainNodes - This maintains the position in the recorded nodes /// array of all of the recorded input nodes that have chains. SmallVector MatchedChainNodes; @@ -71,7 +71,7 @@ namespace { /// MatchedFlagResultNodes - This maintains the position in the recorded /// nodes array of all of the recorded input nodes that have flag results. SmallVector MatchedFlagResultNodes; - + /// MatchedComplexPatterns - This maintains a list of all of the /// ComplexPatterns that we need to check. The patterns are known to have /// names which were recorded. The second element of each pair is the first @@ -79,39 +79,39 @@ namespace { /// results into. SmallVector, 2> MatchedComplexPatterns; - + /// PhysRegInputs - List list has an entry for each explicitly specified /// physreg input to the pattern. The first elt is the Register node, the /// second is the recorded slot number the input pattern match saved it in. SmallVector, 2> PhysRegInputs; - + /// Matcher - This is the top level of the generated matcher, the result. Matcher *TheMatcher; - + /// CurPredicate - As we emit matcher nodes, this points to the latest check /// which should have future checks stuck into its Next position. Matcher *CurPredicate; public: MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); - + ~MatcherGen() { delete PatWithNoTypes; } - + bool EmitMatcherCode(unsigned Variant); void EmitResultCode(); - + Matcher *GetMatcher() const { return TheMatcher; } private: void AddMatcher(Matcher *NewNode); void InferPossibleTypes(); - + // Matcher Generation. void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); void EmitLeafMatchCode(const TreePatternNode *N); void EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); - + // Result Code Generation. unsigned getNamedArgumentSlot(StringRef Name) { unsigned VarMapEntry = VariableMap[Name]; @@ -123,7 +123,7 @@ namespace { /// GetInstPatternNode - Get the pattern for an instruction. const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, const TreePatternNode *N); - + void EmitResultOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); void EmitResultOfNamedOperand(const TreePatternNode *N, @@ -135,7 +135,7 @@ namespace { void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); }; - + } // end anon namespace. MatcherGen::MatcherGen(const PatternToMatch &pattern, @@ -156,7 +156,7 @@ MatcherGen::MatcherGen(const PatternToMatch &pattern, // PatWithNoTypes = Pattern.getSrcPattern()->clone(); PatWithNoTypes->RemoveAllTypes(); - + // If there are types that are manifestly known, infer them. InferPossibleTypes(); } @@ -169,7 +169,7 @@ void MatcherGen::InferPossibleTypes() { // TP - Get *SOME* tree pattern, we don't care which. It is only used for // diagnostics, which we know are impossible at this point. TreePattern &TP = *CGP.pf_begin()->second; - + try { bool MadeChange = true; while (MadeChange) @@ -182,7 +182,7 @@ void MatcherGen::InferPossibleTypes() { } -/// AddMatcher - Add a matcher node to the current graph we're building. +/// AddMatcher - Add a matcher node to the current graph we're building. void MatcherGen::AddMatcher(Matcher *NewNode) { if (CurPredicate != 0) CurPredicate->setNext(NewNode); @@ -199,7 +199,7 @@ void MatcherGen::AddMatcher(Matcher *NewNode) { /// EmitLeafMatchCode - Generate matching code for leaf nodes. void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { assert(N->isLeaf() && "Not a leaf?"); - + // Direct match against an integer constant. if (IntInit *II = dynamic_cast(N->getLeafValue())) { // If this is the root of the dag we're matching, we emit a redundant opcode @@ -212,16 +212,16 @@ void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { return AddMatcher(new CheckIntegerMatcher(II->getValue())); } - + DefInit *DI = dynamic_cast(N->getLeafValue()); if (DI == 0) { errs() << "Unknown leaf kind: " << *DI << "\n"; abort(); } - + Record *LeafRec = DI->getDef(); if (// Handle register references. Nothing to do here, they always match. - LeafRec->isSubClassOf("RegisterClass") || + LeafRec->isSubClassOf("RegisterClass") || LeafRec->isSubClassOf("PointerLikeRegClass") || LeafRec->isSubClassOf("SubRegIndex") || // Place holder for SRCVALUE nodes. Nothing to do here. @@ -229,20 +229,20 @@ void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { return; // If we have a physreg reference like (mul gpr:$src, EAX) then we need to - // record the register + // record the register if (LeafRec->isSubClassOf("Register")) { AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), NextRecordedOperandNo)); PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); return; } - + if (LeafRec->isSubClassOf("ValueType")) return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); - + if (LeafRec->isSubClassOf("CondCode")) return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); - + if (LeafRec->isSubClassOf("ComplexPattern")) { // We can't model ComplexPattern uses that don't have their name taken yet. // The OPC_CheckComplexPattern operation implicitly records the results. @@ -256,7 +256,7 @@ void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { MatchedComplexPatterns.push_back(std::make_pair(N, 0)); return; } - + errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } @@ -265,7 +265,7 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { