Summary:
Allow hoisting of loads from values marked with dereferenceable_or_null
attribute. For values marked with the attribute perform
context-sensitive analysis to determine whether it's known-non-null or
not.
Patch by Artur Pilipenko!
Reviewers: hfinkel, sanjoy, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237593 91177308-0d34-0410-b5e6-96231b3b80d8
At the present time, we don't have a way to represent general dependency
relationships, so everything is represented using memory dependency. In order
to preserve the data dependency of a READ_REGISTER on WRITE_REGISTER, we need
to model WRITE_REGISTER as writing (which we had been doing) and model
READ_REGISTER as reading (which we had not been doing). Fix this, and also the
way that the chain operands were generated at the SDAG level.
Patch by Nicholas Paul Johnson, thanks! Test case by me.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237584 91177308-0d34-0410-b5e6-96231b3b80d8
"Store to invariant address..." is moved as the last line. This is not
the prime result of the analysis. Plus it simplifies some of the tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237573 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyDemandedBits was "simplifying" a constant by removing just sign bits.
This caused a canonicalization race between different parts of instcombine.
Fix and regression test added - third time lucky?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237539 91177308-0d34-0410-b5e6-96231b3b80d8
The AArch64 LNT bot is unhappy - I've found that the problem is in
SimpliftDemandedBits, but that's going to require another code review
so reverting in the meantime.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237528 91177308-0d34-0410-b5e6-96231b3b80d8
... I'd copied the check-next lines from a previous test so they were
slightly wrong, and had managed to test the wrong source tree. D'oh!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237521 91177308-0d34-0410-b5e6-96231b3b80d8
The test timeouts were due to instcombine fighting itself. Regression test added.
Original log message:
Canonicalize min/max expressions correctly.
This patch introduces a canonical form for min/max idioms where one operand
is extended or truncated. This often happens when the other operand is a
constant. For example:
%1 = icmp slt i32 %a, i32 0
%2 = sext i32 %a to i64
%3 = select i1 %1, i64 %2, i64 0
Would now be canonicalized into:
%1 = icmp slt i32 %a, i32 0
%2 = select i1 %1, i32 %a, i32 0
%3 = sext i32 %2 to i64
This builds upon a patch posted by David Majenemer
(https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
passively stopped instcombine from ruining canonical patterns. This
patch additionally actively makes instcombine canonicalize too.
Canonicalization of expressions involving a change in type from int->fp
or fp->int are not yet implemented.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237520 91177308-0d34-0410-b5e6-96231b3b80d8
There's no point in copying around constants, so, when all else fails,
we can still transform memcpy of memset into two independent memsets.
To quote the example, we can turn:
memset(dst1, c, dst1_size);
memcpy(dst2, dst1, dst2_size);
into:
memset(dst1, c, dst1_size);
memset(dst2, c, dst2_size);
When dst2_size <= dst1_size.
Like r235232 for copy constructors, this can occur in move constructors.
Differential Revision: http://reviews.llvm.org/D9682
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237506 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is a pass for speculative execution of instructions for simple if-then (triangle) control flow. It's aimed at GPUs, but could perhaps be used in other contexts. Enabling this pass gives us a 1.0% geomean improvement on Google benchmark suites, with one benchmark improving 33%.
Credit goes to Jingyue Wu for writing an earlier version of this pass.
Patched by Bjarke Roune.
Test Plan:
This patch adds a set of tests in test/Transforms/SpeculativeExecution/spec.ll
The pass is controlled by a flag which defaults to having the pass not run.
Reviewers: eliben, dberlin, meheff, jingyue, hfinkel
Reviewed By: jingyue, hfinkel
Subscribers: majnemer, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9360
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237459 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r237453 - it was causing timeouts on some bots. Reverting
while I investigate (it's probably InstCombine fighting itself...)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237458 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a canonical form for min/max idioms where one operand
is extended or truncated. This often happens when the other operand is a
constant. For example:
%1 = icmp slt i32 %a, i32 0
%2 = sext i32 %a to i64
%3 = select i1 %1, i64 %2, i64 0
Would now be canonicalized into:
%1 = icmp slt i32 %a, i32 0
%2 = select i1 %1, i32 %a, i32 0
%3 = sext i32 %2 to i64
This builds upon a patch posted by David Majenemer
(https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
passively stopped instcombine from ruining canonical patterns. This
patch additionally actively makes instcombine canonicalize too.
Canonicalization of expressions involving a change in type from int->fp
or fp->int are not yet implemented.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237453 91177308-0d34-0410-b5e6-96231b3b80d8
This has caused some local failures. Updating the test case to be more
like the majority of the similar test cases.
Committing on behalf of Hubert Tong (hstong@ca.ibm.com).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237449 91177308-0d34-0410-b5e6-96231b3b80d8
Transfer the calling convention from the invoke being replaced by
PlaceStatepoints to the new invoke to gc.statepoint created. Add a test
case that would have caught this issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237414 91177308-0d34-0410-b5e6-96231b3b80d8
rL236672 would generate all invoke statepoints with deopt args set to a
list containing the single element "0", instead of an empty list.
