The first def of a virtual register cannot also read the register.
Assert on such bad machine code instead of trying to fix it.
TwoAddressInstructionPass should never create code like that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152010 91177308-0d34-0410-b5e6-96231b3b80d8
We are already setting <undef> flags, and that is good enough. The
<imp-def> operands don't mean anything any more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152009 91177308-0d34-0410-b5e6-96231b3b80d8
MachineOperands that define part of a virtual register must have an
<undef> flag if they are not intended as read-modify-write operands.
The old trick of adding an <imp-def> operand doesn't work any longer.
Fixes PR12177.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152008 91177308-0d34-0410-b5e6-96231b3b80d8
equalities into phi node operands for which the equality is known to
hold in the incoming basic block. That's because replaceAllDominatedUsesWith
wasn't handling phi nodes correctly in general (that this didn't give wrong
results was just luck: the specific way GVN uses replaceAllDominatedUsesWith
precluded wrong changes to phi nodes).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152006 91177308-0d34-0410-b5e6-96231b3b80d8
new hash_value infrastructure, and replace their implementations using
hash_combine. This removes a complete copy of Jenkin's lookup3 hash
function (which is both significantly slower and lower quality than the
one implemented in hash_combine) along with a somewhat scary xor-only
hash function.
Now that APInt and APFloat can be passed directly to hash_combine,
simplify the rest of the LLVMContextImpl hashing to use the new
infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152004 91177308-0d34-0410-b5e6-96231b3b80d8
Some BBs can become dead after codegen preparation. If we delete them here, it
could help enable tail-call optimizations later on.
<rdar://problem/10256573>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152002 91177308-0d34-0410-b5e6-96231b3b80d8
- Shrink the opcode field to 16 bits.
- Shrink the AsmVariantID field to 8 bits.
- Store the mnemonic string in a string table, store a 16 bit index.
- Store a pascal-style length byte in the string instead of a null terminator,
so we can avoid calling strlen on every entry we visit during mnemonic search.
Shrinks X86AsmParser.o from 434k to 201k on x86_64 and eliminates relocs from the table.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151984 91177308-0d34-0410-b5e6-96231b3b80d8
This could probably be made a lot smarter, but this is a common case and doesn't require LVI to scan a lot
of code. With this change CVP can optimize away the "shift == 0" case in Hashing.h that only gets hit when
"shift" is in a range not containing 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151919 91177308-0d34-0410-b5e6-96231b3b80d8
The optimizer should handle this eventually, but currently LVI isn't really designed for this kind of stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151918 91177308-0d34-0410-b5e6-96231b3b80d8
folks who know something about PPC tell me that the byte swap is crazy
fast and without this the bit mixture would actually be different. It
might not be worse, but I've not measured it and so I'd rather not trust
it. This way, the algorithm is identical on both endianness hosts. I'll
look into any performance issues etc stemming from this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151892 91177308-0d34-0410-b5e6-96231b3b80d8
just ensure that the number of bytes in the pair is the sum of the bytes
in each side of the pair. As long as thats true, there are no extra
bytes that might be padding.
Also add a few tests that previously would have slipped through the
checking. The more accurate checking mechanism catches these and ensures
they are handled conservatively correctly.
Thanks to Duncan for prodding me to do this right and more simply.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151891 91177308-0d34-0410-b5e6-96231b3b80d8
This change replaces getTypeStoreSize with getTypeAllocSize in AddressSanitizer
instrumentation for stack allocations.
One case where old behaviour produced undesired results is an optimization in
InstCombine pass (PromoteCastOfAllocation), which can replace alloca(T) with
alloca(S), where S has the same AllocSize, but a smaller StoreSize. Another
case is memcpy(long double => long double), where ASan will poison bytes 10-15
of a stack-allocated long double (StoreSize 10, AllocSize 16,
sizeof(long double) = 16).
See http://llvm.org/bugs/show_bug.cgi?id=12047 for more context.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151887 91177308-0d34-0410-b5e6-96231b3b80d8
hashable data. This matters when we have pair<T*, U*> as a key, which is
quite common in DenseMap, etc. To that end, we need to detect when this
is safe. The requirements on a generic std::pair<T, U> are:
1) Both T and U must satisfy the existing is_hashable_data trait. Note
that this includes the requirement that T and U have no internal
padding bits or other bits not contributing directly to equality.
2) The alignment constraints of std::pair<T, U> do not require padding
between consecutive objects.
3) The alignment constraints of U and the size of T do not conspire to
require padding between the first and second elements.
Grow two somewhat magical traits to detect this by forming a pod
structure and inspecting offset artifacts on it. Hopefully this won't
cause any compilers to panic.
Added and adjusted tests now that pairs, even nested pairs, are treated
as just sequences of data.
Thanks to Jeffrey Yasskin for helping me sort through this and reviewing
the somewhat subtle traits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151883 91177308-0d34-0410-b5e6-96231b3b80d8
an open question of whether we can do better than this by treating pairs
as boring data containers and directly hashing the two subobjects. This
at least makes the API reasonable.
In order to make this change, I reorganized the header a bit. I lifted
the declarations of the hash_value functions up to the top of the header
with their doxygen comments as these are intended for users to interact
with. They shouldn't have to wade through implementation details. I then
defined them at the very end so that they could be defined in terms of
hash_combine or any other hashing infrastructure.
Added various pair-hashing unittests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151882 91177308-0d34-0410-b5e6-96231b3b80d8
In this instance we are generating the tail-call during legalizeDAG. The 2nd
floor call can't be a tail call because it clobbers %xmm1, which is defined by
the first floor call. The first floor call can't be a tail-call because it's
not in the tail position. The only reasonable way I could think to fix this
in a target-independent manner was to check for glue logic on the copy reg.
rdar://10930395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151877 91177308-0d34-0410-b5e6-96231b3b80d8
can insert a new element, invalidating iterators. Use find
instead, and handle the case where the key is not found explicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151871 91177308-0d34-0410-b5e6-96231b3b80d8
the hash_code. I'm not sure what I was thinking here, the use cases for
special values are in the *keys*, not in the hashes of those keys.
We can always resurrect this if needed, or clients can accomplish the
same goal themselves. This makes the general case somewhat faster (~5
cycles faster on my machine) and smaller with less branching.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151865 91177308-0d34-0410-b5e6-96231b3b80d8