Checkin some major reworks of data structure analysis. This is not done,

nor does it work very well, but I need to get it checked in before I break
the tree unintentionally.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3996 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-10-01 22:33:50 +00:00
parent 57b062a8cc
commit fccd06fcea
5 changed files with 518 additions and 349 deletions

View File

@ -10,10 +10,12 @@
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "Support/StatisticReporter.h"
#include "Support/Statistic.h"
#include <set>
using std::map;
#if 0
static RegisterAnalysis<BUDataStructures>
X("budatastructure", "Bottom-up Data Structure Analysis Closure");
@ -240,3 +242,4 @@ DSGraph &BUDataStructures::calculateGraph(Function &F) {
return *Graph;
}
#endif

View File

@ -4,35 +4,43 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/Analysis/DSGraph.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
#include "Support/STLExtras.h"
#include "Support/StatisticReporter.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include "llvm/Target/TargetData.h"
#include <algorithm>
#include <set>
using std::vector;
// TODO: FIXME
namespace DataStructureAnalysis {
// isPointerType - Return true if this first class type is big enough to hold
// a pointer.
//
bool isPointerType(const Type *Ty);
extern TargetData TD;
}
using namespace DataStructureAnalysis;
//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//
DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) {
// If this node has any fields, allocate them now, but leave them null.
switch (T->getPrimitiveID()) {
case Type::PointerTyID: Links.resize(1); break;
case Type::ArrayTyID: Links.resize(1); break;
case Type::StructTyID:
Links.resize(cast<StructType>(T)->getNumContainedTypes());
break;
default: break;
}
DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) {
// If this node is big enough to have pointer fields, add space for them now.
if (T != Type::VoidTy && !isa<FunctionType>(T)) // Avoid TargetData assert's
LinkIndex.resize(TD.getTypeSize(T), -1);
TypeEntries.push_back(std::make_pair(T, 0));
}
// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N)
: Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) {
: Links(N.Links), LinkIndex(N.LinkIndex),
TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) {
}
void DSNode::removeReferrer(DSNodeHandle *H) {
@ -53,7 +61,7 @@ void DSNode::addGlobal(GlobalValue *GV) {
std::lower_bound(Globals.begin(), Globals.end(), GV);
if (I == Globals.end() || *I != GV) {
assert(GV->getType()->getElementType() == Ty);
//assert(GV->getType()->getElementType() == Ty);
Globals.insert(I, GV);
NodeType |= GlobalNode;
}
@ -63,58 +71,154 @@ void DSNode::addGlobal(GlobalValue *GV) {
// addEdgeTo - Add an edge from the current node to the specified node. This
// can cause merging of nodes in the graph.
//
void DSNode::addEdgeTo(unsigned LinkNo, DSNode *N) {
assert(LinkNo < Links.size() && "LinkNo out of range!");
if (N == 0 || Links[LinkNo] == N) return; // Nothing to do
if (Links[LinkNo] == 0) { // No merging to perform
Links[LinkNo] = N;
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
assert(Offset < LinkIndex.size() && "Offset out of range!");
if (NH.getNode() == 0) return; // Nothing to do
if (LinkIndex[Offset] == -1) { // No merging to perform...
LinkIndex[Offset] = Links.size(); // Allocate a new link...
Links.push_back(NH);
return;
}
unsigned Idx = (unsigned)LinkIndex[Offset];
if (!Links[Idx].getNode()) { // No merging to perform
Links[Idx] = NH;
return;
}
// Merge the two nodes...
Links[LinkNo]->mergeWith(N);
Links[Idx].mergeWith(NH);
}
// mergeWith - Merge this node into the specified node, moving all links to and
// from the argument node into the current node. The specified node may be a
// null pointer (in which case, nothing happens).
// MergeSortedVectors - Efficiently merge a vector into another vector where
// duplicates are not allowed and both are sorted. This assumes that 'T's are
// efficiently copyable and have sane comparison semantics.
//
void DSNode::mergeWith(DSNode *N) {
if (N == 0 || N == this) return; // Noop
assert(N->Ty == Ty && N->Links.size() == Links.size() &&
"Cannot merge nodes of two different types!");
template<typename T>
void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) {
// By far, the most common cases will be the simple ones. In these cases,
// avoid having to allocate a temporary vector...
//
if (Src.empty()) { // Nothing to merge in...
return;
} else if (Dest.empty()) { // Just copy the result in...
Dest = Src;
} else if (Src.size() == 1) { // Insert a single element...
const T &V = Src[0];
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(), V);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else if (Dest.size() == 1) {
T Tmp = Dest[0]; // Save value in temporary...
Dest = Src; // Copy over list...
typename vector<T>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(),Tmp);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else {
// Make a copy to the side of Dest...
vector<T> Old(Dest);
// Make space for all of the type entries now...
Dest.resize(Dest.size()+Src.size());
// Merge the two sorted ranges together... into Dest.
std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
// Now erase any duplicate entries that may have accumulated into the
// vectors (because they were in both of the input sets)
Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
}
}
// mergeWith - Merge this node and the specified node, moving all links to and
// from the argument node into the current node, deleting the node argument.
// Offset indicates what offset the specified node is to be merged into the
// current node.
//
// The specified node may be a null pointer (in which case, nothing happens).
//
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
DSNode *N = NH.getNode();
if (N == 0 || (N == this && NH.getOffset() == Offset))
return; // Noop
assert(NH.getNode() != this &&
"Cannot merge two portions of the same node yet!");
// If both nodes are not at offset 0, make sure that we are merging the node
// at an later offset into the node with the zero offset.
//
if (Offset > NH.getOffset()) {
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
return;
}
#if 0
std::cerr << "\n\nMerging:\n";
N->print(std::cerr, 0);
std::cerr << " and:\n";
print(std::cerr, 0);
#endif
// Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with
// respect to NH.Offset) is now zero.
//
unsigned NOffset = NH.getOffset()-Offset;
// Remove all edges pointing at N, causing them to point to 'this' instead.
while (!N->Referrers.empty())
*N->Referrers.back() = this;
// Make sure to adjust their offset, not just the node pointer.
//
while (!N->Referrers.empty()) {
DSNodeHandle &Ref = *N->Referrers.back();
Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
}
// Make all of the outgoing links of N now be outgoing links of this. This
// can cause recursive merging!
