We use constant folding to see if an intrinsic evaluates to the same value as a
constant that we know. If we don't take the undefinedness into account we get a
value that doesn't match the actual implementation, and miscompiled code.
This was uncovered by Chandler's simplifycfg changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173356 91177308-0d34-0410-b5e6-96231b3b80d8
generic function calls and intrinsics. This is somewhat overlapping with
an existing intrinsic cost method, but that one seems targetted at
vector intrinsics. I'll merge them or separate their names and use cases
in a separate commit.
This sinks the test of 'callIsSmall' down into TTI where targets can
control it. The whole thing feels very hack-ish to me though. I've left
a FIXME comment about the fundamental design problem this presents. It
isn't yet clear to me what the users of this function *really* care
about. I'll have to do more analysis to figure that out. Putting this
here at least provides it access to proper analysis pass tools and other
such. It also allows us to more cleanly implement the baseline cost
interfaces in TTI.
With this commit, it is now theoretically possible to simplify much of
the inline cost analysis's handling of calls by calling through to this
interface. That conversion will have to happen in subsequent commits as
it requires more extensive restructuring of the inline cost analysis.
The CodeMetrics class is now really only in the business of running over
a block of code and aggregating the metrics on that block of code, with
the actual cost evaluation done entirely in terms of TTI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173148 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we tried to infer it from the bit width size, with an added
IsIEEE argument for the PPC/IEEE 128-bit case, which had a default
value. This default value allowed bugs to creep in, where it was
inappropriate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173138 91177308-0d34-0410-b5e6-96231b3b80d8
is free. The whole CodeMetrics API should probably be reworked more, but
this is enough to allow deleting the duplicate code there for computing
whether an instruction is free.
All of the passes using this have been updated to pull in TTI and hand
it to the CodeMetrics stuff. Further, a dead CodeMetrics API
(analyzeFunction) is nuked for lack of users.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173036 91177308-0d34-0410-b5e6-96231b3b80d8
analysis. How cute that it wasn't previously. ;]
Part of this confusion stems from the flattened header file tree. Thanks
to Benjamin for pointing out the goof on IRC, and we're considering
un-flattening the headers, so speak now if that would bug you.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173033 91177308-0d34-0410-b5e6-96231b3b80d8
old CodeMetrics system. TTI has the specific advantage of being
extensible and customizable by targets to reflect target-specific cost
metrics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173032 91177308-0d34-0410-b5e6-96231b3b80d8
depend on and use other analyses (as long as they're either immutable
passes or CGSCC passes of course -- nothing in the pass manager has been
fixed here). Leverage this to thread TargetTransformInfo down through
the inline cost analysis.
No functionality changed here, this just threads things through.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173031 91177308-0d34-0410-b5e6-96231b3b80d8
a dynamic analysis done on each call to the routine. However, now it can
use the standard pass infrastructure to reference other analyses,
instead of a silly setter method. This will become more interesting as
I teach it about more analysis passes.
This updates the two inliner passes to use the inline cost analysis.
Doing so highlights how utterly redundant these two passes are. Either
we should find a cheaper way to do always inlining, or we should merge
the two and just fiddle with the thresholds to get the desired behavior.
I'm leaning increasingly toward the latter as it would also remove the
Inliner sub-class split.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173030 91177308-0d34-0410-b5e6-96231b3b80d8
lowered cost.
Currently, this is a direct port of the logic implementing
isInstructionFree in CodeMetrics. The hope is that the interface can be
improved (f.ex. supporting un-formed instruction queries) and the
implementation abstracted so that as we have test cases and target
knowledge we can expose increasingly accurate heuristics to clients.
I'll start switching existing consumers over and kill off the routine in
CodeMetrics in subsequent commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172998 91177308-0d34-0410-b5e6-96231b3b80d8
Okay, here's how to reproduce the problem:
1) Build a Release (or Release+Asserts) version of clang in the normal way.
2) Using the clang & clang++ binaries from (1), build a Release (or
Release+Asserts) version of the same sources, but this time enable LTO ---
specify the `-flto' flag on the command line.
3) Run the ARC migrator tests:
$ arcmt-test --args -triple x86_64-apple-darwin10 -fsyntax-only -x objective-c++ ./src/tools/clang/test/ARCMT/cxx-rewrite.mm
You'll see that the output isn't correct (the whitespace is off).
The mis-compile is in the function `RewriteBuffer::RemoveText' in the
clang/lib/Rewrite/Core/Rewriter.cpp file. When that function and RewriteRope.cpp
are compiled with LTO and the `arcmt-test' executable is regenerated, you'll see
the error. When those files are not LTO'ed, then the output of the `arcmt-test'
is fine.
It is *really* hard to get a testcase out of this. I'll file a PR with what I
have currently.
--- Reverse-merging r172363 into '.':
U include/llvm/Analysis/MemoryBuiltins.h
U lib/Analysis/MemoryBuiltins.cpp
--- Reverse-merging r171325 into '.':
U test/Transforms/InstCombine/objsize.ll
G include/llvm/Analysis/MemoryBuiltins.h
G lib/Analysis/MemoryBuiltins.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172756 91177308-0d34-0410-b5e6-96231b3b80d8
Moving the X86CostTable to a common place, so that other back-ends
can share the code. Also simplifying it a bit and commoning up
tables with one and two types on operations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172658 91177308-0d34-0410-b5e6-96231b3b80d8
Note that this bug is only exposed because LTO fails to use TTI.
