Previous algorithm for constructing [Address ranges]->[Compile Units]
mapping was wrong. It somewhat relied on the assumption that address ranges
for different compile units may not overlap. It is not so.
For example, two compile units may contain the definition of the same
linkonce_odr function. These definitions will be merged at link-time,
resulting in equivalent .debug_ranges entries for both these units
Instead of sorting and merging original address ranges (from .debug_ranges
and .debug_aranges), implement a different approach: save endpoints
of all ranges, and then use a sweep-line approach to construct
the desired mapping. If we find that certain address maps to
several compilation units, we just pick any of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210860 91177308-0d34-0410-b5e6-96231b3b80d8
There is no need to keep the whole contents of .debug_aranges section
in memory when we build address ranges table. Memory optimization that
used to be in this code (precalculate the size of vector of ranges before
filling it) is not really needed - later we will compact and resize this
vector anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207457 91177308-0d34-0410-b5e6-96231b3b80d8
Add a helper method to get address ranges specified in a DIE
(either by DW_AT_low_pc/DW_AT_high_pc, or by DW_AT_ranges). Use it
to untangle and simplify the code.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206624 91177308-0d34-0410-b5e6-96231b3b80d8
Parsing .debug_aranges section now takes O(nlogn) operations instead
of O(n^2), where "n" is the number of address ranges. With this change,
the time required to symbolize an address from a random large
Clang-generated binary drops from 165 seconds to 1.5 seconds.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191781 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
1) Make llvm-symbolizer properly symbolize
files with split debug info (by using stanalone .dwo files).
2) Make DWARFCompileUnit parse and store corresponding .dwo file,
if necessary.
3) Make bits of DWARF parsing more CompileUnit-oriented.
Reviewers: echristo
Reviewed By: echristo
CC: bkramer, llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1164
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189329 91177308-0d34-0410-b5e6-96231b3b80d8
1) DIContext is now able to return function name for a given instruction address (besides file/line info).
2) llvm-dwarfdump accepts flag --functions that prints the function name (if address is specified by --address flag).
3) test case that checks the basic functionality of llvm-dwarfdump added
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159512 91177308-0d34-0410-b5e6-96231b3b80d8
This is only one half of it, the part that caches address ranges from the DIEs when .debug_aranges is
not available will be ported soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139680 91177308-0d34-0410-b5e6-96231b3b80d8