//
for (unsigned i = 0, e = Links.size(); i != e; ++i) {
addEdgeTo(i, N->Links[i]);
N->Links[i] = 0; // Reduce unneccesary edges in graph. N is dead
}
for (unsigned i = 0, e = N->LinkIndex.size(); i != e; ++i)
if (N->LinkIndex[i] != -1) {
addEdgeTo(i+NOffset, N->Links[N->LinkIndex[i]]);
N->LinkIndex[i] = -1; // Reduce unneccesary edges in graph. N is dead
}
// Now that there are no outgoing edges, all of the Links are dead.
N->Links.clear();
// Merge the node types
NodeType |= N->NodeType;
N->NodeType = 0; // N is now a dead node.
// If this merging into node has more than just void nodes in it, merge!
assert(!N->TypeEntries.empty() && "TypeEntries is empty for a node?");
if (N->TypeEntries.size() != 1 || N->TypeEntries[0].first != Type::VoidTy) {
// If the current node just has a Void entry in it, remove it.
if (TypeEntries.size() == 1 && TypeEntries[0].first == Type::VoidTy)
TypeEntries.clear();
// Adjust all of the type entries we are merging in by the offset... and add
// them to the TypeEntries list.
//
if (NOffset != 0) { // This case is common enough to optimize for
// Offset all of the TypeEntries in N with their new offset
for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i)
N->TypeEntries[i].second += NOffset;
}
MergeSortedVectors(TypeEntries, N->TypeEntries);
N->TypeEntries.clear();
}
// Merge the globals list...
if (!N->Globals.empty()) {
// Save the current globals off to the side...
vector<GlobalValue*> OldGlobals(Globals);
// Resize the globals vector to be big enough to hold both of them...
Globals.resize(Globals.size()+N->Globals.size());
// Merge the two sorted globals lists together...
std::merge(OldGlobals.begin(), OldGlobals.end(),
N->Globals.begin(), N->Globals.end(), Globals.begin());
// Erase duplicate entries from the globals list...
Globals.erase(std::unique(Globals.begin(), Globals.end()), Globals.end());
MergeSortedVectors(Globals, N->Globals);
// Delete the globals from the old node...
N->Globals.clear();
@ -125,16 +229,13 @@ void DSNode::mergeWith(DSNode *N) {
// DSGraph Implementation
//===----------------------------------------------------------------------===//
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(G.GlobalsGraph){
GlobalsGraph->addReference(this);
std::map<const DSNode*, DSNode*> NodeMap; // ignored
DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
std::map<const DSNode*, DSNode*> NodeMap;
RetNode = cloneInto(G, ValueMap, NodeMap);
}
DSGraph::~DSGraph() {
GlobalsGraph->removeReference(this);
FunctionCalls.clear();
OrigFunctionCalls.clear();
ValueMap.clear();
RetNode = 0;
@ -151,24 +252,31 @@ DSGraph::~DSGraph() {
// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }
// Helper function used to clone a function list.
// Each call really shd have an explicit representation as a separate class.
void
CopyFunctionCallsList(const std::vector<std::vector<DSNodeHandle> >& fromCalls,
std::vector<std::vector<DSNodeHandle> >& toCalls,
std::map<const DSNode*, DSNode*>& NodeMap) {
//
static void CopyFunctionCallsList(const vector<vector<DSNodeHandle> >&fromCalls,
vector<vector<DSNodeHandle> > &toCalls,
std::map<const DSNode*, DSNode*> &NodeMap) {
unsigned FC = toCalls.size(); // FirstCall
toCalls.reserve(FC+fromCalls.size());
for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) {
toCalls.push_back(std::vector<DSNodeHandle>());
toCalls[FC+i].reserve(fromCalls[i].size());
toCalls.push_back(vector<DSNodeHandle>());
const vector<DSNodeHandle> &CurCall = fromCalls[i];
toCalls.back().reserve(CurCall.size());
for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j)
toCalls[FC+i].push_back(NodeMap[fromCalls[i][j]]);
toCalls[FC+i].push_back(DSNodeHandle(NodeMap[CurCall[j].getNode()],
CurCall[j].getOffset()));
}
}
/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
void DSNode::remapLinks(std::map<const DSNode*, DSNode*> &OldNodeMap) {
for (unsigned i = 0, e = Links.size(); i != e; ++i)
Links[i].setNode(OldNodeMap[Links[i].getNode()]);
}
// cloneInto - Clone the specified DSGraph into the current graph, returning the
// Return node of the graph. The translated ValueMap for the old function is
@ -176,62 +284,61 @@ CopyFunctionCallsList(const std::vector<std::vector<DSNodeHandle> >& fromCalls,
// Alloca markers are removed from the graph, as the graph is being cloned into
// a calling function's graph.
//
DSNode *DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap,
std::map<const DSNode*, DSNode*> &OldNodeMap,
bool StripScalars, bool StripAllocas,
bool CopyCallers, bool CopyOrigCalls) {
assert(OldNodeMap.size()==0 && "Return arg. OldNodeMap shd be empty");
OldNodeMap[0] = 0; // Null pointer maps to null
DSNodeHandle DSGraph::cloneInto(const DSGraph &G,
std::map<Value*, DSNodeHandle> &OldValMap,
std::map<const DSNode*, DSNode*> &OldNodeMap,
bool StripScalars, bool StripAllocas,
bool CopyCallers, bool CopyOrigCalls) {
assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
unsigned FN = Nodes.size(); // First new node...
// Duplicate all of the nodes, populating the node map...
Nodes.reserve(FN+G.Nodes.size());
for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
DSNode *Old = G.Nodes[i], *New = new DSNode(*Old);
DSNode *Old = G.Nodes[i];
DSNode *New = new DSNode(*Old);
Nodes.push_back(New);
OldNodeMap[Old] = New;
}
// Rewrite the links in the new nodes to point into the current graph now.
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
for (unsigned j = 0, e = Nodes[i]->getNumLinks(); j != e; ++j)
Nodes[i]->setLink(j, OldNodeMap.find(Nodes[i]->getLink(j))->second);
Nodes[i]->remapLinks(OldNodeMap);
// Remove local markers as specified
if (StripScalars || StripAllocas) {
char keepBits = ~((StripScalars? DSNode::ScalarNode : 0) |
(StripAllocas? DSNode::AllocaNode : 0));
unsigned char StripBits = (StripScalars ? DSNode::ScalarNode : 0) |
(StripAllocas ? DSNode::AllocaNode : 0);
if (StripBits)
for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
Nodes[i]->NodeType &= keepBits;
}
Nodes[i]->NodeType &= ~StripBits;
// Copy the value map...
for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
E = G.ValueMap.end(); I != E; ++I)
OldValMap[I->first] = OldNodeMap[I->second];
OldValMap[I->first] = DSNodeHandle(OldNodeMap[I->second.getNode()],
I->second.getOffset());
// Copy the function calls list...
CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap);
#if 0
if (CopyOrigCalls)
CopyFunctionCallsList(G.OrigFunctionCalls, OrigFunctionCalls, OldNodeMap);
// Copy the list of unresolved callers
if (CopyCallers)
PendingCallers.insert(G.PendingCallers.begin(), G.PendingCallers.end());
#endif
// Return the returned node pointer...
return OldNodeMap[G.RetNode];
return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset());
}
#if 0
// cloneGlobalInto - Clone the given global node and all its target links
// (and all their llinks, recursively).
//
DSNode* DSGraph::cloneGlobalInto(const DSNode* GNode) {
DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
// If a clone has already been created for GNode, return it.
@ -252,6 +359,7 @@ DSNode* DSGraph::cloneGlobalInto(const DSNode* GNode) {
return NewNode;
}
#endif
// markIncompleteNodes - Mark the specified node as having contents that are not
@ -268,8 +376,9 @@ static void markIncompleteNode(DSNode *N) {
N->NodeType |= DSNode::Incomplete;
// Recusively process children...
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
markIncompleteNode(N->getLink(i));
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
}
@ -285,37 +394,41 @@ static void markIncompleteNode(DSNode *N) {
//
void DSGraph::markIncompleteNodes(bool markFormalArgs) {
// Mark any incoming arguments as incomplete...
if (markFormalArgs)
for (Function::aiterator I = Func.abegin(), E = Func.aend(); I != E; ++I)
if (isa<PointerType>(I->getType()))
markIncompleteNode(ValueMap[I]->getLink(0));
if (markFormalArgs && Func)
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
if (isPointerType(I->getType()) && ValueMap.find(I) != ValueMap.end()) {
DSNodeHandle &INH = ValueMap[I];
if (INH.getNode() && INH.hasLink(0))
markIncompleteNode(ValueMap[I].getLink(0)->getNode());
}
// Mark stuff passed into functions calls as being incomplete...
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
vector<DSNodeHandle> &Args = FunctionCalls[i];
// Then the return value is certainly incomplete!
markIncompleteNode(Args[0]);
markIncompleteNode(Args[0].getNode());
// The call does not make the function argument incomplete...
// All arguments to the function call are incomplete though!
for (unsigned i = 2, e = Args.size(); i != e; ++i)
markIncompleteNode(Args[i]);
markIncompleteNode(Args[i].getNode());
}
// Mark all of the nodes pointed to by global or cast nodes as incomplete...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & (DSNode::GlobalNode | DSNode::CastNode)) {
if (Nodes[i]->NodeType & DSNode::GlobalNode) {
DSNode *N = Nodes[i];
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
markIncompleteNode(N->getLink(i));
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
markIncompleteNode(DSNH->getNode());
}
}
// removeRefsToGlobal - Helper function that removes globals from the
// ValueMap so that the referrer count will go down to zero.
static void
removeRefsToGlobal(DSNode* N, std::map<Value*, DSNodeHandle>& ValueMap) {
static void removeRefsToGlobal(DSNode* N,
std::map<Value*, DSNodeHandle> &ValueMap) {
while (!N->getGlobals().empty()) {
GlobalValue *GV = N->getGlobals().back();
N->getGlobals().pop_back();
@ -336,7 +449,7 @@ bool DSGraph::isNodeDead(DSNode *N) {
// Is it a function node or some other trivially unused global?
if (N->NodeType != 0 &&
(N->NodeType & ~DSNode::GlobalNode) == 0 &&
N->getNumLinks() == 0 &&
N->getSize() == 0 &&
N->getReferrers().size() == N->getGlobals().size()) {
// Remove the globals from the valuemap, so that the referrer count will go
@ -349,7 +462,7 @@ bool DSGraph::isNodeDead(DSNode *N) {
return false;
}
static void removeIdenticalCalls(std::vector<std::vector<DSNodeHandle> > &Calls,
static void removeIdenticalCalls(vector<vector<DSNodeHandle> > &Calls,
const std::string &where) {
// Remove trivially identical function calls
unsigned NumFns = Calls.size();
@ -375,38 +488,44 @@ void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) {
Nodes.erase(Nodes.begin()+i--); // Remove from node list...
}
removeIdenticalCalls(FunctionCalls, Func.getName());
removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
}
// markAlive - Simple graph traverser that recursively walks the graph marking
// markAlive - Simple graph walker that recursively traverses the graph, marking
// stuff to be alive.
//
static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
if (N == 0) return;
Alive.insert(N);
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
if (N->getLink(i) && !Alive.count(N->getLink(i)))
markAlive(N->getLink(i), Alive);
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (!Alive.count(DSNH->getNode()))
markAlive(DSNH->getNode(), Alive);
}
static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
std::set<DSNode*> &Visiting) {
if (N == 0) return false;
if (Visiting.count(N) > 0) return false; // terminate recursion on a cycle
if (Visiting.count(N)) return false; // terminate recursion on a cycle
Visiting.insert(N);
// If any immediate successor is alive, N is alive
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
if (N->getLink(i) && Alive.count(N->getLink(i)))
{ Visiting.erase(N); return true; }
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (Alive.count(DSNH->getNode())) {
Visiting.erase(N);
return true;
}
// Else if any successor reaches a live node, N is alive
for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i)
if (N->getLink(i) && checkGlobalAlive(N->getLink(i), Alive, Visiting))
{ Visiting.erase(N); return true; }
for (unsigned i = 0, e = N->getSize(); i != e; ++i)
if (DSNodeHandle *DSNH = N->getLink(i))
if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) {
Visiting.erase(N); return true;
}
Visiting.erase(N);
return false;
@ -418,7 +537,7 @@ static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
// the simple iterative loop in the first few lines below suffice.
//
static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
std::vector<std::vector<DSNodeHandle> > &Calls,
vector<vector<DSNodeHandle> > &Calls,
std::set<DSNode*> &Alive,
bool FilterCalls) {
@ -444,16 +563,17 @@ static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
for (int i = 0, ei = Calls.size(); i < ei; ++i) {
bool CallIsDead = true, CallHasDeadArg = false;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) {
bool argIsDead = Calls[i][j] == 0 || Alive.count(Calls[i][j]) == 0;
CallHasDeadArg = CallHasDeadArg || (Calls[i][j] != 0 && argIsDead);
CallIsDead = CallIsDead && argIsDead;
bool argIsDead = Calls[i][j].getNode() == 0 ||
Alive.count(Calls[i][j].getNode()) == 0;
CallHasDeadArg |= (Calls[i][j].getNode() != 0 && argIsDead);
CallIsDead &= argIsDead;
}
if (!CallIsDead && CallHasDeadArg) {
// Some node in this call is live and another is dead.