Also add a test case that would have caught this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237413 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Extract method haveNoCommonBitsSet so that we don't have to duplicate this logic in
InstCombine and SeparateConstOffsetFromGEP.
This patch also makes SeparateConstOffsetFromGEP more precise by passing
DominatorTree to computeKnownBits.
Test Plan: value-tracking-domtree.ll that tests ValueTracking indeed leverages dominating conditions
Reviewers: broune, meheff, majnemer
Reviewed By: majnemer
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9734
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237407 91177308-0d34-0410-b5e6-96231b3b80d8
Function 'ConstantFoldScalarCall' (in ConstantFolding.cpp) works under the
wrong assumption that a call to 'convert.from.fp16' returns a value of
type 'float'.
However, intrinsic 'convert.from.fp16' can be overloaded; for example, we
can call 'convert.from.fp16.f64' to convert from half to double; etc.
Before this patch, the following example would have triggered an assertion
failure in opt (with -constprop):
```
define double @foo() {
entry:
%0 = call double @llvm.convert.from.fp16.f64(i16 0)
ret double %0
}
```
This patch fixes the problem in ConstantFolding.cpp. When folding a call to
convert.from.fp16, we perform a different kind of conversion based on the call
return type.
Added test 'Transform/ConstProp/convert-from-fp16.ll'.
Differential Revision: http://reviews.llvm.org/D9771
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237377 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This implements the initial version as was proposed earlier this year
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/080462.html).
Since then Loop Access Analysis was split out from the Loop Vectorizer
and was made into a separate analysis pass. Loop Distribution becomes
the second user of this analysis.
The pass is off by default and can be enabled
with -enable-loop-distribution. There is currently no notion of
profitability; if there is a loop with dependence cycles, the pass will
try to split them off from other memory operations into a separate loop.
I decided to remove the control-dependence calculation from this first
version. This and the issues with the PDT are actively discussed so it
probably makes sense to treat it separately. Right now I just mark all
terminator instruction required which keeps identical CFGs for each
distributed loop. This seems to be working pretty well for 456.hmmer
where even though there is an empty if-then block in the distributed
loop initially, it gets completely removed.
The pass keeps DominatorTree and LoopInfo updated. I've tested this
with -loop-distribute-verify with the testsuite where we distribute ~90
loops. SimplifyLoop is violated in some cases and I have a FIXME
covering this.
Reviewers: hfinkel, nadav, aschwaighofer
Reviewed By: aschwaighofer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237358 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch teaches the PlaceSafepoints pass about two `CallSite`
function attributes:
* "statepoint-id": if the string value of this attribute can be parsed
as an integer, then it is propagated to the ID parameter of the
statepoint created.
* "statepoint-num-patch-bytes": if the string value of this attribute
can be parsed as an integer, then it is propagated to the `num patch
bytes` parameter of the statepoint created.
This change intentionally does not assert on a malformed value for these
attributes, given that they're not "official" attributes.
Reviewers: reames, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9735
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237286 91177308-0d34-0410-b5e6-96231b3b80d8
Avoid running forever by checking we are not reassociating an expression into
the same form.
Tested with @avoid_infinite_loops in nary-add.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237269 91177308-0d34-0410-b5e6-96231b3b80d8
This patch uses the new function profile metadata "function_entry_count"
to annotate entry counts from sample profiles.
In a sampling profile, the total samples collected at the function entry
are an approximation for the number of times that function was invoked.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237265 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field
in the generated StackMap section. If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.
This change brings statepoints one step closer to patchpoints. With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.
PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`. This can be made more sophisticated
later.
Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9546
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237214 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If the branch that leads to the PHI node and the Select instruction
depend on correlated conditions, we might be able to directly use the
corresponding value from the Select instruction as the incoming value
for the PHI node, allowing later removal of the select instruction.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9051
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237201 91177308-0d34-0410-b5e6-96231b3b80d8
When relocating a pointer, we need to determine a base pointer for the derived pointer being relocated. We have limited support for handling a pointer extracted from a vector; the current code only handled the case where the entire vector was known to contain base pointers. This patch extends the reasoning to handle chains of insertelements where the indices are constants. This case turns out to be fairly common in vectorized code. We can now handle vectors which contains mixtures of base and derived pointers provided the insertelements use constant indices.
Note that this doesn't solve the general problem. To handle variable indexed insertelements, we'd need to scalarize and introduce conditional branching based on the index. Alternatively, we could eagerly scalarize, but the code structure doesn't currently make either fix easy. The patch also doesn't handle shufflevector or other vector manipulation for much the same reasons. I plan to defer this work until I have a motivating test case.
Differential Revision: http://reviews.llvm.org/D9676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237200 91177308-0d34-0410-b5e6-96231b3b80d8
As a step towards getting rid of internal pass manager hack entirely, remove the need for loop simplify to run in the inner pass manager. The new code does produce slightly different loop structures, so this isn't technically NFC.
Differential Revision: http://reviews.llvm.org/D9585
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237172 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch reimplements heuristic that tries to estimate optimization beneftis
from complete loop unrolling.
