System z branches have a mask to select which of the 4 CC values should
cause the branch to be taken. We can invert a branch by inverting the mask.
However, not all instructions can produce all 4 CC values, so inverting
the branch like this can lead to some oddities. For example, integer
comparisons only produce a CC of 0 (equal), 1 (less) or 2 (greater).
If an integer EQ is reversed to NE before instruction selection,
the branch will test for 1 or 2. If instead the branch is reversed
after instruction selection (by inverting the mask), it will test for
1, 2 or 3. Both are correct, but the second isn't really canonical.
This patch therefore keeps track of which CC values are possible
and uses this when inverting a mask.
Although this is mostly cosmestic, it fixes undefined behavior
for the CIJNLH in branch-08.ll. Another fix would have been
to mask out bit 0 when generating the fused compare and branch,
but the point of this patch is that we shouldn't need to do that
in the first place.
The patch also makes it easier to reuse CC results from other instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187495 91177308-0d34-0410-b5e6-96231b3b80d8
r186399 aggressively used the RISBG instruction for immediate ANDs,
both because it can handle some values that AND IMMEDIATE can't,
and because it allows the destination register to be different from
the source. I realized later while implementing the distinct-ops
support that it would be better to leave the choice up to
convertToThreeAddress() instead. The AND IMMEDIATE form is shorter
and is less likely to be cracked.
This is a problem for 32-bit ANDs because we assume that all 32-bit
operations will leave the high word untouched, whereas RISBG used in
this way will either clear the high word or copy it from the source
register. The patch uses the z196 instruction RISBLG for this instead.
This means that z10 will be restricted to NILL, NILH and NILF for
32-bit ANDs, but I think that should be OK for now. Although we're
using z10 as the base architecture, the optimization work is going
to be focused more on z196 and zEC12.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187492 91177308-0d34-0410-b5e6-96231b3b80d8
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186280 91177308-0d34-0410-b5e6-96231b3b80d8
RISBG can handle some ANDs for which no AND IMMEDIATE exists.
It also acts as a three-operand AND for some cases where an
AND IMMEDIATE could be used instead.
It might be worth adding a pass to replace RISBG with AND IMMEDIATE
in cases where the register operands end up being the same and where
AND IMMEDIATE is smaller.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186072 91177308-0d34-0410-b5e6-96231b3b80d8
This adds all CodeGen tests for the SystemZ target.
This version of the patch incorporates feedback from a review by
Sean Silva. Thanks to all reviewers!
Patch by Richard Sandiford.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181204 91177308-0d34-0410-b5e6-96231b3b80d8