// Mark all nodes of call as live and iterate once more.
recurse = true;
for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j)
markAlive(Calls[i][j], Alive);
markAlive(Calls[i][j].getNode(), Alive);
}
}
if (recurse)
@ -466,21 +586,21 @@ static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
// can reach any other live node. Since this can produce new live nodes,
// we use a simple iterative algorithm.
//
static void markGlobalsAlive(DSGraph& G, std::set<DSNode*> &Alive,
static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive,
bool FilterCalls) {
// Add global and cast nodes to a set so we don't walk all nodes every time
std::set<DSNode*> GlobalNodes;
for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i)
if (G.getNodes()[i]->NodeType & (DSNode::CastNode | DSNode::GlobalNode))
if (G.getNodes()[i]->NodeType & DSNode::GlobalNode)
GlobalNodes.insert(G.getNodes()[i]);
// Add all call nodes to the same set
std::vector<std::vector<DSNodeHandle> > &Calls = G.getFunctionCalls();
vector<vector<DSNodeHandle> > &Calls = G.getFunctionCalls();
if (FilterCalls) {
for (unsigned i = 0, e = Calls.size(); i != e; ++i)
for (unsigned j = 0, e = Calls[i].size(); j != e; ++j)
if (Calls[i][j])
GlobalNodes.insert(Calls[i][j]);
if (Calls[i][j].getNode())
GlobalNodes.insert(Calls[i][j].getNode());
}
// Iterate and recurse until no new live node are discovered.
@ -497,8 +617,8 @@ static void markGlobalsAlive(DSGraph& G, std::set<DSNode*> &Alive,
if (FilterCalls)
for (int ei = Calls.size(), i = ei-1; i >= 0; --i) {
bool CallIsDead = true;
for (unsigned j = 0, ej= Calls[i].size(); CallIsDead && j != ej; ++j)
CallIsDead = (Alive.count(Calls[i][j]) == 0);
for (unsigned j = 0, ej = Calls[i].size(); CallIsDead && j != ej; ++j)
CallIsDead = Alive.count(Calls[i][j].getNode()) == 0;
if (CallIsDead)
Calls.erase(Calls.begin() + i); // remove the call entirely
}
@ -526,21 +646,24 @@ void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
if (KeepCalls)
for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j)
markAlive(FunctionCalls[i][j], Alive);
markAlive(FunctionCalls[i][j].getNode(), Alive);
#if 0
for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i)
for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j)
markAlive(OrigFunctionCalls[i][j], Alive);
markAlive(OrigFunctionCalls[i][j].getNode(), Alive);
#endif
// Mark all nodes reachable by scalar nodes (and global nodes, if
// keeping them was specified) as alive...
char keepBits = DSNode::ScalarNode | (KeepAllGlobals? DSNode::GlobalNode : 0);
unsigned char keepBits = DSNode::ScalarNode |
(KeepAllGlobals ? DSNode::GlobalNode : 0);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
if (Nodes[i]->NodeType & keepBits)
markAlive(Nodes[i], Alive);
// The return value is alive as well...
markAlive(RetNode, Alive);
markAlive(RetNode.getNode(), Alive);
// Mark all globals or cast nodes that can reach a live node as alive.
// This also marks all nodes reachable from such nodes as alive.
@ -549,7 +672,7 @@ void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
markGlobalsAlive(*this, Alive, ! KeepCalls);
// Loop over all unreachable nodes, dropping their references...
std::vector<DSNode*> DeadNodes;
vector<DSNode*> DeadNodes;
DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed.
for (unsigned i = 0; i != Nodes.size(); ++i)
if (!Alive.count(Nodes[i])) {
@ -574,6 +697,7 @@ void DSGraph::maskNodeTypes(unsigned char Mask) {
}
#if 0
//===----------------------------------------------------------------------===//
// GlobalDSGraph Implementation
//===----------------------------------------------------------------------===//
@ -601,10 +725,9 @@ void GlobalDSGraph::removeReference(const DSGraph* referrer) {
}
// Bits used in the next function
static const char ExternalTypeBits = (DSNode::GlobalNode | DSNode::NewNode |
DSNode::SubElement | DSNode::CastNode);
static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::NewNode;
#if 0
// GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
// visible target links (and recursively their such links) into this graph.
// NodeCache maps the node being cloned to its clone in the Globals graph,
@ -635,8 +758,8 @@ DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
// If ValueCacheIsFinal==true, look for an existing node that has
// an identical list of globals and return it if it exists.
//
for (unsigned j = 0, N = OldNode->getGlobals().size(); j < N; ++j)
if (DSNode* PrevNode = ValueMap[OldNode->getGlobals()[j]]) {
for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
if (DSNode *PrevNode = ValueMap[OldNode->getGlobals()[j]].getNode()) {
if (NewNode == 0) {
NewNode = PrevNode; // first existing node found
if (GlobalsAreFinal && j == 0)
@ -695,14 +818,15 @@ DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
//
void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
std::map<const DSNode*, DSNode*> NodeCache;
#if 0
for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i)
if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode)
GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false);
if (CloneCalls)
GlobalsGraph->cloneCalls(Graph);
GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
#endif
}
@ -711,12 +835,12 @@ void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
//
void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
std::map<const DSNode*, DSNode*> NodeCache;
std::vector<std::vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls;
vector<vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls;
FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
FunctionCalls.push_back(std::vector<DSNodeHandle>());
FunctionCalls.push_back(vector<DSNodeHandle>());
FunctionCalls.back().reserve(FromCalls[i].size());
for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
FunctionCalls.back().push_back
@ -728,34 +852,6 @@ void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
// remove trivially identical function calls
removeIdenticalCalls(FunctionCalls, "Globals Graph");
}
#endif
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void LocalDataStructures::releaseMemory() {
for (std::map<const Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I)
delete I->second;
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
}
bool LocalDataStructures::run(Module &M) {
// Create a globals graph for the module. Deleted when all graphs go away.