assert(!N->isLeaf() && "Not an operator?"); const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); - + // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is // a constant without a predicate fn that has more that one bit set, handle // this as a special case. This is usually for targets that have special @@ -276,7 +276,7 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, // them from the mask in the dag. For example, it might turn 'AND X, 255' // into 'AND X, 254' if it knows the low bit is set. Emit code that checks // to handle this. - if ((N->getOperator()->getName() == "and" || + if ((N->getOperator()->getName() == "and" || N->getOperator()->getName() == "or") && N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && N->getPredicateFns().empty()) { @@ -302,15 +302,15 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, } } } - + // Check that the current opcode lines up. AddMatcher(new CheckOpcodeMatcher(CInfo)); - + // If this node has memory references (i.e. is a load or store), tell the // interpreter to capture them in the memref array. if (N->NodeHasProperty(SDNPMemOperand, CGP)) AddMatcher(new RecordMemRefMatcher()); - + // If this node has a chain, then the chain is operand #0 is the SDNode, and // the child numbers of the node are all offset by one. unsigned OpNo = 0; @@ -321,7 +321,7 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, NextRecordedOperandNo)); // Remember all of the input chains our pattern will match. MatchedChainNodes.push_back(NextRecordedOperandNo++); - + // Don't look at the input chain when matching the tree pattern to the // SDNode. OpNo = 1; @@ -352,7 +352,7 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, // If there is a node between the root and this node, then we definitely // need to emit the check. bool NeedCheck = !Root->hasChild(N); - + // If it *is* an immediate child of the root, we can still need a check if // the root SDNode has multiple inputs. For us, this means that it is an // intrinsic, has multiple operands, or has other inputs like chain or @@ -368,17 +368,17 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, PInfo.hasProperty(SDNPInFlag) || PInfo.hasProperty(SDNPOptInFlag); } - + if (NeedCheck) AddMatcher(new CheckFoldableChainNodeMatcher()); } } // If this node has an output flag and isn't the root, remember it. - if (N->NodeHasProperty(SDNPOutFlag, CGP) && + if (N->NodeHasProperty(SDNPOutFlag, CGP) && N != Pattern.getSrcPattern()) { // TODO: This redundantly records nodes with both flags and chains. - + // Record the node and remember it in our chained nodes list. AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + "' flag output node", @@ -386,13 +386,13 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, // Remember all of the nodes with output flags our pattern will match. MatchedFlagResultNodes.push_back(NextRecordedOperandNo++); } - + // If this node is known to have an input flag or if it *might* have an input // flag, capture it as the flag input of the pattern. if (N->NodeHasProperty(SDNPOptInFlag, CGP) || N->NodeHasProperty(SDNPInFlag, CGP)) AddMatcher(new CaptureFlagInputMatcher()); - + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { // Get the code suitable for matching this child. Move to the child, check // it then move back to the parent. @@ -409,14 +409,14 @@ void MatcherGen::EmitMatchCode(const TreePatternNode *N, // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and // reinfer any correlated types. SmallVector ResultsToTypeCheck; - + for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; NodeNoTypes->setType(i, N->getExtType(i)); InferPossibleTypes(); ResultsToTypeCheck.push_back(i); } - + // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. if (!N->getName().empty()) { @@ -434,16 +434,16 @@ void MatcherGen::EmitMatchCode(const TreePatternNode *N, return; } } - + if (N->isLeaf()) EmitLeafMatchCode(N); else EmitOperatorMatchCode(N, NodeNoTypes); - + // If there are node predicates for this node, generate their checks. for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); - + for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), ResultsToTypeCheck[i])); @@ -462,27 +462,27 @@ bool MatcherGen::EmitMatcherCode(unsigned Variant) { const std::vector &OpNodes = CP->getRootNodes(); assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); if (Variant >= OpNodes.size()) return true; - + AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); } else { if (Variant != 0) return true; } - + // Emit the matcher for the pattern structure and types. EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); - + // If the pattern has a predicate on it (e.g. only enabled when a subtarget // feature is around, do the check). if (!Pattern.getPredicateCheck().empty()) AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); - + // Now that we've completed the structural type match, emit any ComplexPattern // checks (e.g. addrmode matches). We emit this after the structural match // because they are generally more expensive to evaluate and more difficult to // factor. for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { const TreePatternNode *N = MatchedComplexPatterns[i].first; - + // Remember where the results of this match get stuck. MatchedComplexPatterns[i].second = NextRecordedOperandNo; @@ -491,15 +491,15 @@ bool MatcherGen::EmitMatcherCode(unsigned Variant) { assert(!N->getName().empty() && RecNodeEntry && "Complex pattern should have a name and slot"); --RecNodeEntry; // Entries in VariableMap are biased. - + const ComplexPattern &CP = CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef()); - + // Emit a CheckComplexPat operation, which does the match (aborting if it // fails) and pushes the matched operands onto the recorded nodes list. AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, N->getName(), NextRecordedOperandNo)); - + // Record the right number of operands. NextRecordedOperandNo += CP.getNumOperands(); if (CP.hasProperty(SDNPHasChain)) { @@ -507,17 +507,17 @@ bool MatcherGen::EmitMatcherCode(unsigned Variant) { // fact that we just recorded a chain input. The chain input will be // matched as the last operand of the predicate if it was successful. ++NextRecordedOperandNo; // Chained node operand. - + // It is the last operand recorded. assert(NextRecordedOperandNo > 1 && "Should have recorded input/result chains at least!"); MatchedChainNodes.push_back(NextRecordedOperandNo-1); } - + // TODO: Complex patterns can't have output flags, if they did, we'd want // to record them. } - + return false; } @@ -529,7 +529,7 @@ bool MatcherGen::EmitMatcherCode(unsigned Variant) { void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps){ assert(!N->getName().empty() && "Operand not named!"); - + // A reference to a complex pattern gets all of the results of the complex // pattern's match. if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { @@ -540,7 +540,7 @@ void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, break; } assert(SlotNo != 0 && "Didn't get a slot number assigned?"); - + // The first slot entry is the node itself, the subsequent entries are the // matched values. for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) @@ -561,20 +561,20 @@ void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, return; } } - + ResultOps.push_back(SlotNo); } void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps) { assert(N->isLeaf() && "Must be a leaf"); - + if (IntInit *II = dynamic_cast(N->getLeafValue())) { AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } - + // If this is an explicit register reference, handle it. if (DefInit *DI = dynamic_cast(N->getLeafValue())) { if (DI->getDef()->isSubClassOf("Register")) { @@ -582,13 +582,13 @@ void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, ResultOps.push_back(NextRecordedOperandNo++); return; } - + if (DI->getDef()->getName() == "zero_reg") { AddMatcher(new EmitRegisterMatcher(0, N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } - + // Handle a reference to a register class. This is used // in COPY_TO_SUBREG instructions. if (DI->getDef()->isSubClassOf("RegisterClass")) { @@ -606,17 +606,17 @@ void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, return; } } - + errs() << "unhandled leaf node: \n"; N->dump(); } /// GetInstPatternNode - Get the pattern for an instruction. -/// +/// const TreePatternNode *MatcherGen:: GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { const TreePattern *InstPat = Inst.getPattern(); - + // FIXME2?: Assume actual pattern comes before "implicit". TreePatternNode *InstPatNode; if (InstPat) @@ -625,11 +625,11 @@ GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { InstPatNode = Pattern.getSrcPattern(); else return 0; - + if (InstPatNode && !InstPatNode->isLeaf() && InstPatNode->getOperator()->getName() == "set") InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); - + return InstPatNode; } @@ -640,7 +640,7 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op); const DAGInstruction &Inst = CGP.getInstruction(Op); - + // If we can, get the pattern for the instruction we're generating. We derive // a variety of information from this pattern, such as whether it has a chain. // @@ -649,10 +649,10 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, // nodes can't duplicate. const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); - // NodeHasChain - Whether the instruction node we're creating takes chains. + // NodeHasChain - Whether the instruction node we're creating takes chains. bool NodeHasChain = InstPatNode && InstPatNode->TreeHasProperty(SDNPHasChain, CGP); - + bool isRoot = N == Pattern.getDstPattern(); // TreeHasOutFlag - True if this tree has a flag. @@ -661,7 +661,7 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, const TreePatternNode *SrcPat = Pattern.getSrcPattern(); TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) || SrcPat->TreeHasProperty(SDNPInFlag, CGP); - + // FIXME2: this is checking the entire pattern, not just the node in // question, doing this just for the root seems like a total hack. TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP); @@ -669,7 +669,7 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, // NumResults - This is the number of results produced by the instruction in // the "outs" list. - unsigned NumResults = Inst.getNumResults(); + unsigned NumResults = Inst.getNumResults(); // Loop over all of the operands of the instruction pattern, emitting code // to fill them all in. The node 'N' usually has number children