Add some accessor methods to CAZ and UndefValue that help simplify clients.

Make some CDS methods public.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148785 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2012-01-24 05:42:11 +00:00
parent 46de2d5f5b
commit ff2b7f3cd6
2 changed files with 97 additions and 10 deletions

View File

@ -310,10 +310,22 @@ protected:
return User::operator new(s, 0);
}
public:
static ConstantAggregateZero* get(Type *Ty);
static ConstantAggregateZero *get(Type *Ty);
virtual void destroyConstant();
/// getSequentialElement - If this CAZ has array or vector type, return a zero
/// with the right element type.
Constant *getSequentialElement();
/// getStructElement - If this CAZ has struct type, return a zero with the
/// right element type for the specified element.
Constant *getStructElement(unsigned Elt);
/// getElementValue - Return a zero of the right value for the specified GEP
/// index.
Constant *getElementValue(Constant *C);
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const ConstantAggregateZero *) { return true; }
@ -568,8 +580,12 @@ protected:
}
public:
virtual void destroyConstant();
/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
/// formed with a vector or array of the specified element type.
/// ConstantDataArray only works with normal float and int types that are
/// stored densely in memory, not with things like i42 or x86_f80.
static bool isElementTypeCompatible(const Type *Ty);
/// getElementAsInteger - If this is a sequential container of integers (of
/// any size), return the specified element in the low bits of a uint64_t.
uint64_t getElementAsInteger(unsigned i) const;
@ -601,7 +617,13 @@ public:
/// getElementType - Return the element type of the array/vector.
Type *getElementType() const;
/// getElementByteSize - Return the size (in bytes) of each element in the
/// array/vector. The size of the elements is known to be a multiple of one
/// byte.
uint64_t getElementByteSize() const;
virtual void destroyConstant();
/// Methods for support type inquiry through isa, cast, and dyn_cast:
///
static bool classof(const ConstantDataSequential *) { return true; }
@ -610,7 +632,6 @@ public:
V->getValueID() == ConstantDataVectorVal;
}
private:
uint64_t getElementByteSize() const;
const char *getElementPointer(unsigned Elt) const;
};
@ -1074,6 +1095,18 @@ public:
///
static UndefValue *get(Type *T);
/// getSequentialElement - If this Undef has array or vector type, return a
/// undef with the right element type.
UndefValue *getSequentialElement();
/// getStructElement - If this undef has struct type, return a undef with the
/// right element type for the specified element.
UndefValue *getStructElement(unsigned Elt);
/// getElementValue - Return an undef of the right value for the specified GEP
/// index.
UndefValue *getElementValue(Constant *C);
virtual void destroyConstant();
/// Methods for support type inquiry through isa, cast, and dyn_cast:

View File

@ -598,6 +598,57 @@ bool ConstantFP::isExactlyValue(const APFloat &V) const {
return Val.bitwiseIsEqual(V);
}
//===----------------------------------------------------------------------===//
// ConstantAggregateZero Implementation
//===----------------------------------------------------------------------===//
/// getSequentialElement - If this CAZ has array or vector type, return a zero
/// with the right element type.
Constant *ConstantAggregateZero::getSequentialElement() {
return Constant::getNullValue(
cast<SequentialType>(getType())->getElementType());
}
/// getStructElement - If this CAZ has struct type, return a zero with the
/// right element type for the specified element.
Constant *ConstantAggregateZero::getStructElement(unsigned Elt) {
return Constant::getNullValue(
cast<StructType>(getType())->getElementType(Elt));
}
/// getElementValue - Return a zero of the right value for the specified GEP
/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
Constant *ConstantAggregateZero::getElementValue(Constant *C) {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
//===----------------------------------------------------------------------===//
// UndefValue Implementation
//===----------------------------------------------------------------------===//
/// getSequentialElement - If this undef has array or vector type, return an
/// undef with the right element type.
UndefValue *UndefValue::getSequentialElement() {
return UndefValue::get(cast<SequentialType>(getType())->getElementType());
}
/// getStructElement - If this undef has struct type, return a zero with the
/// right element type for the specified element.
UndefValue *UndefValue::getStructElement(unsigned Elt) {
return UndefValue::get(cast<StructType>(getType())->getElementType(Elt));
}
/// getElementValue - Return an undef of the right value for the specified GEP
/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
UndefValue *UndefValue::getElementValue(Constant *C) {
if (isa<SequentialType>(getType()))
return getSequentialElement();
return getStructElement(cast<ConstantInt>(C)->getZExtValue());
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
@ -990,6 +1041,7 @@ bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
}
}
//===----------------------------------------------------------------------===//
// Factory Function Implementation
@ -1004,7 +1056,7 @@ ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
return Entry;
}
/// destroyConstant - Remove the constant from the constant table...
/// destroyConstant - Remove the constant from the constant table.
///
void ConstantAggregateZero::destroyConstant() {
getContext().pImpl->CAZConstants.erase(getType());
@ -1924,9 +1976,11 @@ Type *ConstantDataSequential::getElementType() const {
return getType()->getElementType();
}
/// isElementTypeConstantDataCompatible - Return true if this type is valid for
/// a ConstantDataSequential. This is i8/i16/i32/i64/float/double.
static bool isElementTypeConstantDataCompatible(const Type *Ty) {
/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
/// formed with a vector or array of the specified element type.
/// ConstantDataArray only works with normal float and int types that are
/// stored densely in memory, not with things like i42 or x86_f80.
bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
switch (IT->getBitWidth()) {
@ -1960,13 +2014,13 @@ static bool isAllZeros(StringRef Arr) {
return false;
return true;
}
/// getImpl - This is the underlying implementation of all of the
/// ConstantDataSequential::get methods. They all thunk down to here, providing
/// the correct element type. We take the bytes in as an StringRef because
/// we *want* an underlying "char*" to avoid TBAA type punning violations.
Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
assert(isElementTypeConstantDataCompatible(cast<SequentialType>(Ty)->
getElementType()));
assert(isElementTypeCompatible(cast<SequentialType>(Ty)->getElementType()));
// If the elements are all zero, return a CAZ, which is more dense.
if (isAllZeros(Elements))
return ConstantAggregateZero::get(Ty);