Fixes self-LTO of clang. rdar://13007381.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172462 91177308-0d34-0410-b5e6-96231b3b80d8
TargetTransformInfo rather than TargetLowering, removing one of the
primary instances of the layering violation of Transforms depending
directly on Target.
This is a really big deal because LSR used to be a "special" pass that
could only be tested fully using llc and by looking at the full output
of it. It also couldn't run with any other loop passes because it had to
be created by the backend. No longer is this true. LSR is now just
a normal pass and we should probably lift the creation of LSR out of
lib/CodeGen/Passes.cpp and into the PassManagerBuilder. =] I've not done
this, or updated all of the tests to use opt and a triple, because
I suspect someone more familiar with LSR would do a better job. This
change should be essentially without functional impact for normal
compilations, and only change behvaior of targetless compilations.
The conversion required changing all of the LSR code to refer to the TTI
interfaces, which fortunately are very similar to TargetLowering's
interfaces. However, it also allowed us to *always* expect to have some
implementation around. I've pushed that simplification through the pass,
and leveraged it to simplify code somewhat. It required some test
updates for one of two things: either we used to skip some checks
altogether but now we get the default "no" answer for them, or we used
to have no information about the target and now we do have some.
I've also started the process of removing AddrMode, as the TTI interface
doesn't use it any longer. In some cases this simplifies code, and in
others it adds some complexity, but I think it's not a bad tradeoff even
there. Subsequent patches will try to clean this up even further and use
other (more appropriate) abstractions.
Yet again, almost all of the formatting changes brought to you by
clang-format. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171735 91177308-0d34-0410-b5e6-96231b3b80d8
reachablity.
We conservatively approximate the reachability analysis by saying it is not
reachable if there is a single path starting from "From" and the path does not
reach "To".
rdar://12801584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171512 91177308-0d34-0410-b5e6-96231b3b80d8
code that includes Intrinsics.gen directly.
This never showed up in my testing because the old Intrinsics.gen was
still kicking around in the make build system and was correct there. =[
Thankfully, some of the bots to clean rebuilds and that caught this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171373 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Aside from moving the actual files, this patch only updates the build
system and the source file comments under lib/... that are relevant.
I'll be updating other docs and other files in smaller subsequnet
commits.
While I've tried to test this, but it is entirely possible that there
will still be some build system fallout.
Also, note that I've not changed the library name itself: libLLVMCore.a
is still the library name. I'd be interested in others' opinions about
whether we should rename this as well (I think we should, just not sure
what it might break)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171359 91177308-0d34-0410-b5e6-96231b3b80d8
The new code is an improved copy of the code I deleted from Analysis/Loads.cpp.
One less compute-constant-gep-offset implementation. yay :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171326 91177308-0d34-0410-b5e6-96231b3b80d8
The later API is nicer than the former, and is correct regarding wrap-around offsets (if anyone cares).
There are a few more places left with duplicated code, which I'll remove soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171259 91177308-0d34-0410-b5e6-96231b3b80d8
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171253 91177308-0d34-0410-b5e6-96231b3b80d8
propagating one of the values it simplified to a constant across
a myriad of instructions. Notably, ptrtoint instructions when we had
a constant pointer (say, 0) didn't propagate that, blocking a massive
number of down-stream optimizations.
This was uncovered when investigating why we fail to inline and delete
the boilerplate in:
void f() {
std::vector<int> v;
v.push_back(1);
}
It turns out most of the efforts I've made thus far to improve the
analysis weren't making it far purely because of this. After this is
fixed, the store-to-load forwarding patch enables LLVM to optimize the
above to an empty function. We still can't nuke a second push_back, but
for different reasons.
There is a very real chance this will cause somewhat noticable changes
in inlining behavior, so please let me know if you see regressions (or
improvements!) because of this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171196 91177308-0d34-0410-b5e6-96231b3b80d8
how to propagate constants through insert and extract value
instructions.
With the recent improvements to instsimplify, this allows inline cost
analysis to constant fold through intrinsic functions, including notably
the with.overflow intrinsic math routines which often show up inside of
STL abstractions. This is yet another piece in the puzzle of breaking
down the code for:
void f() {
std::vector<int> v;
v.push_back(1);
}
But it still isn't enough. There are a pile of bugs in inline cost still
blocking this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171195 91177308-0d34-0410-b5e6-96231b3b80d8
constant folding calls. Add the initial tests for this which show that
now instsimplify can simplify blindingly obvious code patterns expressed
with both intrinsics and library calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171194 91177308-0d34-0410-b5e6-96231b3b80d8
are nice and decomposed so that we can simplify synthesized calls as
easily as actually call instructions. The internal utility still has the
same behavior, it just now operates on a more generic interface so that
I can extend the set of call simplifications that instsimplify knows
about.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171189 91177308-0d34-0410-b5e6-96231b3b80d8
When the backend is used from clang, it should produce proper diagnostics
instead of just printing messages to errs(). Other clients may also want to
register their own error handlers with the LLVMContext, and the same handler
should work for warnings in the same way as the existing emitError methods.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171041 91177308-0d34-0410-b5e6-96231b3b80d8