GlobalDSGraph* GG = new GlobalDSGraph;
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
DSInfo.insert(std::make_pair(&*I, new DSGraph(*I, GG)));
return false;
}
#endif

View File

@ -1,4 +1,4 @@
//===- ComputeLocal.cpp - Compute a local data structure graph for a fn ---===//
//===- Local.cpp - Compute a local data structure graph for a function ----===//
//
// Compute the local version of the data structure graph for a function. The
// external interface to this file is the DSGraph constructor.
@ -6,30 +6,55 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Constants.h"
#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Target/TargetData.h"
#include "Support/Statistic.h"
// FIXME: This should eventually be a FunctionPass that is automatically
// aggregated into a Pass.
//
#include "llvm/Module.h"
using std::map;
using std::vector;
static RegisterAnalysis<LocalDataStructures>
X("datastructure", "Local Data Structure Analysis");
//===----------------------------------------------------------------------===//
// GraphBuilder Class
//===----------------------------------------------------------------------===//
//
// This class is the builder class that constructs the local data structure
// graph by performing a single pass over the function in question.
//
using namespace DataStructureAnalysis;
namespace DataStructureAnalysis {
// FIXME: Do something smarter with target data!
TargetData TD("temp-td");
unsigned PointerSize(TD.getPointerSize());
// isPointerType - Return true if this type is big enough to hold a pointer.
bool isPointerType(const Type *Ty) {
if (isa<PointerType>(Ty))
return true;
else if (Ty->isPrimitiveType() && Ty->isInteger())
return Ty->getPrimitiveSize() >= PointerSize;
return false;
}
}
namespace {
//===--------------------------------------------------------------------===//
// GraphBuilder Class
//===--------------------------------------------------------------------===//
//
/// This class is the builder class that constructs the local data structure
/// graph by performing a single pass over the function in question.
///
class GraphBuilder : InstVisitor<GraphBuilder> {
DSGraph &G;
vector<DSNode*> &Nodes;
@ -46,8 +71,8 @@ namespace {
// Create scalar nodes for all pointer arguments...
for (Function::aiterator I = G.getFunction().abegin(),
E = G.getFunction().aend(); I != E; ++I)
if (isa<PointerType>(I->getType()))
getValueNode(*I);
if (isPointerType(I->getType()))
getValueDest(*I);
visit(G.getFunction()); // Single pass over the function
@ -71,51 +96,51 @@ namespace {
void visitCallInst(CallInst &CI);
void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored
void visitFreeInst(FreeInst &FI) {} // Ignore free instructions
void visitInstruction(Instruction &I); // Visit unsafe ptr instruction
void visitCastInst(CastInst &CI);
void visitInstruction(Instruction &I) {}
private:
// Helper functions used to implement the visitation functions...
// createNode - Create a new DSNode, ensuring that it is properly added to
// the graph.
//
/// createNode - Create a new DSNode, ensuring that it is properly added to
/// the graph.
///
DSNode *createNode(DSNode::NodeTy NodeType, const Type *Ty);
// getValueNode - Return a DSNode that corresponds the the specified LLVM
// value. This either returns the already existing node, or creates a new
// one and adds it to the graph, if none exists.
//
DSNode *getValueNode(Value &V);
/// getValueNode - Return a DSNode that corresponds the the specified LLVM
/// value. This either returns the already existing node, or creates a new
/// one and adds it to the graph, if none exists.
///
DSNodeHandle getValueNode(Value &V);
// getGlobalNode - Just like getValueNode, except the global node itself is
// returned, not a scalar node pointing to a global.
//
DSNode *getGlobalNode(GlobalValue &V);
/// getValueDest - Return the DSNode that the actual value points to. This
/// is basically the same thing as: getLink(getValueNode(V), 0)
///
DSNodeHandle &getValueDest(Value &V);
// getLink - This method is used to either return the specified link in the
// specified node if one exists. If a link does not already exist (it's
// null), then we create a new node, link it, then return it.
//
DSNode *getLink(DSNode *Node, unsigned Link);
/// getGlobalNode - Just like getValueNode, except the global node itself is
/// returned, not a scalar node pointing to a global.
///
DSNodeHandle &getGlobalNode(GlobalValue &V);
// getSubscriptedNode - Perform the basic getelementptr functionality that
// must be factored out of gep, load and store while they are all MAI's.
//
DSNode *getSubscriptedNode(GetElementPtrInst &GEP, DSNode *Ptr);
/// getLink - This method is used to return the specified link in the
/// specified node if one exists. If a link does not already exist (it's
/// null), then we create a new node, link it, then return it. We must
/// specify the type of the Node field we are accessing so that we know what
/// type should be linked to if we need to create a new node.
///
DSNodeHandle &getLink(const DSNodeHandle &Node, unsigned Link,
const Type *FieldTy);
};
}
//===----------------------------------------------------------------------===//
// DSGraph constructor - Simply use the GraphBuilder to construct the local
// graph.
DSGraph::DSGraph(Function &F, GlobalDSGraph* GlobalsG)
: Func(F), RetNode(0), GlobalsGraph(GlobalsG) {
if (GlobalsGraph != this) {
GlobalsGraph->addReference(this);
// Use the graph builder to construct the local version of the graph
GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls);
markIncompleteNodes();
}
DSGraph::DSGraph(Function &F) : Func(&F) {
// Use the graph builder to construct the local version of the graph
GraphBuilder B(*this, Nodes, RetNode, ValueMap, FunctionCalls);
markIncompleteNodes();
}
@ -137,9 +162,9 @@ DSNode *GraphBuilder::createNode(DSNode::NodeTy NodeType, const Type *Ty) {
// getGlobalNode - Just like getValueNode, except the global node itself is
// returned, not a scalar node pointing to a global.
//
DSNode *GraphBuilder::getGlobalNode(GlobalValue &V) {
DSNodeHandle &GraphBuilder::getGlobalNode(GlobalValue &V) {
DSNodeHandle &NH = ValueMap[&V];
if (NH) return NH; // Already have a node? Just return it...
if (NH.getNode()) return NH; // Already have a node? Just return it...
// Create a new global node for this global variable...
DSNode *G = createNode(DSNode::GlobalNode, V.getType()->getElementType());
@ -149,8 +174,8 @@ DSNode *GraphBuilder::getGlobalNode(GlobalValue &V) {
// each use. For functions and other global variables, this is unneccesary,
// so avoid excessive merging by cloning these nodes on demand.
//
NH = G;
return G;
NH.setNode(G);
return NH;
}
@ -158,126 +183,145 @@ DSNode *GraphBuilder::getGlobalNode(GlobalValue &V) {
// This either returns the already existing node, or creates a new one and adds
// it to the graph, if none exists.