equal to @@ -680,7 +680,7 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, SmallVector InstOps; for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size(); InstOpNo != e; ++InstOpNo) { - + // Determine what to emit for this operand. Record *OperandNode = II.Operands[InstOpNo].Rec; if ((OperandNode->isSubClassOf("PredicateOperand") || @@ -689,28 +689,28 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, // This is a predicate or optional def operand; emit the // 'default ops' operands. const DAGDefaultOperand &DefaultOp - = CGP.getDefaultOperand(OperandNode); + = CGP.getDefaultOperand(OperandNode); for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); continue; } - + const TreePatternNode *Child = N->getChild(ChildNo); - + // Otherwise this is a normal operand or a predicate operand without // 'execute always'; emit it. unsigned BeforeAddingNumOps = InstOps.size(); EmitResultOperand(Child, InstOps); assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); - + // If the operand is an instruction and it produced multiple results, just // take the first one. if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) InstOps.resize(BeforeAddingNumOps+1); - + ++ChildNo; } - + // If this node has an input flag or explicitly specified input physregs, we // need to add chained and flagged copyfromreg nodes and materialize the flag // input. @@ -724,14 +724,14 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, // flagged to the CopyFromReg nodes we just generated. TreeHasInFlag = true; } - + // Result order: node results, chain, flags - + // Determine the result types. SmallVector ResultVTs; for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) ResultVTs.push_back(N->getType(i)); - + // If this is the root instruction of a pattern that has physical registers in // its result pattern, add output VTs for them. For example, X86 has: // (set AL, (mul ...)) @@ -743,7 +743,7 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, Record *HandledReg = 0; if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) HandledReg = II.ImplicitDefs[0]; - + for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { Record *Reg = Pattern.getDstRegs()[i]; if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; @@ -758,7 +758,7 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, if (isRoot && (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))) NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); - + // If this is the root node and any of the nodes matched nodes in the input // pattern have MemRefs in them, have the interpreter collect them and plop // them onto this node. @@ -777,14 +777,14 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, assert((!ResultVTs.empty() || TreeHasOutFlag || NodeHasChain) && "Node has no result"); - + AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), ResultVTs.data(), ResultVTs.size(), InstOps.data(), InstOps.size(), NodeHasChain, TreeHasInFlag, TreeHasOutFlag, NodeHasMemRefs, NumFixedArityOperands, NextRecordedOperandNo)); - + // The non-chain and non-flag results of the newly emitted node get recorded. for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; @@ -799,7 +799,7 @@ EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, // Emit the operand. SmallVector InputOps; - + // FIXME2: Could easily generalize this to support multiple inputs and outputs // to the SDNodeXForm. For now we just support one input and one output like // the old instruction selector. @@ -838,7 +838,7 @@ void MatcherGen::EmitResultCode() { if (!MatchedChainNodes.empty()) AddMatcher(new EmitMergeInputChainsMatcher (MatchedChainNodes.data(), MatchedChainNodes.size())); - + // Codegen the root of the result pattern, capturing the resulting values. SmallVector Ops; EmitResultOperand(Pattern.getDstPattern(), Ops); @@ -850,7 +850,7 @@ void MatcherGen::EmitResultCode() { // explicit results. // unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); - + // If the pattern also has (implicit) results, count them as well. if (!Pattern.getDstRegs().empty()) { // If the root came from an implicit def in the instruction handling stuff, @@ -864,14 +864,14 @@ void MatcherGen::EmitResultCode() { if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) HandledReg = II.ImplicitDefs[0]; } - + for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { Record *Reg = Pattern.getDstRegs()[i]; if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; ++NumSrcResults; } - } - + } + assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); Ops.resize(NumSrcResults); @@ -880,7 +880,7 @@ void MatcherGen::EmitResultCode() { if (!MatchedFlagResultNodes.empty()) AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(), MatchedFlagResultNodes.size())); - + AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern)); } @@ -895,12 +895,12 @@ Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, // Generate the code for the matcher. if (Gen.EmitMatcherCode(Variant)) return 0; - + // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. // FIXME2: Split result code out to another table, and make the matcher end // with an "Emit " command. This allows result generation stuff to be // shared and factored? - + // If the match succeeds, then we generate Pattern. Gen.EmitResultCode();