After r203553 overflow intrinsics and their non-intrinsic (normal)
instruction get hashed to the same value. This patch prevents PRE from
moving an instruction into a predecessor block, and trying to add a phi
node that gets two different types (the intrinsic result and the
non-intrinsic result), resulting in a failing assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203574 91177308-0d34-0410-b5e6-96231b3b80d8
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203559 91177308-0d34-0410-b5e6-96231b3b80d8
When an overflow intrinsic is followed by a non-overflow instruction,
replace the latter with an extract. For example:
%sadd = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
%sadd3 = add i32 %a, %b
Here the add statement will be replaced by an extract.
When an overflow intrinsic follows a non-overflow instruction, a clone
of the intrinsic is inserted before the normal instruction, which makes
it the same as the previous case. Subsequent runs of GVN can then clean
up the duplicate instructions and insert the extract.
This fixes PR8817.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203553 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When the sample profiles include discriminator information,
use the discriminator values to distinguish instruction weights
in different basic blocks.
This modifies the BodySamples mapping to map <line, discriminator> pairs
to weights. Instructions on the same line but different blocks, will
use different discriminator values. This, in turn, means that the blocks
may have different weights.
Other changes in this patch:
- Add tests for positive values of line offset, discriminator and samples.
- Change data types from uint32_t to unsigned and int and do additional
validation.
Reviewers: chandlerc
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2857
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203508 91177308-0d34-0410-b5e6-96231b3b80d8
optimize a call to a llvm intrinsic to something that invovles a call to a C
library call, make sure it sets the right calling convention on the call.
e.g.
extern double pow(double, double);
double t(double x) {
return pow(10, x);
}
Compiles to something like this for AAPCS-VFP:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
%0 = call double @llvm.pow.f64(double 1.000000e+01, double %x)
ret double %0
}
declare double @llvm.pow.f64(double, double) #1
Simplify libcall (part of instcombine) will turn the above into:
define arm_aapcs_vfpcc double @t(double %x) #0 {
entry:
%__exp10 = call double @__exp10(double %x) #1
ret double %__exp10
}
declare double @__exp10(double)
The pre-instcombine code works because calls to LLVM builtins are special.
Instruction selection will chose the right calling convention for the call.
However, the code after instcombine is wrong. The call to __exp10 will use
the C calling convention.
I can think of 3 options to fix this.
1. Make "C" calling convention just work since the target should know what CC
is being used.
This doesn't work because each function can use different CC with the "pcs"
attribute.
2. Have Clang add the right CC keyword on the calls to LLVM builtin.
This will work but it doesn't match the LLVM IR specification which states
these are "Standard C Library Intrinsics".
3. Fix simplify libcall so the resulting calls to the C routines will have the
proper CC keyword. e.g.
%__exp10 = call arm_aapcs_vfpcc double @__exp10(double %x) #1
This works and is the solution I implemented here.
Both solutions #2 and #3 would work. After carefully considering the pros and
cons, I decided to implement #3 for the following reasons.
1. It doesn't change the "spec" of the intrinsics.
2. It's a self-contained fix.
There are a couple of potential downsides.
1. There could be other places in the optimizer that is broken in the same way
that's not addressed by this.
2. There could be other calling conventions that need to be propagated by
simplify-libcall that's not handled.
But for now, this is the fix that I'm most comfortable with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203488 91177308-0d34-0410-b5e6-96231b3b80d8
The grammar for LLVM IR is not well specified in any document but seems
to obey the following rules:
- Attributes which have parenthesized arguments are never preceded by
commas. This form of attribute is the only one which ever has
optional arguments. However, not all of these attributes support
optional arguments: 'thread_local' supports an optional argument but
'addrspace' does not. Interestingly, 'addrspace' is documented as
being a "qualifier". What constitutes a qualifier? I cannot find a
definition.
- Some attributes use a space between the keyword and the value.
Examples of this form are 'align' and 'section'. These are always
preceded by a comma.
- Otherwise, the attribute has no argument. These attributes do not
have a preceding comma.
Sometimes an attribute goes before the instruction, between the
instruction and it's type, or after it's type. 'atomicrmw' has
'volatile' between the instruction and the type while 'call' has 'tail'
preceding the instruction.
With all this in mind, it seems most consistent for 'inalloca' on an
'inalloca' instruction to occur before between the instruction and the
type. Unlike the current formulation, there would be no preceding
comma. The combination 'alloca inalloca' doesn't look particularly
appetizing, perhaps a better spelling of 'inalloca' is down the road.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203376 91177308-0d34-0410-b5e6-96231b3b80d8
This helps the instruction selector to lower an i64 * i64 -> i128
multiplication into a single instruction on targets which support it.