In this patch I kept the minimal changes - e.g. I removed code handling
branches and folding compares. That's a promising area, but now there
are too many questions to discuss before we can enable it.
Test Plan: Tests are included in the patch.
Reviewers: hfinkel, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8816
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237156 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes another miscompile introduced by r235232: when there was a
dependency on the memcpy destination other than the memset, we would
ignore it, because we only looked at the source dependency.
It was a mistake to use SrcDepInfo. Instead, just use DepInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237066 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.
This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.
Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.
Patch by Chen Li!
Reviewers: reames, AndyAyers, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9592
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237009 91177308-0d34-0410-b5e6-96231b3b80d8
The QPX single-precision load/store intrinsics have implied
truncation/extension from/to the declared value type of <4 x double> to the
memory type of <4 x float>. When we can prove the alignment of the pointer
argument, and thus replace the intrinsic with a regular load or store, we need
to load or store the correct data type (<4 x float>) instead of (<4 x double>).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236973 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the shape of the statepoint intrinsic from:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)
to:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)
This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.
In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.
Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.
Differential Revision: http://reviews.llvm.org/D9501
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236888 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I noticed this bug when deubging a WIP on LSR. I wonder whether and how we
should add a regression test for this.
Test Plan: no tests failed.
Reviewers: atrick
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D9536
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236887 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
One step further getting aggregate loads and store being optimized
properly. This will only handle struct with one element at this point.
Test Plan: Added unit tests for the new supported cases.
Reviewers: chandlerc, joker-eph, joker.eph, majnemer
Reviewed By: majnemer
Subscribers: pete, llvm-commits
Differential Revision: http://reviews.llvm.org/D8339
Patch by Amaury Sechet.
From: Amaury Sechet <amaury@fb.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236695 91177308-0d34-0410-b5e6-96231b3b80d8
If we have recognized that a conditional is constant at a particular location in the code (while trying to decide if we can simplify a conditional branch), we can eagerly replace that condition with a constant if it's definition is post dominated by the branch in question.
In practice, this ends up being a compile time savings at most. JumpThreading would have visited each using branch anyways. CVP would have visited the cmp itself again. Unless LVI gives up early, we shouldn't gain any addition power by doing this transformation early. What we do gain is simplicity and compile time.
Differential Revision: http://reviews.llvm.org/D9312
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236684 91177308-0d34-0410-b5e6-96231b3b80d8
Renames the original CreateGCStatepoint to CreateGCStatepointCall, and
moves invoke creating functionality from PlaceSafepoints.cpp to
IRBuilder.cpp.
This changes the labels generated for PlaceSafepoints/invokes.ll so use
a regex there to make the basic block labels more resilient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236672 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When computing branch weights in BPI, we used to disallow branches with
weight 0. This is a minor nuisance, because a branch with weight 0 is
different to "don't have information". In the context of
instrumentation, it may mean "never executed", in the context of
sampling, it means "never or seldom executed".
In allowing 0 weight branches, I ran into issues with the switch
expansion code in selection DAG. It is currently hardwired to not handle
branches with weight 0. To maintain the current behaviour, I changed it
to use 1 when it finds 0, but perhaps the algorithm needs changes to
tolerate branches with weight zero.
Reviewers: hansw
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236617 91177308-0d34-0410-b5e6-96231b3b80d8
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.
Differential Revision: http://reviews.llvm.org/D9515
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236613 91177308-0d34-0410-b5e6-96231b3b80d8
COMDAT groups which have become rendered unused because of inline are
discardable if we can prove that we've made the group empty.
This fixes PR22285.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236539 91177308-0d34-0410-b5e6-96231b3b80d8
It got this in some cases (if one of them was an identified object), but not in all cases.
This caused stores to undef to block load-forwarding in some cases, etc.
Added test to Transforms/GVN to verify optimization occurs as expected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236511 91177308-0d34-0410-b5e6-96231b3b80d8
When optimizing demanded bits of the operands of an Add we have to
remove the nsw/nuw flags as we have no guarantee anymore that we don't
wrap. This is legal here because the top bit is not demanded. In fact
this operaion was already performed but missed in the case of an Add
with a constant on the right side. To fix this this patch refactors the
code to unify the code paths in SimplifyDemandedUseBits() handling of
Add/Sub:
- The transformation of Add->Or is removed from the simplify demand
code because the equivalent transformation exists in
InstCombiner::visitAdd()
- KnownOnes/KnownZero are not adjusted for Add x, C anymore as
computeKnownBits() already performs these computations.
- The simplification of the operands is unified. In this new version
constant on the right side of a Sub are shrunk now as I could not find
a reason why not to do so.
- The special case for clearing nsw/nuw in ShrinkDemandedConstant() is
not necessary anymore as the caller does that already.
Differential Revision: http://reviews.llvm.org/D9415
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236269 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Optimizing these well are especially interesting for IRCE since it
"clamps" values by generating this sort of pattern through SCEV
expressions.
Depends on D9352.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9353
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236203 91177308-0d34-0410-b5e6-96231b3b80d8