Concisify some code

Do not call FindGlobalNamed when we know we will ignore the result (because
we are not going to link a static symbol anyway).  This speeds up
gccld -disable-opt on 252.eon from 8.63s to 8.39s.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15465 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-08-04 06:05:47 +00:00
parent ac479e53a9
commit fe41069070
2 changed files with 30 additions and 46 deletions

View File

@ -382,32 +382,24 @@ static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
// It doesn't exist exactly, scan through all of the type planes in the symbol
// table, checking each of them for a type-compatible version.
//
for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end();
for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end();
PI != PE; ++PI) {
SymbolTable::ValueMap &VM = PI->second;
// Does this type plane contain an entry with the specified name?
SymbolTable::ValueMap &VM = PI->second;
SymbolTable::value_iterator VI = VM.find(Name);
if (VI != VM.end()) {
//
// Ensure that this type if placed correctly into the symbol table.
//
assert(VI->second->getType() == PI->first && "Type conflict!");
//
// Save a reference to the new type. Resolving the type can modify the
// symbol table, invalidating the TI variable.
//
Value *ValPtr = VI->second;
//
// Determine whether we can fold the two types together, resolving them.
// If so, we can use this value.
//
if (!RecursiveResolveTypes(Ty, PI->first, ST, ""))
return cast<GlobalValue>(ValPtr);
}
if (VI != VM.end()) {
// Ensure that this type if placed correctly into the symbol table.
GlobalValue *ValPtr = cast<GlobalValue>(VI->second);
assert(ValPtr->getType() == PI->first && "Type conflict!");
// Determine whether we can fold the two types together, resolving them.
// If so, we can use this value.
if (!ValPtr->hasInternalLinkage() &&
!RecursiveResolveTypes(Ty, PI->first, ST, ""))
return ValPtr;
}
}
return 0; // Otherwise, nothing could be found.
}
@ -428,7 +420,7 @@ static bool LinkGlobals(Module *Dest, const Module *Src,
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
const GlobalVariable *SGV = I;
GlobalVariable *DGV = 0;
if (SGV->hasName()) {
if (SGV->hasName() && !SGV->hasInternalLinkage()) {
// A same named thing is a global variable, because the only two things
// that may be in a module level symbol table are Global Vars and
// Functions, and they both have distinct, nonoverlapping, possible types.
@ -613,7 +605,7 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
const Function *SF = I; // SrcFunction
Function *DF = 0;
if (SF->hasName())
if (SF->hasName() && !SF->hasInternalLinkage())
// The same named thing is a Function, because the only two things
// that may be in a module level symbol table are Global Vars and
// Functions, and they both have distinct, nonoverlapping, possible types.

View File

@ -382,32 +382,24 @@ static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty,
// It doesn't exist exactly, scan through all of the type planes in the symbol
// table, checking each of them for a type-compatible version.
//
for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end();
for (SymbolTable::plane_iterator PI = ST->plane_begin(), PE = ST->plane_end();
PI != PE; ++PI) {
SymbolTable::ValueMap &VM = PI->second;
// Does this type plane contain an entry with the specified name?
SymbolTable::ValueMap &VM = PI->second;
SymbolTable::value_iterator VI = VM.find(Name);
if (VI != VM.end()) {
//
// Ensure that this type if placed correctly into the symbol table.
//
assert(VI->second->getType() == PI->first && "Type conflict!");
//
// Save a reference to the new type. Resolving the type can modify the
// symbol table, invalidating the TI variable.
//
Value *ValPtr = VI->second;
//
// Determine whether we can fold the two types together, resolving them.
// If so, we can use this value.
//
if (!RecursiveResolveTypes(Ty, PI->first, ST, ""))
return cast<GlobalValue>(ValPtr);
}
if (VI != VM.end()) {
// Ensure that this type if placed correctly into the symbol table.
GlobalValue *ValPtr = cast<GlobalValue>(VI->second);
assert(ValPtr->getType() == PI->first && "Type conflict!");
// Determine whether we can fold the two types together, resolving them.
// If so, we can use this value.
if (!ValPtr->hasInternalLinkage() &&
!RecursiveResolveTypes(Ty, PI->first, ST, ""))
return ValPtr;
}
}
return 0; // Otherwise, nothing could be found.
}
@ -428,7 +420,7 @@ static bool LinkGlobals(Module *Dest, const Module *Src,
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
const GlobalVariable *SGV = I;
GlobalVariable *DGV = 0;
if (SGV->hasName()) {
if (SGV->hasName() && !SGV->hasInternalLinkage()) {
// A same named thing is a global variable, because the only two things
// that may be in a module level symbol table are Global Vars and
// Functions, and they both have distinct, nonoverlapping, possible types.
@ -613,7 +605,7 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
const Function *SF = I; // SrcFunction
Function *DF = 0;
if (SF->hasName())
if (SF->hasName() && !SF->hasInternalLinkage())
// The same named thing is a Function, because the only two things
// that may be in a module level symbol table are Global Vars and
// Functions, and they both have distinct, nonoverlapping, possible types.