textually as NativeClient. Also added a link to the native client project for
readers unfamiliar with it.
A Clang patch will follow shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169291 91177308-0d34-0410-b5e6-96231b3b80d8
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169224 91177308-0d34-0410-b5e6-96231b3b80d8
This replaces an existing subtarget hook on ARM and allows standard
CodeGen passes to potentially use the property.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161471 91177308-0d34-0410-b5e6-96231b3b80d8
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154480 91177308-0d34-0410-b5e6-96231b3b80d8
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154456 91177308-0d34-0410-b5e6-96231b3b80d8
In this update:
- I assumed neon2 does not imply vfpv4, but neon and vfpv4 imply neon2.
- I kept setting .fpu=neon-vfpv4 code attribute because that is what the
assembler understands.
Patch by Ana Pazos <apazos@codeaurora.org>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152036 91177308-0d34-0410-b5e6-96231b3b80d8
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151623 91177308-0d34-0410-b5e6-96231b3b80d8
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140696 91177308-0d34-0410-b5e6-96231b3b80d8
instructions are more aligned than the CPU requires, and adds some additional
directives, to follow in future patches. Patch by David Meyer!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139125 91177308-0d34-0410-b5e6-96231b3b80d8
The DSP instructions in the Thumb2 instruction set are an optional extension
in the Cortex-M* archtitecture. When present, the implementation is considered
an "ARMv7E-M implementation," and when not, an "ARMv7-M implementation."
Add a subtarget feature hook for the v7e-m instructions and hook it up. The
cortex-m3 cpu is an example of a v7m implementation, while the cortex-m4 is
a v7e-m implementation.
rdar://9572992
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134261 91177308-0d34-0410-b5e6-96231b3b80d8
itineraries.
- Refactor TargetSubtarget to be based on MCSubtargetInfo.
- Change tablegen generated subtarget info to initialize MCSubtargetInfo
and hide more details from targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134257 91177308-0d34-0410-b5e6-96231b3b80d8
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134127 91177308-0d34-0410-b5e6-96231b3b80d8
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122541 91177308-0d34-0410-b5e6-96231b3b80d8
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
additional pipeline stall. So it's frequently better to single codegen
vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
vmla + vmla is very bad. But this isn't ideal either:
vmul
vadd
vmla
Instead, we want to expand the second vmla:
vmla
vmul
vadd
Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
faster.
Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.
A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
vmla / vmls will trigger one of the special hazards.
Work in progress, only A+B are enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120960 91177308-0d34-0410-b5e6-96231b3b80d8
"-mattr=+vfp3" is specified. However, this will not work for hardware that
only supports 16 registers. Add a new flag to support -"mattr=+vfp3,+d16".
Patch by Jan Voung!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116310 91177308-0d34-0410-b5e6-96231b3b80d8
LDM/STM instructions can run one cycle faster on some ARM processors if the
memory address is 64-bit aligned. Radar 8489376.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115047 91177308-0d34-0410-b5e6-96231b3b80d8
cost modeling for if-conversion. Now if only we had a way to estimate the misprediction probability.
Adjsut CodeGen/ARM/ifcvt10.ll. The pipeline on Cortex-A8 is long enough that it is still profitable
to predicate an ldm, but the shorter pipeline on Cortex-A9 makes it unprofitable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114995 91177308-0d34-0410-b5e6-96231b3b80d8
llc now recognizes the "intent" to support MC/obj emission for ARM, but
given that they are all stubs, it asserts on --filetype=obj --march=arm
Patch by Jason Kim.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114856 91177308-0d34-0410-b5e6-96231b3b80d8