Patch by Manuel Jacob.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203230 91177308-0d34-0410-b5e6-96231b3b80d8
Sequences of insertelement/extractelements are sometimes used to build
vectorsr; this code tries to put them back together into shuffles, but
could only produce a completely uniform shuffle types (<N x T> from two
<N x T> sources).
This should allow shuffles with different numbers of elements on the
input and output sides as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203229 91177308-0d34-0410-b5e6-96231b3b80d8
are operations that do not access memory but may be sensitive
to floating-point environment changes. LLVM does not attempt
to model FP environment changes, so this was unnecessarily conservative
and was getting on the way of some optimizations, in particular
SLP vectorization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203037 91177308-0d34-0410-b5e6-96231b3b80d8
DWARF discriminators are used to distinguish multiple control flow paths
on the same source location. When this happens, instructions across
basic block boundaries will share the same debug location.
This pass detects this situation and creates a new lexical scope to one
of the two instructions. This lexical scope is a child scope of the
original and contains a new discriminator value. This discriminator is
then picked up from MCObjectStreamer::EmitDwarfLocDirective to be
written on the object file.
This fixes http://llvm.org/bugs/show_bug.cgi?id=18270.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202752 91177308-0d34-0410-b5e6-96231b3b80d8
and update everything accordingly. This can be used to conditionalize
the amount of output in the backend based on the amount of debug
requested/metadata emission scheme by a front end (e.g. clang).
Paired with a commit to clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202332 91177308-0d34-0410-b5e6-96231b3b80d8
address spaces.
This isn't really a correctness issue (the values are truncated) but its
much cleaner.
Patch by Matt Arsenault!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202252 91177308-0d34-0410-b5e6-96231b3b80d8
the default.
Based on the patch by Matt Arsenault, D1764!
I switched one place to use the more direct pointer type to compute the
desired address space, and I reworked the memcpy rewriting section to
reflect significant refactorings that this patch helped inspire.
Thanks to several of the folks who helped review and improve the patch
as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202247 91177308-0d34-0410-b5e6-96231b3b80d8
to work independently for the slice side and the other side.
This allows us to only compute the minimum of the two when we actually
rewrite to a memcpy that needs to take the minimum, and preserve higher
alignment for one side or the other when rewriting to loads and stores.
This fix was inspired by seeing the result of some refactoring that
makes addrspace handling better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202242 91177308-0d34-0410-b5e6-96231b3b80d8
checking in SROA.
The primary change is to just rely on uge for checking that the offset
is within the allocation size. This removes the explicit checks against
isNegative which were terribly error prone (including the reversed logic
that led to PR18615) and prevented us from supporting stack allocations
larger than half the address space.... Ok, so maybe the latter isn't
*common* but it's a silly restriction to have.
Also, we used to try to support a PHI node which loaded from before the
start of the allocation if any of the loaded bytes were within the
allocation. This doesn't make any sense, we have never really supported
loading or storing *before* the allocation starts. The simplified logic
just doesn't care.
We continue to allow loading past the end of the allocation in part to
support cases where there is a PHI and some loads are larger than others
and the larger ones reach past the end of the allocation. We could solve
this a different and more conservative way, but I'm still somewhat
paranoid about this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202224 91177308-0d34-0410-b5e6-96231b3b80d8
ordering.
The fundamental problem that we're hitting here is that the use-def
chain ordering is *itself* not a stable thing to be relying on in the
rewriting for SROA. Further, we use a non-stable sort over the slices to
arrange them based on the section of the alloca they're operating on.
With a debugging STL implementation (or different implementations in
stage2 and stage3) this can cause stage2 != stage3.
The specific aspect of this problem fixed in this commit deals with the
rewriting and load-speculation around PHIs and Selects. This, like many
other aspects of the use-rewriting in SROA, is really part of the
"strong SSA-formation" that is doen by SROA where it works very hard to
canonicalize loads and stores in *just* the right way to satisfy the
needs of mem2reg[1]. When we have a select (or a PHI) with 2 uses of the
same alloca, we test that loads downstream of the select are
speculatable around it twice. If only one of the operands to the select
needs to be rewritten, then if we get lucky we rewrite that one first
and the select is immediately speculatable. This can cause the order of
operand visitation, and thus the order of slices to be rewritten, to
change an alloca from promotable to non-promotable and vice versa.
The fix is to defer all of the speculation until *after* the rewrite
phase is done. Once we've rewritten everything, we can accurately test
for whether speculation will work (once, instead of twice!) and the
order ceases to matter.
This also happens to simplify the other subtlety of speculation -- we
need to *not* speculate anything unless the result of speculating will
make the alloca fully promotable by mem2reg. I had a previous attempt at
simplifying this, but it was still pretty horrible.
