Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243774 91177308-0d34-0410-b5e6-96231b3b80d8
The dsymutil-classic -v option dumps the tool version rather than
putting it in verbose mode. Rename -v to -verbose and update the
tests that use it (in the process removing it from a few tests that
didn't require it anymore since the -dump-debug-map option was
introduced).
A followup commit will reintroduce the -v option that dumps the
version.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243582 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows llvm-dsymutil to read universal (aka fat) macho object
files and archives. The patch touches nearly everything in the BinaryHolder,
but it is fairly mechinical: the methods that returned MemoryBufferRefs or
ObjectFiles now return a vector of those, and the high-level access function
takes a triple argument to select the architecture.
There is no support yet for handling fat executables and thus no support for
writing fat object files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243096 91177308-0d34-0410-b5e6-96231b3b80d8
MachOObjectFile offers a method for detecting the correct triple, use
it instead of the previous approximation. This doesn't matter right
now, but it will become important for mach-o universal (fat) binaries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243095 91177308-0d34-0410-b5e6-96231b3b80d8
The debug map contains the timestamp of the object files in references.
We do not check these in the general case, but it's really useful if
you have archives where different versions of an object file have been
appended. This allows llvm-dsymutil to find the right one.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242965 91177308-0d34-0410-b5e6-96231b3b80d8
This optimization allows the DWARF linker to reuse definition of
types it has emitted in previous CUs rather than reemitting them
in each CU that references them. The size and link time gains are
huge. For example when linking the DWARF for a debug build of
clang, this generates a ~150M dwarf file instead of a ~700M one
(the numbers date back a bit and must not be totally accurate
these days).
As with all the other parts of the llvm-dsymutil codebase, the
goal is to keep bit-for-bit compatibility with dsymutil-classic.
The code is littered with a lot of FIXMEs that should be
addressed once we can get rid of the compatibilty goal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242847 91177308-0d34-0410-b5e6-96231b3b80d8
Column information is present in CodeView when the line table subsection
has bit 0 set to 1 in it's flags field. The column information is
represented as a pair of 16-bit quantities: a starting and ending
column. This information is present at the end of the chunk, after all
the line-PC pairs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241764 91177308-0d34-0410-b5e6-96231b3b80d8
option that works with all object container formats.
Now that clang modules/PCH are object containers this option is useful to
to construct pipes like
llvm-objdump -raw-clang-ast foo.pcm | llvm-bcanalyzer -
to inspect the AST contents in a PCH container.
Will be tested via clang.
Belatedly addresses review feedback for r233390.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241659 91177308-0d34-0410-b5e6-96231b3b80d8
Only common symbol on MachO and COFF have a size.
For COFF we already had a custom format.
For MachO, there is no native objdump and we were printing it as ELF. Now
we only print the sizes for symbols that actually have them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240422 91177308-0d34-0410-b5e6-96231b3b80d8
The reason we need to search by name rather than by Triple::ArchType
is to handle subarchitecture correclty. There is no different ArchType
for the x86_64h architecture (it identifies itself as x86_64), or for
the various ARM subarches. The only way to get to the subarch slice
in an universal binary is to search by name.
This issue led to hard to debug and transient symbolication failures
in Asan tests (it mostly works, because the files are very similar).
This also affects the Profiling infrastucture as it is the other user
of that API.
Reviewers: samsonov, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10604
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240339 91177308-0d34-0410-b5e6-96231b3b80d8
In a relocation target can take 3 basic forms
* A r_value in scattered relocations.
* A symbol in external relocations.
* A section is non-external relocations.
Have the dump reflect that. With this change we go from
CHECK-NEXT: Extern: 0
CHECK-NEXT: Type: X86_64_RELOC_SUBTRACTOR (5)
CHECK-NEXT: Symbol: 0x2
CHECK-NEXT: Scattered: 0
To just
// CHECK-NEXT: Type: X86_64_RELOC_SUBTRACTOR (5)
// CHECK-NEXT: Section: __data (2)
Since the relocation is with a section, we print the seciton name and don't
need to say that it is not scattered or external.