//
DSNode *GraphBuilder::getValueNode(Value &V) {
assert(isa<PointerType>(V.getType()) && "Should only use pointer scalars!");
if (!isa<GlobalValue>(V)) {
DSNodeHandle &NH = ValueMap[&V];
if (NH) return NH; // Already have a node? Just return it...
}
DSNodeHandle GraphBuilder::getValueNode(Value &V) {
assert(isPointerType(V.getType()) && "Should only use pointer scalars!");
// Do not share the pointer value to globals... this would cause way too much
// false merging.
//
DSNodeHandle &NH = ValueMap[&V];
if (!isa<GlobalValue>(V) && NH.getNode())
return NH; // Already have a node? Just return it...
// Otherwise we need to create a new scalar node...
DSNode *N = createNode(DSNode::ScalarNode, V.getType());
// If this is a global value, create the global pointed to.
if (GlobalValue *GV = dyn_cast<GlobalValue>(&V)) {
DSNode *G = getGlobalNode(*GV);
N->addEdgeTo(G);
N->addEdgeTo(0, getGlobalNode(*GV));
return DSNodeHandle(N, 0);
} else {
ValueMap[&V] = N;
NH.setOffset(0);
NH.setNode(N);
}
return N;
return NH;
}
/// getValueDest - Return the DSNode that the actual value points to. This
/// is basically the same thing as: getLink(getValueNode(V), 0)
///
DSNodeHandle &GraphBuilder::getValueDest(Value &V) {
return getLink(getValueNode(V), 0, V.getType());
}
// getLink - This method is used to either return the specified link in the
// specified node if one exists. If a link does not already exist (it's
// null), then we create a new node, link it, then return it.
//
DSNode *GraphBuilder::getLink(DSNode *Node, unsigned Link) {
assert(Link < Node->getNumLinks() && "Link accessed out of range!");
if (Node->getLink(Link) == 0) {
DSNode::NodeTy NT;
const Type *Ty;
switch (Node->getType()->getPrimitiveID()) {
case Type::PointerTyID:
Ty = cast<PointerType>(Node->getType())->getElementType();
NT = DSNode::ShadowNode;
break;
case Type::ArrayTyID:
Ty = cast<ArrayType>(Node->getType())->getElementType();
NT = DSNode::SubElement;
break;
case Type::StructTyID:
Ty = cast<StructType>(Node->getType())->getContainedType(Link);
NT = DSNode::SubElement;
break;
default:
assert(0 && "Unexpected type to dereference!");
abort();
}
/// getLink - This method is used to return the specified link in the
/// specified node if one exists. If a link does not already exist (it's
/// null), then we create a new node, link it, then return it. We must
/// specify the type of the Node field we are accessing so that we know what
/// type should be linked to if we need to create a new node.
///
DSNodeHandle &GraphBuilder::getLink(const DSNodeHandle &node,
unsigned LinkNo, const Type *FieldTy) {
DSNodeHandle &Node = const_cast<DSNodeHandle&>(node);
DSNode *New = createNode(NT, Ty);
Node->addEdgeTo(Link, New);
}
DSNodeHandle *Link = Node.getLink(LinkNo);
if (Link) return *Link;
// If the link hasn't been created yet, make and return a new shadow node of
// the appropriate type for FieldTy...
//
return Node->getLink(Link);
// If we are indexing with a typed pointer, then the thing we are pointing
// to is of the pointed type. If we are pointing to it with an integer
// (because of cast to an integer), we represent it with a void type.
//
const Type *ReqTy;
if (const PointerType *Ptr = dyn_cast<PointerType>(FieldTy))
ReqTy = Ptr->getElementType();
else
ReqTy = Type::VoidTy;
DSNode *N = createNode(DSNode::ShadowNode, ReqTy);
Node.setLink(LinkNo, N);
return *Node.getLink(LinkNo);
}
// getSubscriptedNode - Perform the basic getelementptr functionality that must
// be factored out of gep, load and store while they are all MAI's.
//
DSNode *GraphBuilder::getSubscriptedNode(GetElementPtrInst &GEP, DSNode *Ptr) {
for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i)
if (GEP.getOperand(i)->getType() == Type::UIntTy)
Ptr = getLink(Ptr, 0);
else if (GEP.getOperand(i)->getType() == Type::UByteTy)
Ptr = getLink(Ptr, cast<ConstantUInt>(GEP.getOperand(i))->getValue());
if (GEP.getNumOperands() == 1)
Ptr = getLink(Ptr, 0); // All GEP's have an implicit 0 if nothing else.
return Ptr;
}
//===----------------------------------------------------------------------===//
// Specific instruction type handler implementations...
//
// Alloca & Malloc instruction implementation - Simply create a new memory
// object, pointing the scalar to it.
//
/// Alloca & Malloc instruction implementation - Simply create a new memory
/// object, pointing the scalar to it.
///
void GraphBuilder::handleAlloc(AllocationInst &AI, DSNode::NodeTy NodeType) {
DSNode *Scalar = getValueNode(AI);
DSNode *New = createNode(NodeType, AI.getAllocatedType());
Scalar->addEdgeTo(New); // Make the scalar point to the new node...
// Make the scalar point to the new node...
getValueNode(AI).addEdgeTo(New);
}
// PHINode - Make the scalar for the PHI node point to all of the things the
// incoming values point to... which effectively causes them to be merged.
//
void GraphBuilder::visitPHINode(PHINode &PN) {
if (!isa<PointerType>(PN.getType())) return; // Only pointer PHIs
if (!isPointerType(PN.getType())) return; // Only pointer PHIs
DSNode *Scalar = getValueNode(PN);
DSNode *ScalarDest = getLink(Scalar, 0);
DSNodeHandle &ScalarDest = getValueDest(PN);
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
ScalarDest->mergeWith(getLink(getValueNode(*PN.getIncomingValue(i)), 0));
if (!isa<ConstantPointerNull>(PN.getIncomingValue(i)))
ScalarDest.mergeWith(getValueDest(*PN.getIncomingValue(i)));
}
void GraphBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
DSNode *Ptr = getSubscriptedNode(GEP, getValueNode(*GEP.getOperand(0)));
getValueNode(GEP)->addEdgeTo(Ptr);
DSNodeHandle Value = getValueDest(*GEP.getOperand(0));
unsigned Offset = 0;
const Type *CurTy = GEP.getOperand(0)->getType();
for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i)
if (GEP.getOperand(i)->getType() == Type::LongTy) {
if (GEP.getOperand(i) != Constant::getNullValue(Type::LongTy)) {
std::cerr << "Array indexing not handled yet!\n";
}
CurTy = cast<SequentialType>(CurTy)->getElementType();
} else if (GEP.getOperand(i)->getType() == Type::UByteTy) {
unsigned FieldNo = cast<ConstantUInt>(GEP.getOperand(i))->getValue();
const StructType *STy = cast<StructType>(CurTy);
Offset += TD.getStructLayout(STy)->MemberOffsets[FieldNo];
CurTy = STy->getContainedType(FieldNo);
}
// Add in the offset calculated...