There is actually already a *really* nice test case for this in
basictest.ll, but on multiple STL implementations and inputs, we just
got "lucky". Fortunately, the test case is very small and we can
essentially build it in exactly the opposite way to get reasonable
coverage in both directions even from normal STL implementations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202092 91177308-0d34-0410-b5e6-96231b3b80d8
On x86, shifting a vector by a scalar is significantly cheaper than shifting a
vector by another fully general vector. Unfortunately, because SelectionDAG
operates on just one basic block at a time, the shufflevector instruction that
reveals whether the right-hand side of a shift *is* really a scalar is often
not visible to CodeGen when it's needed.
This adds another handler to CodeGenPrepare, to sink any useful shufflevector
instructions down to the basic block where they're used, predicated on a target
hook (since on other architectures, doing so will often just introduce extra
real work).
rdar://problem/16063505
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201655 91177308-0d34-0410-b5e6-96231b3b80d8
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop. This patch tries to base such derived
induction variables of the preceeding loop's induction variable.
This helps twolf on arm and seems to help scimark2 on x86.
Reapply with a fix for the case of a value derived from a pointer.
radar://15970709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201496 91177308-0d34-0410-b5e6-96231b3b80d8
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop. This patch tries to base such derived
induction variables of the preceeding loop's induction variable.
This helps twolf on arm and seems to help scimark2 on x86.
radar://15970709
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201465 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201333 91177308-0d34-0410-b5e6-96231b3b80d8
As defined in LangRef, aliases do not have sections. However, LLVM's
GlobalAlias class inherits from GlobalValue, which means we can read and
set its section. We should probably ban that as a separate change,
since it doesn't make much sense for an alias to have a section that
differs from its aliasee.
Fixes PR18757, where the section was being lost on the global in code
from Clang like:
extern "C" {
__attribute__((used, section("CUSTOM"))) static int in_custom_section;
}
Reviewers: rafael.espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D2758
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201286 91177308-0d34-0410-b5e6-96231b3b80d8
logical operations on the i1's driving them. This is a bad idea for every
target I can think of (confirmed with micro tests on all of: x86-64, ARM,
AArch64, Mips, and PowerPC) because it forces the i1 to be materialized into
a general purpose register, whereas consuming it directly into a select generally
allows it to exist only transiently in a predicate or flags register.
Chandler ran a set of performance tests with this change, and reported no
measurable change on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201275 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201237 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR18753 and PR18782.
This is necessary for LICM to preserve LCSSA correctly and efficiently.
There is still some active discussion about whether we should be using
LCSSA, but we can't just immediately stop using it and we *need* LICM to
preserve it while we are using it. We can restore the old SSAUpdater
driven code if and when there is a serious effort to remove the reliance
on LCSSA from all of the loop passes.
However, this also serves as a great example of why LCSSA is very nice
to have. This change significantly simplifies the process of sinking
instructions for LICM, and makes it quite a bit less expensive.
It wouldn't even be as complex as it is except that I had to start the
process of removing the big recursive LCSSA formation hammer in order to
switch even this much of the re-forming code to asserting that LCSSA was
preserved. I'll fully remove that next just to tidy things up until the
LCSSA debate settles one way or the other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201148 91177308-0d34-0410-b5e6-96231b3b80d8
Before conditional store vectorization/unrolling we had only one
vectorized/unrolled basic block. After adding support for conditional store
vectorization this will not only be one block but multiple basic blocks. The
last block would have the back-edge. I updated the code to use a vector of basic
blocks instead of a single basic block and fixed the users to use the last entry
in this vector. But, I forgot to add the basic blocks to this vector!
Fixes PR18724.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201028 91177308-0d34-0410-b5e6-96231b3b80d8
The bitcast instruction during constant materialization was not placed correcly
in the presence of phi nodes. This commit fixes the insertion point to be in the
idom instead.
This fixes PR18768
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201009 91177308-0d34-0410-b5e6-96231b3b80d8
225 is the default value of inline-threshold. This change will make sure
we have the same inlining behavior as prior to r200886.
As Chandler points out, even though we don't have code in our testing
suite that uses cold attribute, there are larger applications that do
use cold attribute.
r200886 + this commit intend to keep the same behavior as prior to r200886.
We can later on tune the inlinecold-threshold.
The main purpose of r200886 is to help performance of instrumentation based
PGO before we actually hook up inliner with analysis passes such as BPI and BFI.
For instrumentation based PGO, we try to increase inlining of hot functions and
reduce inlining of cold functions by setting inlinecold-threshold.
Another option suggested by Chandler is to use a boolean flag that controls
if we should use OptSizeThreshold for cold functions. The default value
of the boolean flag should not change the current behavior. But it gives us
less freedom in controlling inlining of cold functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200898 91177308-0d34-0410-b5e6-96231b3b80d8