Someone motivated can add further special cases for things like
ARM64_RELOC_ADDEND and ARM_RELOC_PAIR.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240073 91177308-0d34-0410-b5e6-96231b3b80d8
The plugin now save the bitcode before and after optimizations and the
.o that is passed to the linker.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239726 91177308-0d34-0410-b5e6-96231b3b80d8
Linking the debug frame section is actually very easy as we just have to
patch the start address in the FDE header and then copy the rest of the
FDE without even looking at it. The only small complexity comes from the
handling of the CIEs that we should unique across object file. This is
also really easy by using a StringMap keyed on the raw contents of the
CIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239198 91177308-0d34-0410-b5e6-96231b3b80d8
The main use of the YAML debug map format is for testing inside LLVM. If we have IR
files in the tests used to generate object files, then we obviously don't know the
addresses of the symbols inside the object files beforehand.
This change lets the YAML import lookup the addresses in the object files and rewrite
them. This will allow to have test that really don't need any binary input.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239189 91177308-0d34-0410-b5e6-96231b3b80d8
* If the input file is missing;
* If the type of input object file can't be recognized;
* If the object file can't be parsed correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239065 91177308-0d34-0410-b5e6-96231b3b80d8
With a couple more constructors that GCC thinks are necessary.
Original commit message:
[dsymutil] Accept a YAML debug map as input instead of a binary.
To do this, the user needs to pass the new -y flag.
As it wasn't tested before, the debug map YAML deserialization was
completely buggy (mainly because the DebugMapObject has a dual
mapping that allows to search by name and by address, but only the
StringMap got populated). It's fixed and tested in this commit by
augmenting some test with a 2 stage dwarf link: a frist llvm-dsymutil
reads the debug map and pipes it in a second instance that does the
actual link without touching the initial binary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238959 91177308-0d34-0410-b5e6-96231b3b80d8
To do this, the user needs to pass the new -y flag.
As it wasn't tested before, the debug map YAML deserialization was
completely buggy (mainly because the DebugMapObject has a dual
mapping that allows to search by name and by address, but only the
StringMap got populated). It's fixed and tested in this commit by
augmenting some test with a 2 stage dwarf link: a frist llvm-dsymutil
reads the debug map and pipes it in a second instance that does the
actual link without touching the initial binary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238941 91177308-0d34-0410-b5e6-96231b3b80d8
As the serialized debug map is becoming a first class citizen, a way
to cleanly dump it is required. We used -parse-only combined with
-v for that purpose before, but it dumps a lot of unrelated debug
stuff. Dumping the debug map was the only use of the -parse-only flag
anyway, so replace it with a more useful option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238940 91177308-0d34-0410-b5e6-96231b3b80d8
The ELF spec is very clear:
-----------------------------------------------------------------------------
If the value is non-zero, it represents a string table index that gives the
symbol name. Otherwise, the symbol table entry has no name.
--------------------------------------------------------------------------
In particular, a st_name of 0 most certainly doesn't mean that the symbol has
the same name as the section.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238899 91177308-0d34-0410-b5e6-96231b3b80d8
Doing so will allow us to also accept a YAML debug map in input as using
YAMLIO gives us the parsing for free. Being able to have textual debug
maps will in turn allow much more control over the tests, because 1/
no need to check-in a binary containing the debug map and 2/ it will allow
to use the same objects/IR files with made-up debug-maps to test
different scenari.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238781 91177308-0d34-0410-b5e6-96231b3b80d8
MachO and COFF quite reasonably only define the size for common symbols.
We used to try to figure out the "size" by computing the gap from one symbol to
the next.
This would not be correct in general, since a part of a section can belong to no
visible symbol (padding, private globals).
It was also really expensive, since we would walk every symbol to find the size
of one.
If a caller really wants this, it can sort all the symbols once and get all the
gaps ("size") in O(n log n) instead of O(n^2).
On MachO this also has the advantage of centralizing all the checks for an
invalid n_sect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238028 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-cov was truncating numbers that were larger than a particular
fixed width, which is as confusing as it is useless. Instead, we use
engineering notation with SI prefix for magnitude.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237307 91177308-0d34-0410-b5e6-96231b3b80d8