Value.setOffset(Value.getOffset()+Offset);
// Value is now the pointer we want to GEP to be...
getValueNode(GEP).addEdgeTo(Value);
}
void GraphBuilder::visitLoadInst(LoadInst &LI) {
DSNode *Ptr = getValueNode(*LI.getOperand(0));
if (!isa<PointerType>(LI.getType())) return; // only loads OF pointers
getValueNode(LI)->addEdgeTo(getLink(Ptr, 0));
DSNodeHandle &Ptr = getValueDest(*LI.getOperand(0));
if (isPointerType(LI.getType()))
getValueNode(LI).addEdgeTo(getLink(Ptr, 0, LI.getType()));
}
void GraphBuilder::visitStoreInst(StoreInst &SI) {
DSNode *DestPtr = getValueNode(*SI.getOperand(1));
if (!isa<PointerType>(SI.getOperand(0)->getType())) return;
DSNode *Value = getValueNode(*SI.getOperand(0));
DestPtr->addEdgeTo(getLink(Value, 0));
DSNodeHandle &Dest = getValueDest(*SI.getOperand(1));
// Avoid adding edges from null, or processing non-"pointer" stores
if (isPointerType(SI.getOperand(0)->getType()) &&
!isa<ConstantPointerNull>(SI.getOperand(0))) {
Dest.addEdgeTo(getValueDest(*SI.getOperand(0)));
}
}
void GraphBuilder::visitReturnInst(ReturnInst &RI) {
if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType())) {
DSNode *Value = getLink(getValueNode(*RI.getOperand(0)), 0);
Value->mergeWith(RetNode);
if (RI.getNumOperands() && isPointerType(RI.getOperand(0)->getType()) &&
!isa<ConstantPointerNull>(RI.getOperand(0))) {
DSNodeHandle &Value = getValueDest(*RI.getOperand(0));
Value.mergeWith(RetNode);
RetNode = Value;
}
}
@ -288,13 +332,13 @@ void GraphBuilder::visitCallInst(CallInst &CI) {
vector<DSNodeHandle> &Args = FunctionCalls.back();
// Set up the return value...
if (isa<PointerType>(CI.getType()))
Args.push_back(getLink(getValueNode(CI), 0));
if (isPointerType(CI.getType()))
Args.push_back(getLink(getValueNode(CI), 0, CI.getType()));
else
Args.push_back(0);
Args.push_back(DSNodeHandle());
unsigned Start = 0;
// Special case for direct call, avoid creating spurious scalar node...
// Special case for a direct call, avoid creating spurious scalar node...
if (GlobalValue *GV = dyn_cast<GlobalValue>(CI.getOperand(0))) {
Args.push_back(getGlobalNode(*GV));
Start = 1;
@ -302,21 +346,43 @@ void GraphBuilder::visitCallInst(CallInst &CI) {
// Pass the arguments in...
for (unsigned i = Start, e = CI.getNumOperands(); i != e; ++i)
if (isa<PointerType>(CI.getOperand(i)->getType()))
Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0));
if (isPointerType(CI.getOperand(i)->getType()))
Args.push_back(getLink(getValueNode(*CI.getOperand(i)), 0,
CI.getOperand(i)->getType()));
}
// visitInstruction - All safe instructions have been processed above, this case
// is where unsafe ptr instructions land.
/// Handle casts...
void GraphBuilder::visitCastInst(CastInst &CI) {
if (isPointerType(CI.getType()) && isPointerType(CI.getOperand(0)->getType()))
getValueNode(CI).addEdgeTo(getLink(getValueNode(*CI.getOperand(0)), 0,
CI.getOperand(0)->getType()));
}
//===----------------------------------------------------------------------===//
// LocalDataStructures Implementation
//===----------------------------------------------------------------------===//
// releaseMemory - If the pass pipeline is done with this pass, we can release
// our memory... here...
//
void GraphBuilder::visitInstruction(Instruction &I) {
// If the return type is a pointer, mark the pointed node as being a cast node
if (isa<PointerType>(I.getType()))
getLink(getValueNode(I), 0)->NodeType |= DSNode::CastNode;
void LocalDataStructures::releaseMemory() {
for (std::map<const Function*, DSGraph*>::iterator I = DSInfo.begin(),
E = DSInfo.end(); I != E; ++I)
delete I->second;
// If any operands are pointers, mark the pointed nodes as being a cast node
for (Instruction::op_iterator i = I.op_begin(), E = I.op_end(); i!=E; ++i)
if (isa<PointerType>(i->get()->getType()))
getLink(getValueNode(*i->get()), 0)->NodeType |= DSNode::CastNode;
// Empty map so next time memory is released, data structures are not
// re-deleted.
