works similar to isLoopInvariant, except that it will do trivial
hoisting to try to make the value loop invariant if it isn't already.
This makes it easier for transformation passes to clear trivial
instructions out of the way (the regular LICM pass doesn't run
until relatively late). This is code factored out of LoopSimplify
and other places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75578 91177308-0d34-0410-b5e6-96231b3b80d8
and related functions out of LoopBase and into Loop, since they
are specific to BasicBlock-based loops. This also allows the code
to be moved out-of-line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75523 91177308-0d34-0410-b5e6-96231b3b80d8
using the Curiously Recurring Template Pattern with LoopBase.
This will help further refactoring, and future functionality for
Loop. Also, Headers can now foward-declare Loop, instead of pulling
in LoopInfo.h or doing tricks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75519 91177308-0d34-0410-b5e6-96231b3b80d8
There is now a direct way from value-use-iterator to incoming block in PHINode's API.
This way we avoid the iterator->index->iterator trip, and especially the costly
getOperandNo() invocation. Additionally there is now an assertion that the iterator
really refers to one of the PHI's Uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62869 91177308-0d34-0410-b5e6-96231b3b80d8
my earlier patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Also, the mechanism for keeping SCEV's corresponding to GEP's
no longer works, as the GEP might change after its SCEV
is remembered, invalidating the SCEV, and we might get a bad
SCEV value when looking up the GEP again for a later loop.
This also couldn't happen before, as we weren't recursing
into GEP's outside the loop.
Also, when we build an expression that involves a (possibly
non-affine) IV from a different loop as well as an IV from
the one we're interested in (containsAddRecFromDifferentLoop),
don't recurse into that. We can't do much with it and will
get in trouble if we try to create new non-affine IVs or something.
More testcases are coming.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62212 91177308-0d34-0410-b5e6-96231b3b80d8
better, gives the compiler a chance to validate the cast and reduces warnings
if the user turns on -Wold-style-cast option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41033 91177308-0d34-0410-b5e6-96231b3b80d8