This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136589 91177308-0d34-0410-b5e6-96231b3b80d8
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136404 91177308-0d34-0410-b5e6-96231b3b80d8
This is just a LangRef entry and reading/writing/memory representation; optimizer+codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136009 91177308-0d34-0410-b5e6-96231b3b80d8
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134829 91177308-0d34-0410-b5e6-96231b3b80d8
<h2>Section Example</h2>
<div> <!-- h2+div is applied -->
<p>Section preamble.</p>
<h3>Subsection Example</h3>
<p> <!-- h3+p is applied -->
Subsection body
</p>
<!-- End of section body -->
</div>
FIXME: Care H5 better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130040 91177308-0d34-0410-b5e6-96231b3b80d8
isn't an exact float. Also "fpext float 1.0 to float" is invalid IR because
it's not performing an extension.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128647 91177308-0d34-0410-b5e6-96231b3b80d8
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127766 91177308-0d34-0410-b5e6-96231b3b80d8
Limit the folding of any_ext and sext into the load operation to scalars.
Limit the active-bits trunc optimization to scalars.
Document vector trunc and vector sext in LangRef.
Similar to commit 126080 (for enabling zext).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126424 91177308-0d34-0410-b5e6-96231b3b80d8
The DAGCombiner folds the zext into complex load instructions. This patch
prevents this optimization on vectors since none of the supported targets
knows how to perform load+vector_zext in one instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126080 91177308-0d34-0410-b5e6-96231b3b80d8
Add a unnamed_addr bit to global variables and functions. This will be used
to indicate that the address is not significant and therefore the constant
or function can be merged with others.
If an optimization pass can show that an address is not used, it can set this.
Examples of things that can have this set by the FE are globals created to
hold string literals and C++ constructors.
Adding unnamed_addr to a non-const global should have no effect unless
an optimization can transform that global into a constant.
Aliases are not allowed to have unnamed_addr since I couldn't figure
out any use for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123063 91177308-0d34-0410-b5e6-96231b3b80d8