DSInfo.clear();
}
bool LocalDataStructures::run(Module &M) {
// Calculate all of the graphs...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal())
DSInfo.insert(std::make_pair(I, new DSGraph(*I)));
return false;
}

View File

@ -14,35 +14,37 @@ using std::string;
void DSNode::dump() const { print(std::cerr, 0); }
string DSNode::getCaption(const DSGraph *G) const {
static string getCaption(const DSNode *N, const DSGraph *G) {
std::stringstream OS;
Module *M = G && &G->getFunction()? G->getFunction().getParent() : 0;
WriteTypeSymbolic(OS, getType(), M);
Module *M = G && &G->getFunction() ? G->getFunction().getParent() : 0;
OS << " ";
if (NodeType & ScalarNode) OS << "S";
if (NodeType & AllocaNode) OS << "A";
if (NodeType & NewNode ) OS << "N";
if (NodeType & GlobalNode) OS << "G";
if (NodeType & SubElement) OS << "E";
if (NodeType & CastNode ) OS << "C";
if (NodeType & Incomplete) OS << "I";
for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
for (unsigned i = 0, e = N->getTypeEntries().size(); i != e; ++i) {
WriteTypeSymbolic(OS, N->getTypeEntries()[i].first, M);
if (N->getTypeEntries()[i].second)
OS << "@" << N->getTypeEntries()[i].second;
OS << "\n";
WriteAsOperand(OS, Globals[i], false, true, M);
}
if ((NodeType & ScalarNode) && G) {
if (N->NodeType & DSNode::ScalarNode) OS << "S";
if (N->NodeType & DSNode::AllocaNode) OS << "A";
if (N->NodeType & DSNode::NewNode ) OS << "N";
if (N->NodeType & DSNode::GlobalNode) OS << "G";
if (N->NodeType & DSNode::Incomplete) OS << "I";
for (unsigned i = 0, e = N->getGlobals().size(); i != e; ++i) {
WriteAsOperand(OS, N->getGlobals()[i], false, true, M);
OS << "\n";
}
if ((N->NodeType & DSNode::ScalarNode) && G) {
const std::map<Value*, DSNodeHandle> &VM = G->getValueMap();
for (std::map<Value*, DSNodeHandle>::const_iterator I = VM.begin(),
E = VM.end(); I != E; ++I)
if (I->second == this) {
OS << "\n";
if (I->second.getNode() == N) {
WriteAsOperand(OS, I->first, false, true, M);
OS << "\n";
}
}
return OS.str();
}
@ -77,10 +79,12 @@ static std::string escapeLabel(const std::string &In) {
static void writeEdge(std::ostream &O, const void *SrcNode,
const char *SrcNodePortName, int SrcNodeIdx,
const DSNode *VS, const std::string &EdgeAttr = "") {
const DSNodeHandle &VS,
const std::string &EdgeAttr = "") {
O << "\tNode" << SrcNode << SrcNodePortName;
if (SrcNodeIdx != -1) O << SrcNodeIdx;
O << " -> Node" << (void*)VS;
O << " -> Node" << (void*)VS.getNode();
if (VS.getOffset()) O << ":g" << VS.getOffset();
if (!EdgeAttr.empty())
O << "[" << EdgeAttr << "]";
@ -88,13 +92,13 @@ static void writeEdge(std::ostream &O, const void *SrcNode,
}
void DSNode::print(std::ostream &O, const DSGraph *G) const {
std::string Caption = escapeLabel(getCaption(G));
std::string Caption = escapeLabel(getCaption(this, G));
O << "\tNode" << (void*)this << " [ label =\"{" << Caption;
if (!Links.empty()) {
if (getSize() != 0) {
O << "|{";
for (unsigned i = 0; i < Links.size(); ++i) {
for (unsigned i = 0; i < getSize(); ++i) {
if (i) O << "|";
O << "<g" << i << ">";
}
@ -102,9 +106,9 @@ void DSNode::print(std::ostream &O, const DSGraph *G) const {
}
O << "}\"];\n";
for (unsigned i = 0; i < Links.size(); ++i)
if (Links[i])
writeEdge(O, this, ":g", i, Links[i]);
for (unsigned i = 0; i != getSize(); ++i)
if (const DSNodeHandle *DSN = getLink(i))
writeEdge(O, this, ":g", i, *DSN);
}
void DSGraph::print(std::ostream &O) const {
@ -114,10 +118,8 @@ void DSGraph::print(std::ostream &O) const {
<< "\tsize=\"10,7.5\";\n"
<< "\trotate=\"90\";\n";
if (&Func != 0)
O << "\tlabel=\"Function\\ " << Func.getName() << "\";\n\n";
else
O << "\tlabel=\"Global Graph\";\n\n";
if (Func != 0)
O << "\tlabel=\"Function\\ " << Func->getName() << "\";\n\n";
// Output all of the nodes...
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
@ -143,7 +145,7 @@ void DSGraph::print(std::ostream &O) const {
O << "}}\"];\n";
for (unsigned j = 0, e = Call.size(); j != e; ++j)
if (Call[j])
if (Call[j].getNode())
writeEdge(O, &Call, ":g", j, Call[j], "color=gray63");
}
@ -152,16 +154,14 @@ void DSGraph::print(std::ostream &O) const {
}
static void printGraph(const DSGraph &Graph, std::ostream &O,
const string &GraphName, const string &Prefix) {
string Filename = Prefix + "." + GraphName + ".dot";
void DSGraph::writeGraphToFile(std::ostream &O, const string &GraphName) {
string Filename = GraphName + ".dot";
O << "Writing '" << Filename << "'...";
std::ofstream F(Filename.c_str());
if (F.good()) {
Graph.print(F);
O << " [" << Graph.getGraphSize() << "+"
<< Graph.getFunctionCalls().size() << "]\n";
print(F);
O << " [" << getGraphSize() << "+" << getFunctionCalls().size() << "]\n";
} else {
O << " error opening file for writing!\n";
}
@ -179,31 +179,33 @@ static void printCollection(const Collection &C, std::ostream &O,
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal() && (I->getName() == "main" || !OnlyPrintMain))
printGraph(C.getDSGraph((Function&)*I), O, I->getName(), Prefix);
C.getDSGraph((Function&)*I).writeGraphToFile(O, Prefix+I->getName());
}
// print - Print out the analysis results...
void LocalDataStructures::print(std::ostream &O, const Module *M) const {
printCollection(*this, O, M, "ds");
printCollection(*this, O, M, "ds.");
}
#if 0
void BUDataStructures::print(std::ostream &O, const Module *M) const {
printCollection(*this, O, M, "bu");
printCollection(*this, O, M, "bu.");
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal()) {
printGraph(*getDSGraph(*I).GlobalsGraph, O, "program", "gg");
(*getDSGraph(*I).GlobalsGraph)->writeGraphToFile(O, "gg.program");
break;
}
}
void TDDataStructures::print(std::ostream &O, const Module *M) const {
printCollection(*this, O, M, "td");
printCollection(*this, O, M, "td.");
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isExternal()) {
printGraph(*getDSGraph(*I).GlobalsGraph, O, "program", "gg");
(*getDSGraph(*I).GlobalsGraph)->writeGraphToFile(O, "gg.program");
break;
}
}
#endif

View File

@ -10,9 +10,10 @@
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "Support/StatisticReporter.h"
#include "Support/Statistic.h"
using std::map;
#if 0
static RegisterAnalysis<TDDataStructures>
Y("tddatastructure", "Top-down Data Structure Analysis Closure");
@ -223,3 +224,4 @@ DSGraph &TDDataStructures::calculateGraph(Function &F) {
return *Graph;
}
#endif